Assignment 5 Solutions

4.3.10. A matrix $M \in M_{n \times n}(C)$ is called nilpotent if, for some positive integer $k, M^{k}=O$, where O is the $n \times n$ zero matrix. Prove that if M is nilpotent, then $\operatorname{det}(M)=0$.

Solution. If O is the $n \times n$ zero matrix, then of course $\operatorname{det}(O)=0$. Recall that if $A, B \in M_{n \times n}(C)$, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. It follows from an easy extension via induction that if $A_{1}, \ldots, A_{m} \in M_{n \times n}(C)$, then $\operatorname{det}\left(A_{1} \cdots A_{m}\right)=\operatorname{det}\left(A_{1}\right) \cdots \operatorname{det}\left(A_{m}\right)$.

Suppose now that $M \in M_{n \times n}(C)$ is nilpotent. Say $k \in \mathbb{N}$ is such that $M^{k}=O$. Then

$$
0=\operatorname{det}(O)=\operatorname{det}\left(M^{k}\right)=\operatorname{det}(M \cdots M)=\operatorname{det}(M) \cdots \operatorname{det}(M)=\operatorname{det}(M)^{k}
$$

so that $\operatorname{det}(M)=\sqrt[k]{0}=0$.
4.3.11. A matrix $M \in M_{n \times n}(C)$ is called skew-symmetric if $M^{t}=-M$. Prove that if M if skew-symmetric and n is odd, then M is not invertible. What happens if n is even?

Solution. Recall that if A and B are $n \times n$ matrices such that B is obtained from A by multiplying a row by a nonzero scalar $k \in C$, then $\operatorname{det}(B)=k \operatorname{det}(A)$. Now consider the matrix $k A$, which is obtained from multiplying every row of A, by k. It can be verified then that $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$. In particular, $\operatorname{det}(-A)=\operatorname{det}((-1) A)=(-1)^{n} \operatorname{det}(A)$.

Suppose now that $M \in M_{n \times n}(C)$ is skew-symmetric, and n is odd. Then $\operatorname{det}(M)=\operatorname{det}\left(M^{t}\right)=\operatorname{det}(-M)=(-1)^{n} \operatorname{det}(M)$. As n is odd, $(-1)^{n}=-1$ so that $\operatorname{det}(M)=-\operatorname{det}(M)$. The only number $x \in \mathbb{N}$ such that $-x=x$ is $x=0$. Hence, $\operatorname{det}(M)=0$ so M is not invertible.

We cannot make many such conclusions about the invertibility if n is even. Indeed, there exist even skew-symmetric matrices that are invertible, and those that are not invertible. The 2×2 zero matrix O is clearly skew-symmetric, yet not invertible For any nonzero $a \in C, A=\left(\begin{array}{cc}0 & -a \\ a & 0\end{array}\right)$ is also skew-symmetric though will have nonzero determinant and hence be invertible.
4.3.14. Let $\beta=\left\{u_{1}, \ldots, u_{n}\right\}$ be a subset of F^{n} containing n distinct vectors, and let B be the matrix in $M_{n \times n}(F)$ having u_{j} as column j. Prove that β is a basis for F^{n} if and only if $\operatorname{det}(B) \neq 0$.

Solution. As β consists of n distinct vectors in an n-dimensional space, we have that β is a basis for F^{n} if and only if β is linearly independent. As B has n linearly independent columns if and only if it has rank n, and these columns are precisely the vectors in β, we have that β is linearly independent if and only if B has rank n. However, B has rank n if and only if it is invertible, which it true if and only if $\operatorname{det}(B) \neq 0$.

