Assignment 2 Solutions

2.1.14. Let *V* and *W* be vector spaces and $T: V \rightarrow W$ be linear.

- (a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.
- (b) Suppose that T is one-to-one and that S is a subset of V. Prove that S is linearly independent if and only if T(S) is linearly independent.
- (c) Suppose $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for *V* and *T* is one-to-one and onto. Prove that $T(\beta) = \{T(v_1), T(v_2), \dots, T(v_n)\}$ is a basis for *W*.

Solution. (a) Suppose first that *T* is one-to-one. Let $A \subseteq V$ be linearly independent. We wish to show that $T(A) = \{t(a) : a \in A\}$ is a linearly independent subset of *W*. Recall that a subset of *W* is linearly independent if and only if every linear combination equal to 0_W must have only coefficients equal to 0_F . Hence, let $c_1b_1 + \cdots + c_nb_n = 0_W$ be a linear combination where $b_i \in T(A)$ for each $i \in \{1, \ldots, n\}$. For each *i*, there is $a_i \in A$ such that $T(a_i) = b_i$. Note now that

$$T(c_1a_1 + \dots + c_na_n) = c_1T(a_1) + \dots + c_nT(a_n) = c_1b_1 + \dots + c_nb_n = 0_W.$$

As *T* is one-to-one, $N(T) = \{0_V\}$ so $c_1a_1 + \cdots + c_na_n = 0_V$. But $c_1a_1 + \cdots + c_na_n$ is a linear combination of elements from *A* and *A* is linearly independent! This tells us that $c_i = 0_F$ for each *i*, so T(A) is linearly independent.

Suppose conversely that for each linearly independent $A \subseteq V$, we have $T(A) \subseteq W$ is linearly independent. We wish to now show that *T* is one-to-one, for which it suffices to show $N(T) = \{0_V\}$. Before proceeding, we recall some things. Note that for $v \in V$, $\{v\}$ is linearly dependent if and only if $v = 0_V$. If $v = 0_V$, then $1 \cdot v = 0_V$ is a trivial linear combination from elements of $\{v\}$ equal to 0_V , yet has nonzero coefficient. Conversely, if $\{v\}$ is linearly dependent, there is $c \in F$ nonzero such that $cv = 0_V$. But as *c* is nonzero, it has an inverse so $v = c^{-1}(cv) = c^{-1}0_V = 0_V$.

Now we continue with the proof. Let $v \in V$ with $T(v) = 0_W$. We want that $v = 0_V$, so what happens if this isn't the case? If $v \neq 0_V$, then $\{v\}$ is linearly independent. By hypothesis, $T(\{v\}) = \{T(v)\}$ is also linearly independent. But $\{T(v)\} = \{0_V\}$ is linearly dependent by the preceding discussion, which is a contradiction! Hence, $v = 0_V$ and we are done.

(b) Suppose that *T* is one-to-one, let $S \subseteq V$. By (a), we know that *T* carries linearly independent subsets of *V* onto linearly independent subsets of *W*. Then immediately, if *S* is linearly independent, then T(S) is as well. The converse remains to be proven. Say T(S) is linearly independent, and let $c_1s_1 + \cdots + c_ns_n = 0_V$ be a linear combination with vectors in *S*. As *T* is linear, we have

$$0_W = T(0_V) = T(c_1s_1 + \dots + c_ns_n) = c_1T(s_1) + \dots + c_nT(s_n)$$

which is a linear transformation from elements of T(S), so $c_i = 0_F$ for each *i*. Hence, S is linearly independent.

(c) Let $\beta = \{v_1, \ldots, v_n\}$ be a basis for *V*, and let *T* be one-to-one and onto. We wish to show that $T(\beta)$ is a basis, i.e a linearly independent set that spans *W*. By (c) and the fact that β is a linearly independent subset of *V*, we have that $T(\beta)$ is a linearly independent subset of *W*. Now suppose that $w \in W$. We wish to show it can be expressed as a linear combination of elements from $T(\beta)$. As *T* is onto, there is $v \in V$ such that T(v) = w. But $v \in \text{Span}(\beta) = \text{Span}(\{v_1, \ldots, v_n\})$ so there are $c_1, \ldots, c_n \in F$ such that $v = c_1v_1 + \cdots + c_nv_n$. It then follows that

$$w = T(v) = T(c_1v_1 + \dots + c_nv_n) = c_1T(v_1) + \dots + c_nT(v_n) \in \text{Span}(\{T(v_1), \dots, T(v_n)\}) = \text{Span}(T(\beta)).$$

Thus, $T(\beta)$ is a basis.

2.1.20. Let *V* and *W* be vector spaces with subspaces V_1 and W_1 , respectively. If $T : V \to W$ is linear, prove that $T(V_1)$ is a subspace of *W* and that $\{x \in V : T(x) \in W_1\}$ is a subspace of *V*.

Solution. We first prove that $T(V_1)$ is a subspace of W. As V_1 is a subspace, $0_V \in V_1$, and as T is linear, $0_W = T(0_V) \in T(V_1)$. Suppose that $a, b \in T(V_1)$ with a = T(c), b = T(d) for some $c, d \in V_1$. Then $c + d \in V_1$ and hence

$$a + b = T(c) + T(d) = T(c + d) \in T(V_1)$$

If $f \in F$, then

$$fa = fT(c) = T(fc) \in T(V_1)$$

as $fc \in V_1$ by scalar closure of subspaces. Thus $T(V_1)$ is a subspace of W.

Now we will see that $T^{-1}(W_1) = \{x \in V : T(x) \in W_1\}$ is a subspace of V (recall that $T^{-1}(W_1)$ is called the *inverse image*). As W_1 is a subspace of W, $0_W \in W_1$, and as T is linear, $T(0_V) = 0_W \in W_1$, so $0_V \in W_1$. Let $a, b \in T^{-1}(W_1)$ and $f \in F$. Then $T(a+b) = T(a)+T(b) \in W_1$ as $T(a), T(b) \in W_1$ and W_1 is closed under vector addition, so $a+b \in T^{-1}(W_1)$. Also, $T(fa) = fT(a) \in W_1$ as subspaces are closed under scalar multiplication. Hence, $fa \in T^{-1}(W_1)$ so $T^{-1}(W_1)$ is a subspace of V.