1.3.22 (First recall from Example 3 of section 1.2 that $\mathcal{F}\left(F_{1}, F_{2}\right)$ is a vector space over the field F_{2}.) Let E denote the subset of even functions in $\mathcal{F}\left(F_{1}, F_{2}\right)$, and by O we denote the subset of odd functions. By f_{0} we denote the zero vector of $\mathcal{F}\left(F_{1}, F_{2}\right)$. For any $t \in F_{1}$, we have $f_{0}(-t)=0=f_{0}(t)=0=-f_{0}(-t)$. Thus f_{0} is an element of both E and O.
Consider two even functions $f, g \in E$ and a scalar $c \in F_{2}$. Now for any $t \in F_{1}$, as f and g are even, we have: a) $(f+g)(-t)=f(-t)+g(-t)=f(t)+g(t)=(f+g)(t)$; and b) $(c f)(-t)=c(f(-t))=c f(t)=(c f)(t)$. We proved that for any $f, g \in E$ and $c \in F_{2}$, the functions $f+g$ and $c f$ are elements of E. We already saw that $f_{0} \in E$. Now by Theorem 1.3, the subset E is a subspace.
Consider two odd functions $f, g \in O$ and a scalar $c \in F_{2}$. Now for any $t \in F_{1}$, as f and g are odd, we have: a) $(f+g)(-t)=f(-t)+g(-t)=-f(t)+(-g(t))=-((f+g)(t))$; and b) $(c f)(-t)=c(f(-t))=-c f(t)=-((c f)(t))$. We proved that for any $f, g \in O$ and $c \in F_{2}$, the functions $f+g$ and $c f$ are elements of O. We already saw that $f_{0} \in O$. Now by Theorem 1.3, the subset O is a subspace.
1.5.5 Assume that

$$
a_{0}+a_{1} x+\ldots+a_{n} x^{n}=0
$$

for some scalars $a_{0}, a_{1}, \ldots a_{n}$ in F.
Equating the coefficients of x^{k} on both sides of this equation for $k=1,2, \ldots, n$, we obtain $0=a_{0}=a_{1}=\ldots=a_{n}$. Thus the zero vector of $\mathrm{P}_{n}(F)$ (i.e 0) has no non-trivial representation as a linear combination of elements of the set $\left\{1, x, \ldots x^{n}\right\}$. Therefore $\left\{1, x, \ldots x^{n}\right\}$ is linearly independent in $\mathrm{P}_{n}(F)$.

