
Assignment 4 Solutions

2.5.7. In R2, let ! be the line H = <G, where < ≠ 0. Find an expression for ) (G, H), where
(a) ) is the reflection of R2 about !.
(b) ) is the projection on ! along the line perpendicular to !. (See the definition of projection in the exercises of Section 2.1.)

Solution. (a) Let < ≠ 0, we follow the argument shown in Example 3 in the special case of < = 2. Recall that linear transformations
defined on finite-dimensional vector spaces are completely determined by where they map any particular basis elements for a fixed basis.
Hence, we will find a basis V′ for R2 that we will know how to map the elements of under this ) .

Inspired by visual geometry, we would expect the reflection about ! to satisfy ) (1, <) = (1, <) as points on the line are unaffected
by reflection (any point on the line could have been chosen, but this was a simple pick). Hence, the point (1, <) can be one element of
V′. Any other point on the line H cannot be the second element of V′ since they would be linearly dependent with (1, <), so we choose a
point not on the line. Now, (−<, 1) is not on the line as 1 ≠ <(−<) since <(−<) < 0. Further, is must be that ) (−<, 1) = (<,−1)

So V′ = {(1, <), (−<, 1)} is an ordered basis for R2, and let V = {(1, 0), (0, 1)} be the standard ordered basis. Let (0, 1) ∈ R2 be
arbitrary, and suppose that ) (0, 1) = (2, 3), for some 2, 3 ∈ R. We must find an expression for 2 and 3 in terms of 0 and 1. Note

that [) (0, 1)]V = [(2, 3)]V =

(
2

3

)
and also [) (0, 1)]V = [)]V [(0, 1)]V = [)]V

(
0

1

)
so that the equation

(
2

3

)
= [)]V

(
0

1

)
would give us

an expression for 2 and 3 if we knew [)]V , which is what we compute now. Let & = [�R2 ]VV′ be the change of coordinate matrix from
V′-coordinates to V-coordinates. By Theorem 2.23, &−1 [)]V& = [)]V′ so that [)]V = & [)]V′&−1.

It is easy to see that

[)]V′ =
(
1 0
0 −1

)
and

& =

(
1 −<
< 1

)
so that

&−1 =
1

1 + <2

(
1 <

−< 1

)
as seen through the standard inverse formula. It can be verified by computation that

[)]V = & [)]V′&−1 =
1

1 + <2

(
1 − <2 2<
2< <2 − 1

)
and so (

2

3

)
= [)]V

(
0

1

)
=

1

1 + <2

(
(1 − <2)0 + 2<1
2<0 + (<2 − 1)1

)
which gives that for (0, 1) ∈ R,

) (0, 1) = 1

1 + <2
((1 − <2)0 + 2<1, 2<0 + (<2 − 1)1)

(b) We will use a similar technique to that seen in part (a). First recall that if,1 and,2 are subspaces of + such that + = ,1 +,2

and,1 ∩,2 = {0+ }, then + is the direct sum of,1 and,2, written + = ,1 ⊕,2. This has the property that each E ∈ + has a unique
split into E = F1 + F2. In such a case, say that ) : + → + is a projection on,1 along,2 if ) (F1 + F2) = F1 whenever F1 ∈ ,1

and F2 ∈ ,2. Consider again < ≠ 0 and the line ! determined by H = <G. Let % be the line perpendicular to !, which has equation
H = −1/<G. Of course ! ∩ % = {(0, 0)}, and dim(!) = dim(%) = 1, so that dim(! + %) = dim(!) + dim(%) = 2. As dim(R2) = 2, we
have ! + % = R2 so R2 = ! ⊕ %. Note that a point on ! is (1, <), and a point on % is (−<, 1), and that these are linearly independent.
Any such points can be used, but we are using these because we already used them for part (a). In fact, we can consider the same ordered
basis V′ = {(1, <), (−<, 1)}. Such a function ) must have that ) (1, <) = ) ((1, <) + (0, 0)) = (1, <), since (1, <) ∈ !, (0, 0) ∈ % and
) is a projection. Likewise, ) (−<, 1) = ) ((0, 0) + (−<, 1)) = (0, 0) since (0, 0) ∈ ! and (−<, 1) ∈ %. Thus,

[)]V′ =
(
1 0
0 0

)

1



and
& =

(
1 −<
< 1

)
as before so

&−1 =
1

1 + <2

(
1 <

−< 1

)
.

Let ) (0, 1) = (2, 3). As before, (
2

3

)
= [)]V

(
0

1

)
and after computation, one may verify that

[)]V = & [)]V′&−1 =
1

1 + <2

(
1 <

< <2

)
so that (

2

3

)
=

1

1 + <2

(
0 + <1
0< + <21

)
which gives the definition of ) . �

2.5.11. Let + be a finite-dimensional vector space with ordered bases U, V, and W.
(a) Prove that if & and ' are the change of coordinate matrices that change U-coordinates into V-coordinates and V-coordinates into

W-coordinates, respectively, then '& is the change of coordinates matrix that changes U-coordinates into W-coordinates.
(b) Prove that if & changes U-coordinates into V-coordinates, then &−1 changes V-coordinates into U-coordinates.

Solution. Recall that by Theorem 2.11 of the book, that if +,, and / are finite dimensional spaces with ordered bases, U, V, and W,
respectively, and if ) : + → , and* : , → / are linear, then

[*)]WU = [*]W
V
[)]VU .

Also by Theorem 2.18, we have that if ) is invertible, then [)−1]U
V
= ( [)]VU)−1

(a) Recall that if �+ : + → + denotes the identity linear transformation, then by definition, & = [�+ ]VU and ' = [�E ]WV . Hence,
'& = [�+ ]WV [�+ ]

V
U = [�+ �+ ]WU = [�+ ]WU. Thus, by definition we have that '& changes U-coordinates into W-coordinates.

(b) As �−1
+

= �+ , we have that &−1 = ( [�+ ]VU)−1 = [�−1E ]UV = [�+ ]UV so that by definition, &−1 changes V-coordinates to U-
coordinates. �

2.5.14. Prove the converse of Exercise 8: If � and � are each<×=matrices with entries from a field �, and if there exist invertible<×<
and = × = matrices % and &, respectively, such that � = %−1�&, then there exist an =-dimensional vector space + and an <-dimensional
vector space, (both over �), ordered bases V and V′ for + and W and W′ for, , and a linear transformation ) : + → , such that

� = [)]W
V
and � = [)]W

′

V′ .

Hints: Let + = �=,, = �<, ) = !�, and V and W be the standard ordered bases for �= and �<, respectively. Now apply the results of
Exercise 13 to obtain ordered bases V′ and W′ from V and W via & and %, respectively.

Solution. Let �, � ∈ "<×= (�), % ∈ "< (�), & ∈ "= (�) with %, & invertible, such that � = %−1�&. Let + = �=, , = �<, and
consider !� : + → , with !�(G) = �G. Let V = {G1, . . . , G=} and W = {H1, . . . , H<} be the standard ordered bases for �= and �<,
respectively. Then immediately � = [!�]WV , so it remains to show that � = [!�]W

′

V′ .
For 1 ≤ 8 ≤ = and 1 ≤ 9 ≤ =, let G ′

9
=

∑=
8=1&8, 9G8 , so by Exercise 2.5.13, V′ = {G ′1, . . . , G ′=} is another ordered basis for + for which

& is the change of coordinate matrix changing V′-coordinates into V-coordinates. That is, & = [�+ ]VV′ . Likewise, for 1 ≤ ℎ ≤ < and
1 ≤ : ≤ <, let H′

:
=

∑<
ℎ=1 %ℎ,: Hℎ , so that W′ = {H′1, . . . , H′<} is another ordered basis for , for which % is the change of coordinate

matrix that changes W′-coordinates into W-coordinates, i.e % = [�, ]WW′ . By Exercise 2.5.11 (b), we have %−1 changes W-coordinates into
W′-coordinates. That is, %−1 = [�, ]W

′
W . It follows from double application of Theorem 2.11 that

� = %−1�& = [�, ]W
′
W [!�]WV [�+ ]

V

V′ = [�, ◦ !� ◦ �+ ]
W′

V′ = [!�]
W′

V′

as desired. �
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