Assignment 2 Solutions

2.1.14. Let V and W be vector spaces and $T: V \rightarrow W$ be linear.
(a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.
(b) Suppose that T is one-to-one and that S is a subset of V. Prove that S is linearly independent if and only if $T(S)$ is linearly independent.
(c) Suppose $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and T is one-to-one and onto. Prove that $T(\beta)=\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for W.

Solution. (a) Suppose first that T is one-to-one. Let $A \subseteq V$ be linearly independent. We wish to show that $T(A)=\{t(a): a \in A\}$ is a linearly independent subset of W. Recall that a subset of W is linearly independent if and only if every linear combination equal to 0_{W} must have only coefficients equal to 0_{F}. Hence, let $c_{1} b_{1}+\cdots+c_{n} b_{n}=0_{W}$ be a linear combination where $b_{i} \in T(A)$ for each $i \in\{1, \ldots, n\}$. For each i, there is $a_{i} \in A$ such that $T\left(a_{i}\right)=b_{i}$. Note now that

$$
T\left(c_{1} a_{1}+\cdots+c_{n} a_{n}\right)=c_{1} T\left(a_{1}\right)+\cdots+c_{n} T\left(a_{n}\right)=c_{1} b_{1}+\cdots+c_{n} b_{n}=0_{W}
$$

As T is one-to-one, $N(T)=\left\{0_{V}\right\}$ so $c_{1} a_{1}+\cdots+c_{n} a_{n}=0_{V}$. But $c_{1} a_{1}+\cdots+c_{n} a_{n}$ is a linear combination of elements from A and A is linearly independent! This tells us that $c_{i}=0_{F}$ for each i, so $T(A)$ is linearly independent.

Suppose conversely that for each linearly independent $A \subseteq V$, we have $T(A) \subseteq W$ is linearly independent. We wish to now show that T is one-to-one, for which it suffices to show $N(T)=\left\{0_{V}\right\}$. Before proceeding, we recall some things. Note that for $v \in V,\{v\}$ is linearly dependent if and only if $v=0_{V}$. If $v=0_{V}$, then $1 \cdot v=0_{V}$ is a trivial linear combination from elements of $\{v\}$ equal to 0_{V}, yet has nonzero coefficient. Conversely, if $\{v\}$ is linearly dependent, there is $c \in F$ nonzero such that $c v=0_{V}$. But as c is nonzero, it has an inverse so $v=c^{-1}(c v)=c^{-1} 0_{V}=0_{V}$.

Now we continue with the proof. Let $v \in V$ with $T(v)=0_{W}$. We want that $v=0_{V}$, so what happens if this isn't the case? If $v \neq 0_{V}$, then $\{v\}$ is linearly independent. By hypothesis, $T(\{v\})=\{T(v)\}$ is also linearly independent. But $\{T(v)\}=\left\{0_{V}\right\}$ is linearly dependent by the preceding discussion, which is a contradiction! Hence, $v=0_{V}$ and we are done.
(b) Suppose that T is one-to-one, let $S \subseteq V$. By (a), we know that T carries linearly independent subsets of V onto linearly independent subsets of W. Then immediately, if S is linearly independent, then $T(S)$ is as well. The converse remains to be proven. Say $T(S)$ is linearly independent, and let $c_{1} s_{1}+\cdots+c_{n} s_{n}=0_{V}$ be a linear combination with vectors in S. As T is linear, we have

$$
0_{W}=T\left(0_{V}\right)=T\left(c_{1} s_{1}+\cdots+c_{n} s_{n}\right)=c_{1} T\left(s_{1}\right)+\cdots+c_{n} T\left(s_{n}\right)
$$

which is a linear transformation from elements of $T(S)$, so $c_{i}=0_{F}$ for each i. Hence, S is linearly independent.
(c) Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V, and let T be one-to-one and onto. We wish to show that $T(\beta)$ is a basis, i.e a linearly independent set that spans W. By (c) and the fact that β is a linearly independent subset of V, we have that $T(\beta)$ is a linearly independent subset of W. Now suppose that $w \in W$. We wish to show it can be expressed as a linear combination of elements from $T(\beta)$. As T is onto, there is $v \in V$ such that $T(v)=w$. But $v \in \operatorname{Span}(\beta)=\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)$ so there are $c_{1}, \ldots, c_{n} \in F$ such that $v=c_{1} v_{1}+\cdots+c_{n} v_{n}$. It then follows that

$$
w=T(v)=T\left(c_{1} v_{1}+\cdots c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+\cdots+c_{n} T\left(v_{n}\right) \in \operatorname{Span}\left(\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}\right)=\operatorname{Span}(T(\beta)) .
$$

Thus, $T(\beta)$ is a basis.
2.1.20. Let V and W be vector spaces with subspaces V_{1} and W_{1}, respectively. If $T: V \rightarrow W$ is linear, prove that $T\left(V_{1}\right)$ is a subspace of W and that $\left\{x \in V: T(x) \in W_{1}\right\}$ is a subspace of V.
Solution. We first prove that $T\left(V_{1}\right)$ is a subspace of W. As V_{1} is a subspace, $0_{V} \in V_{1}$, and as T is linear, $0_{W}=T\left(0_{V}\right) \in T\left(V_{1}\right)$. Suppose that $a, b \in T\left(V_{1}\right)$ with $a=T(c), b=T(d)$ for some $c, d \in V_{1}$. Then $c+d \in V_{1}$ and hence

$$
a+b=T(c)+T(d)=T(c+d) \in T\left(V_{1}\right)
$$

If $f \in F$, then

$$
f a=f T(c)=T(f c) \in T\left(V_{1}\right)
$$

as $f c \in V_{1}$ by scalar closure of subspaces. Thus $T\left(V_{1}\right)$ is a subspace of W.
Now we will see that $T^{-1}\left(W_{1}\right)=\left\{x \in V: T(x) \in W_{1}\right\}$ is a subspace of V (recall that $T^{-1}\left(W_{1}\right)$ is called the inverse image). As W_{1} is a subspace of $W, 0_{W} \in W_{1}$, and as T is linear, $T\left(0_{V}\right)=0_{W} \in W_{1}$, so $0_{V} \in W_{1}$. Let $a, b \in T^{-1}\left(W_{1}\right)$ and $f \in F$. Then $T(a+b)=T(a)+T(b) \in W_{1}$ as $T(a), T(b) \in W_{1}$ and W_{1} is closed under vector addition, so $a+b \in T^{-1}\left(W_{1}\right)$. Also, $T(f a)=f T(a) \in W_{1}$ as subspaces are closed under scalar multiplication. Hence, $f a \in T^{-1}\left(W_{1}\right)$ so $T^{-1}\left(W_{1}\right)$ is a subspace of V.

