Assignment 3 Solutions

2.3.4. For each of the following parts, let T be the linear transformation defined in the corresponding part of Exercise 5 of Section 2.2 . Use Theorem 2.14 to compute the following vectors:
(a) $[T(A)]_{\alpha}$, where $A=\left(\begin{array}{cc}1 & 4 \\ -1 & 6\end{array}\right)$.
(b) $[T(f(x))]_{\alpha}$, where $f(x)=4-6 x+3 x^{2}$.
(c) $[T(A)]_{\gamma}$, where is $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$.
(d) $[T(f(x))]_{\gamma}$, where $f(x)=6-x+2 x^{2}$.

Solution. From Exercise 5 of Section 2.2,

$$
\alpha=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

$\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\{1\}$. Recall that if V is a vector space with basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$, and $x \in V$, then $[x]_{\beta}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$ where $[x]_{\beta}=\sum_{i=1}^{n} a_{i} v_{i}$.

Also, Theorem 2.14 of the text says that if $\zeta=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\xi=\left\{w_{1}, \ldots, w_{m}\right\}$ are bases for V and W, respectively, then if $T: V \rightarrow W$ is a linear transformation and $u \in V$, we have $[T(u)]_{\xi}=[T]_{\zeta}^{\xi}[u]_{\zeta}$
(a) In Exercise 5, $T: M_{2 \times 2}(F) \rightarrow M_{2 \times 2}(F)$ is $T(A)=A^{t}$. By Theorem 2.14, $[T(A)]_{\alpha}=[T]_{\alpha}^{\alpha}[A]_{\alpha}$. Note that

$$
\begin{aligned}
& T\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=1\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \\
& T\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=0\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+1\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \\
& T\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=0\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+1\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

and

$$
T\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=0\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+1\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

so that $[T]_{\alpha}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$. Now,

$$
A=\left(\begin{array}{cc}
1 & 4 \\
-1 & 6
\end{array}\right)=1\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+4\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+(-1)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+6\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

so that $[A]_{\alpha}=\left(\begin{array}{c}1 \\ 4 \\ -1 \\ 6\end{array}\right)$. Now, $[T]_{\alpha}[A]_{\alpha}=\left(\begin{array}{c}1 \\ -1 \\ 4 \\ 6\end{array}\right)$
(b) In Exercise $5, T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ is $T(f(x))=\left(\begin{array}{cc}f^{\prime}(0) & 2 f(1) \\ 0 & \left.f^{\prime \prime}(3)\right)\end{array}\right)$. We now find [T] ${ }_{\beta}^{\alpha}$. Note that

$$
T(1)=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)=0\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),
$$

$$
T(x)=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=1\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),
$$

and

$$
T\left(x^{2}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right)=0\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+2\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

so that $[T]_{\beta}^{\alpha}=\left(\begin{array}{lll}0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right)$. Now, for $f(x)=4-6 x+3 x^{2}$, we have $[f(x)]_{\beta}=\left(\begin{array}{c}4 \\ -6 \\ 3\end{array}\right)$. Now, $[T(f(x))]_{\beta}=\left[T_{\beta}^{\alpha}[f(x)]_{\beta}=\left(\begin{array}{c}-6 \\ 2 \\ 0 \\ 6\end{array}\right)\right.$.
(c) In Exercise 5, $T: M_{2 \times 2}(F) \rightarrow P_{2}(F)$ is $T(A)=\operatorname{tr}(A)=\sum_{i=1}^{2} A_{i, i}=A_{1,1}+A_{2,2}$.

We now compute $[T]_{\alpha}^{\gamma}$. Note,

$$
\begin{aligned}
& T\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right)=1, \\
& T\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)=0, \\
& T\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right)=0,
\end{aligned}
$$

and

$$
T\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)=1
$$

so $[T]_{\alpha}^{\gamma}=\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)$. It is clear that $[A]_{\alpha}=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 4\end{array}\right)$ so $[T(A)]_{\gamma}=[T]_{\alpha}^{\gamma}[A]_{\alpha}=(5)$.
(d) In Exercise $5, T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ is $T(f(x))=f(2)$. Note that $T(1)=1, T(x)=2$, and $T\left(x^{2}\right)=4$, so that $[T]_{\beta}^{\gamma}=\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)$. Also, for $f(x)=6-x+2 x^{2},[f(x)]_{\beta}=\left(\begin{array}{c}6 \\ -1 \\ 2\end{array}\right)$, so that $[T(f(x))]_{\gamma}=[T]_{\beta}^{\gamma}[f(x)]_{\beta}=(12)$.
2.3.9. Find linear transformations $U, T: F^{2} \rightarrow F^{2}$ such that $U T=T_{0}$ (the zero transformation) but $T U \neq T_{0}$. Use your answer to find matrices A and B such that $A B=O$, but $B A \neq O$.

Solution. We search for such transformations as follows. Note that for any linear transformation $S: F^{2} \rightarrow F^{2}, T_{0} \circ S=T_{0}$, and $S \circ T_{0}=T_{0}$. Hence, in searching for such U and T, we cannot have either of U or T be the zero transformation, for then $T \circ U \neq T_{0}$ cannot be achieved. Furthermore, we do not want T to be surjective, for if so, then $U=T_{0}$. Indeed, if $(a, b) \in F^{2}=T\left(F^{2}\right)$, then $(a, b)=T(c, d)$ for some $(c, d) \in F^{2}$. However, the condition that $U \circ T=T_{0}$ would imply that $U(a, b)=U(T(c, d))=T_{0}(c, d)=(0,0)$, so $U=T_{0}$.

This further implies that the range of T should be a one-dimensional subspace of F^{2}. If $T\left(F^{2}\right)$ were a 0 -dimensional space, that would imply $T\left(F^{2}\right)=\{(0,0)\}$ so $T=T_{0}$, which we said above cannot be the case to meet the conditions. If $T\left(F^{2}\right)$ were a 2 -dimensional space, that would imply that $T\left(F^{2}\right)$ is all of F^{2} so T is surjective, which cannot happen.

Continuing, we will use a fundamental technique to construct linear transformations as follows. Consider the standard basis $\beta=\{(0,1),(1,0)\}$, and the set $\{(0,1)\}$, which generates the subspace $A=\{(0, a): a \in F\} \subseteq F^{2}$. There exists (by Theorem 2.6 of the book), $T: F^{2} \rightarrow F^{2}$ linear such that $T(0,1)=(0,1)=T(1,0)$. Explicitly, for $(a, b) \in F^{2}$,

$$
T(a, b)=T(a(1,0)+b(0,1))=a T(1,0)+b T(0,1)=a(0,1)+b(0,1)=(0, a+b)
$$

and note that $T\left(F^{2}\right)=A$.
Now, we want U to be zero on all of A, so as above we can also get linear $U: F^{2} \rightarrow F^{2}$ such that $U(0,1)=(0,0)$ and $U(1,0)=(1,0)$. The first equality gets that for all $(a, b) \in F^{2}, U(T(a, b))=U(0, a+b)=(a+b) U(0,1)=(0,0)$ so $U \circ T=T_{0}$. The second equality gets that $T(U(1,0))=T(1,0)=(0,1+0)=(0,1) \neq T_{0}(1,0)$. As $T \circ U$ disagrees with T_{0} at $(1,0), T \circ U \neq T_{0}$.

Recall that O is the 2×2 zero matrix, and $\left[T_{0}\right]_{\beta}=O$. Consider $A=[U]_{\beta}$ and $B=[T]_{\beta}$. As $U \circ T=T_{0}$, $[U \circ T]_{\beta}=O$, and as $T \circ U \neq T_{0},[T \circ U]_{\beta} \neq O$. By Theorem 2.11, we get that $A B=[U]_{\beta}[T]_{\beta}=[U \circ T]_{\beta}=O$, and $B A=[T]_{\beta}[U]_{\beta}=[T \circ U]_{\beta} \neq O$.
2.4.16. Let B be an $n \times n$ invertible matrix. Define $\Phi: M_{n \times n}(F) \rightarrow M_{n \times n}(F)$ by $\Phi(A)=B^{-1} A B$. Prove that Φ is an isomorphism.

Solution. As B is invertible, B^{-1} exists, and $B B^{-1}=I_{n}=B^{-1} B$, where I_{n} is the $n \times n$ identity matrix. Note that Φ is linear. If $H, K \in M_{n \times n}(F)$ and $c \in F$, then

$$
\Phi(H+K)=B^{-1}(H+K) B=\left(B^{-1} H+B^{-1} K\right) B=B^{-1} H B+B^{-1} K B=\Phi(H)+\Phi(K)
$$

and $\Phi(c H)=B^{-1}(c H) B=\left(c B^{-1}\right) H B=c\left(B^{-1} H B\right)=c \Phi(H)$.
Now let $H \in M_{n \times n}(F)$. Then

$$
H=I_{n} H I_{n}=\left(B^{-1} B\right) H\left(B^{-1} B\right)=B^{-1}\left(B H B^{-1}\right) B=\Phi\left(B H B^{-1}\right)
$$

so that Φ is injective.
If $B^{-1} H B=\Phi(H)=\Phi(K)=B^{-1} K B$, then

$$
H=B\left(B^{-1} H B\right) B^{-1}=B\left(B^{-1} K B\right) B^{-1}=K
$$

so Φ is linear. and hence an isomorphism.

