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I This talk is about some connections between incidence
matrices and group representations.

I Most of the incidence matrices I will consider come from
classical geometries over a finite field Fq, q = pt .

I The representations will be p-modular representations of
groups of automorphisms of the geometries.

I The incidence matrices lead naturally to interesting
modules.

I The study of these modules sheds new light on old p-rank
problems (and solves some of them).
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Subsets of a finite set

I X finite set, Sr the set of r -subsets of X .
I Incidence relation for (Sr , Ss) could be inclusion or, more

generally, intersection in a set of size u.
I The symmetric group Sym(X ) acts.
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I q-analogue of the above.
I V vector space over Fq

I Lr = set of all r -dimensional subspaces of V .
I Incidence relations for (Lr , Ls), e.g. inclusion, intersection

in a fixed dimension.
I GL(V ) acts.
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Distinguished Subspaces

I Suppose V has a symplectic, quadratic or hermitian form.
I We can consider incidence as above, but restricted to

distinguished subspaces, e.g. totally isotropic subpaces.
I The classical group of the form acts.
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I The classical group of the form acts.



Problem: Compute the p-ranks

For some of these examples the p-ranks of the incidence
matrices have been found. In a few cases we even know
integral invariants. For many these problems are open.
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Permutation modules

I G-sets X , Y , G-invariant relation I ⊂ X × Y .
I R commutative ring, R[X ], R[Y ] free modules.
I RG-module homomorphism

R[X ] → R[Y ], x 7→
∑

(x ,y)∈I

y

I In this talk, X and Y will come from a classical geometry
over a finite field of order q = pt , G will be a classical
group and k will be an algebraically closed field of
characteristic p.



Permutation modules

I G-sets X , Y , G-invariant relation I ⊂ X × Y .
I R commutative ring, R[X ], R[Y ] free modules.
I RG-module homomorphism

R[X ] → R[Y ], x 7→
∑

(x ,y)∈I

y

I In this talk, X and Y will come from a classical geometry
over a finite field of order q = pt , G will be a classical
group and k will be an algebraically closed field of
characteristic p.



Permutation modules

I G-sets X , Y , G-invariant relation I ⊂ X × Y .
I R commutative ring, R[X ], R[Y ] free modules.
I RG-module homomorphism

R[X ] → R[Y ], x 7→
∑

(x ,y)∈I

y

I In this talk, X and Y will come from a classical geometry
over a finite field of order q = pt , G will be a classical
group and k will be an algebraically closed field of
characteristic p.



Permutation modules

I G-sets X , Y , G-invariant relation I ⊂ X × Y .
I R commutative ring, R[X ], R[Y ] free modules.
I RG-module homomorphism

R[X ] → R[Y ], x 7→
∑

(x ,y)∈I

y

I In this talk, X and Y will come from a classical geometry
over a finite field of order q = pt , G will be a classical
group and k will be an algebraically closed field of
characteristic p.



Outline

Introduction

Fundamental examples

Permutation Modules

Point-Hyperplane Incidences

Points versus flats

Application to GQs

Open problems

Conclusion



Points and polar hyperplanes

I V vector space over Fq with nonsingular form b(−,−).
I b may be alternating or symmetric or hermitian.
I P̂ = {all 1-dimensional subspaces of V}
⊇ P = {singular 1-dimensional subspaces},

I P̂∗ = {hyperplanes of V} ⊇ P∗ = {p⊥ | p ∈ P}, polar
hyperplanes.

I G = group of linear transformations preserving b(−,−).
I A = incidence matrix of (P̂∗, P̂)

A =

[
A1
A2

]
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p-ranks

I We consider the p-ranks, where q = pt .
I The p-rank of A is well known (Goethals-Delsarte,

MacWilliams-Mann, Smith), and the p-rank of A1 was
found by Blokhuis and Moorhouse.

I Moorhouse (Linz, 2006): What is the p-rank of A11?
I The formulae for A1 provide a hint. In the orthogonal case:

rank A1 = 1 + [

(
p + n − 1

n

)
−

(
p + n − 3

n

)
]t

The green part is an instance of Weyl’s Dimension
Formula.
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Experimental evidence

Computations by Moorhouse indicate some irregularity. For
orthogonal case, q = 5:

dim V rank A1 rank A11 difference
4 26 26 0
5 56 56 0
6 106 86 20
7 183 183 0
8 295 294 1
9 451 451 0
10 661 661 0
11 936 871 65
12 1288 1288 0
13 1730 1729 1
14 2276 2276 0
15 2941 2941 0
16 3741 3606 135



The answer is to be found in the representation theory of
algebraic groups. The first step is to consider the permutation
kG-module k [P], where k is an algebraically closed field of
characteristic p.



Permutation module structure

I (a) G acts on P with permutation rank 3
I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG-module. Call it L.
I P and P∗ are isomorphic G-sets, so the incidence map

induces

φ ∈ EndkG(k [P]), φ(p) =
∑

p′∈p⊥
p′.

Possibilities for Im φ are very limited.
I Deduce

Im φ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.



Permutation module structure

I (a) G acts on P with permutation rank 3
⇐⇒ dim EndkG(k [P]) = 3

I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG-module. Call it L.
I P and P∗ are isomorphic G-sets, so the incidence map

induces

φ ∈ EndkG(k [P]), φ(p) =
∑

p′∈p⊥
p′.

Possibilities for Im φ are very limited.
I Deduce

Im φ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.



Permutation module structure

I (a) G acts on P with permutation rank 3
⇐⇒ dim EndkG(k [P]) = 3

I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG-module. Call it L.
I P and P∗ are isomorphic G-sets, so the incidence map

induces

φ ∈ EndkG(k [P]), φ(p) =
∑

p′∈p⊥
p′.

Possibilities for Im φ are very limited.
I Deduce

Im φ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.



Permutation module structure

I (a) G acts on P with permutation rank 3
⇐⇒ dim EndkG(k [P]) = 3

I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG-module. Call it L.
I P and P∗ are isomorphic G-sets, so the incidence map

induces

φ ∈ EndkG(k [P]), φ(p) =
∑

p′∈p⊥
p′.

Possibilities for Im φ are very limited.
I Deduce

Im φ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.



Permutation module structure

I (a) G acts on P with permutation rank 3
⇐⇒ dim EndkG(k [P]) = 3

I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG-module. Call it L.
I P and P∗ are isomorphic G-sets, so the incidence map

induces

φ ∈ EndkG(k [P]), φ(p) =
∑

p′∈p⊥
p′.

Possibilities for Im φ are very limited.
I Deduce

Im φ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.



Permutation module structure

I (a) G acts on P with permutation rank 3
⇐⇒ dim EndkG(k [P]) = 3

I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG-module. Call it L.
I P and P∗ are isomorphic G-sets, so the incidence map

induces

φ ∈ EndkG(k [P]), φ(p) =
∑

p′∈p⊥
p′.

Possibilities for Im φ are very limited.
I Deduce

Im φ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.



Permutation module structure

I (a) G acts on P with permutation rank 3
⇐⇒ dim EndkG(k [P]) = 3

I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG-module. Call it L.
I P and P∗ are isomorphic G-sets, so the incidence map

induces

φ ∈ EndkG(k [P]), φ(p) =
∑

p′∈p⊥
p′.

Possibilities for Im φ are very limited.
I Deduce

Im φ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.



Permutation module structure

I (a) G acts on P with permutation rank 3
⇐⇒ dim EndkG(k [P]) = 3

I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG-module. Call it L.
I P and P∗ are isomorphic G-sets, so the incidence map

induces

φ ∈ EndkG(k [P]), φ(p) =
∑

p′∈p⊥
p′.

Possibilities for Im φ are very limited.
I Deduce

Im φ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.



Identifying the simple module L

I k [P] = indG
Gx

(k), x ∈ P, so Frobenius Reciprocity implies
that Gx has a fixed point on L.

I Every simple kG-module can be considered as a simple
module for a simply connected semisimple algebraic group
G

I The simple rational G-modules are parametrized as
follows:

I Let T ⊆ G be a maximal torus and X (T ) ∼= Z` the
character group of T , called the weight lattice.

I X (T ) has a certain basis {ω1, . . . , ω`} and the positive
integral combinations are denoted X+(T ).

I For each λ ∈ X+(T ), there is a simple G-module L(λ). and
this gives all simple G-modules.



Identifying the simple module L

I k [P] = indG
Gx

(k), x ∈ P, so Frobenius Reciprocity implies
that Gx has a fixed point on L.

I Every simple kG-module can be considered as a simple
module for a simply connected semisimple algebraic group
G

I The simple rational G-modules are parametrized as
follows:

I Let T ⊆ G be a maximal torus and X (T ) ∼= Z` the
character group of T , called the weight lattice.

I X (T ) has a certain basis {ω1, . . . , ω`} and the positive
integral combinations are denoted X+(T ).

I For each λ ∈ X+(T ), there is a simple G-module L(λ). and
this gives all simple G-modules.



Identifying the simple module L

I k [P] = indG
Gx

(k), x ∈ P, so Frobenius Reciprocity implies
that Gx has a fixed point on L.

I Every simple kG-module can be considered as a simple
module for a simply connected semisimple algebraic group
G

I The simple rational G-modules are parametrized as
follows:

I Let T ⊆ G be a maximal torus and X (T ) ∼= Z` the
character group of T , called the weight lattice.

I X (T ) has a certain basis {ω1, . . . , ω`} and the positive
integral combinations are denoted X+(T ).

I For each λ ∈ X+(T ), there is a simple G-module L(λ). and
this gives all simple G-modules.



Identifying the simple module L

I k [P] = indG
Gx

(k), x ∈ P, so Frobenius Reciprocity implies
that Gx has a fixed point on L.

I Every simple kG-module can be considered as a simple
module for a simply connected semisimple algebraic group
G

I The simple rational G-modules are parametrized as
follows:

I Let T ⊆ G be a maximal torus and X (T ) ∼= Z` the
character group of T , called the weight lattice.

I X (T ) has a certain basis {ω1, . . . , ω`} and the positive
integral combinations are denoted X+(T ).

I For each λ ∈ X+(T ), there is a simple G-module L(λ). and
this gives all simple G-modules.



Identifying the simple module L

I k [P] = indG
Gx

(k), x ∈ P, so Frobenius Reciprocity implies
that Gx has a fixed point on L.

I Every simple kG-module can be considered as a simple
module for a simply connected semisimple algebraic group
G

I The simple rational G-modules are parametrized as
follows:

I Let T ⊆ G be a maximal torus and X (T ) ∼= Z` the
character group of T , called the weight lattice.

I X (T ) has a certain basis {ω1, . . . , ω`} and the positive
integral combinations are denoted X+(T ).

I For each λ ∈ X+(T ), there is a simple G-module L(λ). and
this gives all simple G-modules.



Identifying the simple module L

I k [P] = indG
Gx

(k), x ∈ P, so Frobenius Reciprocity implies
that Gx has a fixed point on L.

I Every simple kG-module can be considered as a simple
module for a simply connected semisimple algebraic group
G

I The simple rational G-modules are parametrized as
follows:

I Let T ⊆ G be a maximal torus and X (T ) ∼= Z` the
character group of T , called the weight lattice.

I X (T ) has a certain basis {ω1, . . . , ω`} and the positive
integral combinations are denoted X+(T ).

I For each λ ∈ X+(T ), there is a simple G-module L(λ). and
this gives all simple G-modules.



Tensor Product Theorem

I The fixed point condition characterizes L:

L ∼= L((q − 1)ω),

where ω = ω1 in the orthogonal and symplectic cases, and
ω1 + ω` in the unitary case.

I Steinberg’s Tensor Product Theorem.

L((q−1)ω) = L((p−1)ω)⊗L((p−1)ω)(p) · · ·⊗L((p−1)ω)(p
t−1)

(1)
I Outcome: rankp A11 = 1 + (dim L((p − 1)ω))t .
I Note that it suffices to know the answer for q = p.



Tensor Product Theorem

I The fixed point condition characterizes L:

L ∼= L((q − 1)ω),

where ω = ω1 in the orthogonal and symplectic cases, and
ω1 + ω` in the unitary case.

I Steinberg’s Tensor Product Theorem.

L((q−1)ω) = L((p−1)ω)⊗L((p−1)ω)(p) · · ·⊗L((p−1)ω)(p
t−1)

(1)
I Outcome: rankp A11 = 1 + (dim L((p − 1)ω))t .
I Note that it suffices to know the answer for q = p.



Tensor Product Theorem

I The fixed point condition characterizes L:

L ∼= L((q − 1)ω),

where ω = ω1 in the orthogonal and symplectic cases, and
ω1 + ω` in the unitary case.

I Steinberg’s Tensor Product Theorem.

L((q−1)ω) = L((p−1)ω)⊗L((p−1)ω)(p) · · ·⊗L((p−1)ω)(p
t−1)

(1)
I Outcome: rankp A11 = 1 + (dim L((p − 1)ω))t .
I Note that it suffices to know the answer for q = p.



Tensor Product Theorem

I The fixed point condition characterizes L:

L ∼= L((q − 1)ω),

where ω = ω1 in the orthogonal and symplectic cases, and
ω1 + ω` in the unitary case.

I Steinberg’s Tensor Product Theorem.

L((q−1)ω) = L((p−1)ω)⊗L((p−1)ω)(p) · · ·⊗L((p−1)ω)(p
t−1)

(1)
I Outcome: rankp A11 = 1 + (dim L((p − 1)ω))t .
I Note that it suffices to know the answer for q = p.



Simple G-modules

I The problem of determining the p-rank of A11 has now
been reduced to the problem of finding the dimension of
the simple G-module L((p − 1)ω).

I Determining the dimensions of simple G-modules is a
central unsolved problem in representation theory.

I For our modules, we managed to compute the dimensions
by applying the machinery of Weyl modules, Jantzen Sum
formula and good filtrations. Ogul Arslan will discuss this.
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by applying the machinery of Weyl modules, Jantzen Sum
formula and good filtrations. Ogul Arslan will discuss this.
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Points and flats in projective space

Hamada’s Formula

rankp A(L1, Lr ) = 1+

∑
(s0,...,st−1)
r+1≤sj≤n

0≤psj+1−sj≤(n+1)(p−1)

t−1∏
j=0

b
psj+1−sj

p c∑
i=0

(−1)i
(

n + 1
i

)(
n + psj+1 − sj − ip

n

)
.



Module interpretation of Hamada

I ηr : k [Lr ] → k [L1].
I Im ηr is a kG-submodule of k [L1].
I The kG-submodule lattice was completely described by

Bardoe-Sin (2000).
I At the level of composition factors,

Im ηr = k +
∑

(λ0,...,λt−1)∈Λr

t−1⊗
j=0

S(λj)
(pj )

I k [L1] has a special monomial basis M.
I Every kG-submodule of k [L1] has a basis which is a subset

of M!
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Points and symplectic flats

I Chandler-Sin-Xiang (2005-8)
I Let V be a 2m-dimensional space with a nonsingular

alternating form, G = Sp(V ).
I Ir the set of r -dimensional subspaces which are either

totally isotropic or the complements of such.
I Assume p is odd. k [I1] has a special basis B with the

following properties.
1. Each kG-submodule generated by a single element of B. is

spanned as a vector space by a subset of the basis.
2. Each such module has a unique maximal submodule.
3. From these properties, the dimension and composition

factors of the submodule generated by any subset of the
basis can be determined.
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Symplectic analogue of Hamada’s formula

Theorem
Let A(I1, Ir ) be the (I1, Ir ) incidence matrix of W(2m − 1, pt).
Assume that p is odd. Then

1. If r 6= m, then rankp A(I1, Ir ) is the same as for all
r -dimensional subspaces, so is given by Hamada’s
formula.

2. If r = m,

rankpA(I1, Im) = 1 +
∑

(s0,...,st−1)
(∀j)1≤sj≤m

t−1∏
j=0

d(sj ,sj+1),

where

d(sj ,sj+1) =

{
(dm(p−1) + pm)/2, if sj = sj+1 = m,
dλj , otherwise.



Characteristic 2

The characteristic 2 case can also be analyzed using this point
of view. The results [C-S-X, 2008] are analogous but more
complicated, reflecting greater complexity in the module
structure.
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p-rank of Symplectic GQs

Theorem
Let q = pt , p odd and A(I1, I2) the point-line incidence matrix of
the symplectic GQ over Fq. Then

rankp A(I1, I2) = 1 + αt
1 + αt

2,

where

α1, α2 =
p(p + 1)2

4
± p(p + 1)(p − 1)

12

√
17.

I Together with earlier results (Bagchi-Brouwer-Wilbrink,
Sastry-Sin, de Caen-Moorhouse) this completes the
determination of the p-ranks for the symplectic GQs.
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Open p-rank problems

Problem 1. General case of (Lr , Ls) where I is any relation
other than nonzero intersection.
For subsets of a set the relations of inclusion and nonempty
intersection lead to equivalent problems. However, for
subspaces inclusion and nonzero intersection are different.

Problem 2. Orthogonal and unitary analogues of Hamada’s
formula.

Problem 3. Analogue of Problem 1 for distinguished subspaces
for any I.

The known cases suggest that the easiest cases will be for
complementary dimensions and the relation of nonzero
intersection.

Problem 4. p-ranks for point-line incidences of classical
generalized polygons.
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I We considered some problems where there is a natural
connection between incidence matrices and representation
theory of classical groups in the defining characteristic of
the geometry.

I The p-adic, integral and cross-characteristic versions of
these problems are also interesting, but were not
discussed.

I Thank you for your attention!
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