p-ranks and Representation Theory

Peter Sin

Outline

Introduction

Fundamental examples

Permutation Modules

Point-Hyperplane Incidences

Points versus flats

Application to GQs

Open problems

Conclusion
This talk is about some connections between incidence matrices and group representations.

Most of the incidence matrices I will consider come from classical geometries over a finite field \mathbb{F}_q, $q = p^t$.

The representations will be p-modular representations of groups of automorphisms of the geometries.

The incidence matrices lead naturally to interesting modules.

The study of these modules sheds new light on old p-rank problems (and solves some of them).
This talk is about some connections between incidence matrices and group representations.

Most of the incidence matrices I will consider come from classical geometries over a finite field \mathbb{F}_q, $q = p^t$.

The representations will be p-modular representations of groups of automorphisms of the geometries.

The incidence matrices lead naturally to interesting modules.

The study of these modules sheds new light on old p-rank problems (and solves some of them).
This talk is about some connections between incidence matrices and group representations.

Most of the incidence matrices I will consider come from classical geometries over a finite field \mathbb{F}_q, $q = p^t$.

The representations will be p-modular representations of groups of automorphisms of the geometries.

The incidence matrices lead naturally to interesting modules.

The study of these modules sheds new light on old p-rank problems (and solves some of them).
This talk is about some connections between incidence matrices and group representations.

Most of the incidence matrices I will consider come from classical geometries over a finite field \mathbb{F}_q, $q = p^t$.

The representations will be p-modular representations of groups of automorphisms of the geometries.

The incidence matrices lead naturally to interesting modules.

The study of these modules sheds new light on old p-rank problems (and solves some of them).
This talk is about some connections between incidence matrices and group representations.

Most of the incidence matrices I will consider come from classical geometries over a finite field \mathbb{F}_q, $q = p^t$.

The representations will be p-modular representations of groups of automorphisms of the geometries.

The incidence matrices lead naturally to interesting modules.

The study of these modules sheds new light on old p-rank problems (and solves some of them).
Outline

Introduction

Fundamental examples

Permutation Modules

Point-Hyperplane Incidences

Points versus flats

Application to GQs

Open problems

Conclusion
Subsets of a finite set

- X finite set, S_r the set of r-subsets of X.
- Incidence relation for (S_r, S_s) could be inclusion or, more generally, intersection in a set of size u.
- The symmetric group $Sym(X)$ acts.
Subsets of a finite set

- X finite set, S_r the set of r-subsets of X.
- Incidence relation for (S_r, S_s) could be inclusion or, more generally, intersection in a set of size u.
- The symmetric group $Sym(X)$ acts.
Subsets of a finite set

- X finite set, S_r the set of r-subsets of X.
- Incidence relation for (S_r, S_s) could be inclusion or, more generally, intersection in a set of size u.
- The symmetric group $Sym(X)$ acts.
Subspaces of a finite vector space

- q-analogue of the above.
- V vector space over \mathbb{F}_q
- $L_r =$ set of all r-dimensional subspaces of V.
- Incidence relations for (L_r, L_s), e.g. inclusion, intersection in a fixed dimension.
- $\text{GL}(V)$ acts.
Subspaces of a finite vector space

- q-analogue of the above.
- V vector space over \mathbb{F}_q
- $L_r =$ set of all r-dimensional subspaces of V.
- Incidence relations for (L_r, L_s), e.g. inclusion, intersection in a fixed dimension.
- $GL(V)$ acts.
Subspaces of a finite vector space

- q-analogue of the above.
- V vector space over \mathbb{F}_q
- $L_r =$ set of all r-dimensional subspaces of V.
- Incidence relations for (L_r, L_s), e.g. inclusion, intersection in a fixed dimension.
- $\text{GL}(V)$ acts.
Subspaces of a finite vector space

- q-analogue of the above.
- V vector space over \mathbb{F}_q
- $L_r =$ set of all r-dimensional subspaces of V.
- Incidence relations for (L_r, L_s), e.g. inclusion, intersection in a fixed dimension.
- $\text{GL}(V)$ acts.
Subspaces of a finite vector space

- q-analogue of the above.
- V vector space over \mathbb{F}_q
- $L_r =$ set of all r-dimensional subspaces of V.
- Incidence relations for (L_r, L_s), e.g. inclusion, intersection in a fixed dimension.
- $\text{GL}(V)$ acts.
Distinguished Subspaces

- Suppose V has a symplectic, quadratic or hermitian form.
- We can consider incidence as above, but restricted to distinguished subspaces, e.g. totally isotropic subspaces.
- The classical group of the form acts.
Distinguished Subspaces

- Suppose V has a symplectic, quadratic or hermitian form.
- We can consider incidence as above, but restricted to distinguished subspaces, e.g. totally isotropic subspaces.
- The classical group of the form acts.
Distinguished Subspaces

- Suppose V has a symplectic, quadratic or hermitian form.
- We can consider incidence as above, but restricted to distinguished subspaces, e.g. totally isotropic subspaces.
- The classical group of the form acts.
Problem: Compute the p-ranks

For some of these examples the p-ranks of the incidence matrices have been found. In a few cases we even know integral invariants. For many these problems are open.
Permutation modules

- G-sets X, Y, G-invariant relation $I \subseteq X \times Y$.
- RG-module homomorphism

$$R[X] \to R[Y], \quad x \mapsto \sum_{(x,y) \in I} y$$

- In this talk, X and Y will come from a classical geometry over a finite field of order $q = p^t$, G will be a classical group and k will be an algebraically closed field of characteristic p.
Permutation modules

- G-sets X, Y, G-invariant relation $I \subset X \times Y$.
- RG-module homomorphism

$$R[X] \rightarrow R[Y], \quad x \mapsto \sum_{(x,y) \in I} y$$

- In this talk, X and Y will come from a classical geometry over a finite field of order $q = p^t$, G will be a classical group and k will be an algebraically closed field of characteristic p.
Permutation modules

- G-sets X, Y, G-invariant relation $I \subset X \times Y$.
- RG-module homomorphism

$$R[X] \rightarrow R[Y], \quad x \mapsto \sum_{(x,y) \in I} y$$

- In this talk, X and Y will come from a classical geometry over a finite field of order $q = p^t$, G will be a classical group and k will be an algebraically closed field of characteristic p.
Permutation modules

- G-sets X, Y, G-invariant relation $I \subset X \times Y$.
- RG-module homomorphism

$$R[X] \to R[Y], \quad x \mapsto \sum_{(x,y) \in I} y$$

- In this talk, X and Y will come from a classical geometry over a finite field of order $q = p^t$, G will be a classical group and k will be an algebraically closed field of characteristic p.
Outline

Introduction

Fundamental examples

Permutation Modules

Point-Hyperplane Incidences

Points versus flats

Application to GQs

Open problems

Conclusion
Points and polar hyperplanes

- V vector space over \mathbb{F}_q with nonsingular form $b(−, −)$.
- b may be alternating or symmetric or hermitian.
- $\hat{P} = \{\text{all 1-dimensional subspaces of } V\}$
 $\supseteq P = \{\text{singular 1-dimensional subspaces}\}$,
- $\hat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^\perp \mid p \in P\}$, polar hyperplanes.
- $G = \text{group of linear transformations preserving } b(−, −)$.
- $A = \text{incidence matrix of } (\hat{P}^*, \hat{P})$

 $$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
Points and polar hyperplanes

- \(V \) vector space over \(\mathbb{F}_q \) with nonsingular form \(b(\cdot, \cdot) \).
- \(b \) may be alternating or symmetric or hermitian.
- \(\hat{P} = \{ \text{all 1-dimensional subspaces of } V \} \supseteq P = \{ \text{singular 1-dimensional subspaces} \} \),
- \(\hat{P}^* = \{ \text{hyperplanes of } V \} \supseteq P^* = \{ p^\perp \mid p \in P \} \), polar hyperplanes.
- \(G = \) group of linear transformations preserving \(b(\cdot, \cdot) \).
- \(A = \) incidence matrix of \((\hat{P}^*, \hat{P}) \)

\[
A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}
\]
Points and polar hyperplanes

- V vector space over \mathbb{F}_q with nonsingular form $b(−, −)$.
- b may be alternating or symmetric or hermitian.
- $\hat{P} = \{\text{all 1-dimensional subspaces of } V\}$
- $\hat{P}^* = \{\text{hyperplanes of } V\} \supset P^* = \{p^\perp | p \in P\}$, polar hyperplanes.
- $G = \text{group of linear transformations preserving } b(−, −)$.
- $A = \text{incidence matrix of } (\hat{P}^*, \hat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
Points and polar hyperplanes

- V vector space over \mathbb{F}_q with nonsingular form $b(−, −)$.
- b may be alternating or symmetric or hermitian.
- $\hat{P} = \{\text{all 1-dimensional subspaces of } V\}$
 $\supseteq P = \{\text{singular 1-dimensional subspaces}\}$,
- $\hat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^\perp \mid p \in P\}$, polar hyperplanes.
- $G = \text{group of linear transformations preserving } b(−, −)$.
- $A = \text{incidence matrix of } (\hat{P}^*, \hat{P})$

\[
A = \begin{bmatrix}
A_1 \\
A_2
\end{bmatrix}
\]
Points and polar hyperplanes

- V vector space over \mathbb{F}_q with nonsingular form $b(-, -)$.
- b may be alternating or symmetric or hermitian.
- $\hat{P} = \{\text{all 1-dimensional subspaces of } V\} \supseteq P = \{\text{singular 1-dimensional subspaces}\}$.
- $\hat{P}^* = \{\text{hyperplanes of } V\}$
- $G = \text{group of linear transformations preserving } b(-, -)$.
- $A = \text{incidence matrix of } (\hat{P}^*, \hat{P})$

\[
A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}
\]
Points and polar hyperplanes

- V vector space over \mathbb{F}_q with nonsingular form $b(-, -)$.
- b may be alternating or symmetric or hermitian.
- $\hat{P} = \{\text{all 1-dimensional subspaces of } V\}$
 $\supseteq P = \{\text{singular 1-dimensional subspaces}\}$,
- $\hat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^\perp | p \in P\}$, polar hyperplanes.
- $G = \text{group of linear transformations preserving } b(-, -)$.
- $A = \text{incidence matrix of } (\hat{P}^*, \hat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
Points and polar hyperplanes

- V vector space over \mathbb{F}_q with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\hat{P} = \{\text{all 1-dimensional subspaces of } V\}$ ⊇ $P = \{\text{singular 1-dimensional subspaces}\}$,
- $\hat{P}^* = \{\text{hyperplanes of } V\}$ ⊇ $P^* = \{p^\perp \mid p \in P\}$, polar hyperplanes.
- $G = \text{group of linear transformations preserving } b(-,-)$.
- $A = \text{incidence matrix of } (\hat{P}^*, \hat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
Points and polar hyperplanes

- V vector space over \mathbb{F}_q with nonsingular form $b(−, −)$.
- b may be alternating or symmetric or hermitian.
- $\hat{P} = \{\text{all 1-dimensional subspaces of } V\}$
 $\supseteq P = \{\text{singular 1-dimensional subspaces}\}$,
- $\hat{P}^* = \{\text{hyperplanes of } V\}$ $\supseteq P^* = \{p^\perp | p \in P\}$, polar hyperplanes.
- $G = \text{group of linear transformations preserving } b(−, −)$.
- $A = \text{incidence matrix of } (\hat{P}^*, \hat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
Points and polar hyperplanes

- V vector space over \mathbb{F}_q with nonsingular form $b(-, -)$.
- b may be alternating or symmetric or hermitian.
- $\hat{P} = \{\text{all 1-dimensional subspaces of } V\}$
 $\supseteq P = \{\text{singular 1-dimensional subspaces}\}$,
- $\hat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^\perp \mid p \in P\}$, polar hyperplanes.
- $G = \text{group of linear transformations preserving } b(-, -)$.
- $A = \text{incidence matrix of } (\hat{P}^*, \hat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
We consider the \(p \)-ranks, where \(q = p^t \).

The \(p \)-rank of \(A \) is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the \(p \)-rank of \(A_1 \) was found by Blokhuis and Moorhouse.

Moorhouse (Linz, 2006): What is the \(p \)-rank of \(A_{11} \)?

The formulae for \(A_1 \) provide a hint. In the orthogonal case:

\[
\text{rank } A_1 = 1 + \left[\binom{p + n - 1}{n} - \binom{p + n - 3}{n} \right]^t
\]

The green part is an instance of Weyl’s Dimension Formula.
We consider the p-ranks, where $q = p^t$.

The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A_1 was found by Blokhuis and Moorhouse.

Moorhouse (Linz, 2006): What is the p-rank of A_{11}?

The formulae for A_1 provide a hint. In the orthogonal case:

$$\text{rank } A_1 = 1 + \left[\binom{p+n-1}{n} - \binom{p+n-3}{n} \right]^t$$

The green part is an instance of Weyl’s Dimension Formula.
We consider the p-ranks, where $q = p^t$.

The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A_1 was found by Blokhuis and Moorhouse.

Moorhouse (Linz, 2006): What is the p-rank of A_{11}?

The formulae for A_1 provide a hint. In the orthogonal case:

$$\text{rank } A_1 = 1 + \left[\binom{p+n-1}{n} - \binom{p+n-3}{n} \right]^t$$

The green part is an instance of Weyl’s Dimension Formula.
We consider the p-ranks, where $q = p^t$.

The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A_1 was found by Blokhuis and Moorhouse.

Moorhouse (Linz, 2006): What is the p-rank of A_{11}?

The formulae for A_1 provide a hint. In the orthogonal case:

$$\text{rank } A_1 = 1 + \left[\binom{p + n - 1}{n} - \binom{p + n - 3}{n} \right]^t$$

The green part is an instance of Weyl’s Dimension Formula.
Experimental evidence

Computations by Moorhouse indicate some irregularity. For orthogonal case, \(q = 5 \):

<table>
<thead>
<tr>
<th>dim (V)</th>
<th>rank (A_1)</th>
<th>rank (A_{11})</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>26</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>106</td>
<td>86</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>183</td>
<td>183</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>295</td>
<td>294</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>451</td>
<td>451</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>661</td>
<td>661</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>936</td>
<td>871</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>1288</td>
<td>1288</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1730</td>
<td>1729</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>2276</td>
<td>2276</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>2941</td>
<td>2941</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>3741</td>
<td>3606</td>
<td>135</td>
</tr>
</tbody>
</table>
The answer is to be found in the representation theory of algebraic groups. The first step is to consider the permutation kG-module $k[P]$, where k is an algebraically closed field of characteristic p.
Permutation module structure

- (a) G acts on P with permutation rank 3
- (b) $k[P] \cong k.1 \oplus Y$,
- (c) $\text{head}(Y) \cong \text{soc}(Y)$.
- (a),(b),(c) \implies $\text{head}(Y)$ is a simple kG-module. Call it L.
- P and P^* are isomorphic G-sets, so the incidence map induces

$$\phi \in \text{End}_{kG}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'.$$

Possibilities for $\text{Im} \phi$ are very limited.

- Deduce

$$\text{Im} \phi = k.1 \oplus L.$$

- Outcome: $\text{rank}_p A_{11} = 1 + \text{dim } L.$
(a) G acts on P with permutation rank 3
\[\iff \dim \text{End}_{kG}(k[P]) = 3 \]

(b) $k[P] \cong k.1 \oplus Y$,

(c) $\text{head}(Y) \cong \text{soc}(Y)$.

(a),(b),(c) \implies \text{head}(Y)$ is a simple kG-module. Call it L.

P and P^* are isomorphic G-sets, so the incidence map induces
\[\phi \in \text{End}_{kG}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'. \]

Possibilities for $\text{Im} \phi$ are very limited.

Deduce
\[\text{Im} \phi = k.1 \oplus L. \]

Outcome: $\text{rank}_p A_{11} = 1 + \dim L$.

Permutation module structure
Permutation module structure

- (a) G acts on P with permutation rank 3
 $\iff \dim \text{End}_{kG}(k[P]) = 3$

- (b) $k[P] \cong k.1 \oplus Y$

- (c) $\text{head}(Y) \cong \text{soc}(Y)$

- (a), (b), (c) $\implies \text{head}(Y)$ is a simple kG-module. Call it L.

- P and P^\ast are isomorphic G-sets, so the incidence map induces
 \[
 \phi \in \text{End}_{kG}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'.
 \]

 Possibilities for $\text{Im} \phi$ are very limited.

- Deduce
 \[
 \text{Im} \phi = k.1 \oplus L.
 \]

- Outcome: $\text{rank}_p A_{11} = 1 + \dim L$.

Permutation module structure

- (a) G acts on P with permutation rank 3 \iff \dim \text{End}_{kG}(k[P]) = 3$

- (b) $k[P] \cong k.1 \oplus Y$,

- (c) $\text{head}(Y) \cong \text{soc}(Y)$.

- (a),(b),(c) \implies $\text{head}(Y)$ is a simple kG-module. Call it L.

- P and P^* are isomorphic G-sets, so the incidence map induces

 $$\phi \in \text{End}_{kG}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'.$$

Possibilities for $\text{Im} \phi$ are very limited.

- Deduce

 $$\text{Im} \phi = k.1 \oplus L.$$

- Outcome: $\text{rank}_p A_{11} = 1 + \dim L$.
Permutation module structure

- (a) G acts on P with permutation rank 3
 \[\iff \dim \text{End}_{kG}(k[P]) = 3 \]

- (b) $k[P] \cong k.1 \oplus Y$,

- (c) head(Y) \cong soc(Y).

- (a),(b),(c) \implies head(Y) is a simple kG-module. Call it L.

- P and P^* are isomorphic G-sets, so the incidence map induces
 \[\phi \in \text{End}_{kG}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'. \]

 Possibilities for $\text{Im} \phi$ are very limited.

- Deduce
 \[\text{Im} \phi = k.1 \oplus L. \]

- Outcome: $\text{rank}_p A_{11} = 1 + \dim L$.
Permutation module structure

- (a) G acts on P with permutation rank 3
 \[\iff \dim \text{End}_{kG}(k[P]) = 3 \]

- (b) $k[P] \cong k.1 \oplus Y$,

- (c) $\text{head}(Y) \cong \text{soc}(Y)$.

- (a),(b),(c) \implies $\text{head}(Y)$ is a simple kG-module. Call it L.

- P and P^* are isomorphic G-sets, so the incidence map induces

 \[\phi \in \text{End}_{kG}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'. \]

 Possibilities for $\text{Im} \phi$ are very limited.

- Deduce

 \[\text{Im} \phi = k.1 \oplus L. \]

- Outcome: $\text{rank}_p A_{11} = 1 + \dim L.$
Permutation module structure

- (a) G acts on P with permutation rank 3
 $\iff \dim \text{End}_{kG}(k[P]) = 3$

- (b) $k[P] \cong k.1 \oplus Y$,

- (c) $\text{head}(Y) \cong \text{soc}(Y)$.

- (a), (b), (c) \implies head(Y) is a simple kG-module. Call it L.

- P and P^* are isomorphic G-sets, so the incidence map induces
 \[\phi \in \text{End}_{kG}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'. \]

 Possibilities for $\text{Im} \phi$ are very limited.

 Deduce
 \[\text{Im} \phi = k.1 \oplus L. \]

- Outcome: $\text{rank}_p A_{11} = 1 + \dim L$.

Permutation module structure

- (a) G acts on P with permutation rank 3
 \[\iff \dim \text{End}_{kG}(k[P]) = 3 \]

- (b) $k[P] \cong k.1 \oplus Y$,

- (c) head$(Y) \cong \text{soc}(Y)$.

- (a),(b),(c) \implies head(Y) is a simple kG-module. Call it L.

- P and P^* are isomorphic G-sets, so the incidence map induces

 \[\phi \in \text{End}_{kG}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'. \]

 Possibilities for $\text{Im} \phi$ are very limited.

- Deduce

 \[\text{Im} \phi = k.1 \oplus L. \]

- Outcome: $\text{rank}_p A_{11} = 1 + \dim L$.
Identifying the simple module L

- $k[P] = \text{ind}^G_{G_x}(k), \ x \in P$, so Frobenius Reciprocity implies that G_x has a fixed point on L.
- Every simple kG-module can be considered as a simple module for a simply connected semisimple algebraic group G.
- The simple rational G-modules are parametrized as follows:
 - Let $T \subseteq G$ be a maximal torus and $X(T) \cong \mathbb{Z}^\ell$ the character group of T, called the weight lattice.
 - $X(T)$ has a certain basis $\{\omega_1, \ldots, \omega_\ell\}$ and the positive integral combinations are denoted $X_+(T)$.
 - For each $\lambda \in X_+(T)$, there is a simple G-module $L(\lambda)$, and this gives all simple G-modules.
Identifying the simple module L

- $k[P] = \text{ind}^G_{G_x}(k), \chi \in P$, so Frobenius Reciprocity implies that G_x has a fixed point on L.
- Every simple kG-module can be considered as a simple module for a simply connected semisimple algebraic group G.
- The simple rational G-modules are parametrized as follows:
- Let $T \subseteq G$ be a maximal torus and $X(T) \cong \mathbb{Z}^\ell$ the character group of T, called the weight lattice.
- $X(T)$ has a certain basis $\{\omega_1, \ldots, \omega_\ell\}$ and the positive integral combinations are denoted $X_+(T)$.
- For each $\lambda \in X_+(T)$, there is a simple G-module $L(\lambda)$, and this gives all simple G-modules.
Identifying the simple module L

- $k[P] = \text{ind}_{G_x}^{G}(k), \ x \in P$, so Frobenius Reciprocity implies that G_x has a fixed point on L.
- Every simple kG-module can be considered as a simple module for a simply connected semisimple algebraic group G.
- The simple rational G-modules are parametrized as follows:
 - Let $T \subseteq G$ be a maximal torus and $X(T) \cong \mathbb{Z}^\ell$ the character group of T, called the weight lattice.
 - $X(T)$ has a certain basis $\{\omega_1, \ldots, \omega_\ell\}$ and the positive integral combinations are denoted $X_+(T)$.
 - For each $\lambda \in X_+(T)$, there is a simple G-module $L(\lambda)$, and this gives all simple G-modules.
Identifying the simple module L

- $k[P] = \text{ind}^G_{G_x}(k)$, $\chi \in P$, so Frobenius Reciprocity implies that G_x has a fixed point on L.

- Every simple kG-module can be considered as a simple module for a simply connected semisimple algebraic group G.

- The simple rational G-modules are parametrized as follows:
 - Let $T \subseteq G$ be a maximal torus and $X(T) \cong \mathbb{Z}^\ell$ the character group of T, called the weight lattice.
 - $X(T)$ has a certain basis $\{\omega_1, \ldots, \omega_\ell\}$ and the positive integral combinations are denoted $X_+(T)$.
 - For each $\lambda \in X_+(T)$, there is a simple G-module $L(\lambda)$ and this gives all simple G-modules.
Identifying the simple module L

- $k[P] = \text{ind}_{G_x}^G(k)$, $x \in P$, so Frobenius Reciprocity implies that G_x has a fixed point on L.

- Every simple kG-module can be considered as a simple module for a simply connected semisimple algebraic group G.

- The simple rational G-modules are parametrized as follows:

 - Let $T \subseteq G$ be a maximal torus and $X(T) \cong \mathbb{Z}^\ell$ the character group of T, called the weight lattice.

 - $X(T)$ has a certain basis $\{\omega_1, \ldots, \omega_\ell\}$ and the positive integral combinations are denoted $X_+(T)$.

- For each $\lambda \in X_+(T)$, there is a simple G-module $L(\lambda)$ and this gives all simple G-modules.
Identifying the simple module L

- $k[P] = \text{ind}^G_{G_x}(k)$, $\chi \in P$, so Frobenius Reciprocity implies that G_x has a fixed point on L.
- Every simple kG-module can be considered as a simple module for a simply connected semisimple algebraic group G.
- The simple rational G-modules are parametrized as follows:
 - Let $T \subseteq G$ be a maximal torus and $X(T) \cong \mathbb{Z}^\ell$ the character group of T, called the weight lattice.
 - $X(T)$ has a certain basis $\{\omega_1, \ldots, \omega_\ell\}$ and the positive integral combinations are denoted $X_+(T)$.
 - For each $\lambda \in X_+(T)$, there is a simple G-module $L(\lambda)$ and this gives all simple G-modules.
The fixed point condition characterizes L:

$$L \cong L((q-1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

Steinberg’s Tensor Product Theorem.

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$ \hspace{1cm} (1)

Outcome: $\text{rank}_p A_{11} = 1 + (\dim L((p-1)\omega))^t$.

Note that it suffices to know the answer for $q = p$.
The fixed point condition characterizes L:

$$L \cong L((q - 1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

Steinberg’s Tensor Product Theorem.

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$ \hspace{1cm} (1)

Outcome: $\text{rank}_p A_{11} = 1 + (\dim L((p-1)\omega))^t$.

Note that it suffices to know the answer for $q = p$.

Tensor Product Theorem
The fixed point condition characterizes L:

\[L \cong L((q - 1)\omega), \]

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

Steinberg’s Tensor Product Theorem.

\[L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})} \]

Outcome: $\text{rank}_p A_{11} = 1 + (\dim L((p-1)\omega))^t$.

Note that it suffices to know the answer for $q = p$.

Tensor Product Theorem
Tensor Product Theorem

The fixed point condition characterizes L:

$$L \cong L((q-1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

Steinberg’s Tensor Product Theorem.

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

(1)

Outcome: $\text{rank}_p A_{11} = 1 + (\dim L((p-1)\omega))^t$.

Note that it suffices to know the answer for $q = p$.
The problem of determining the p-rank of A_{11} has now been reduced to the problem of finding the dimension of the simple G-module $L((p - 1)\omega)$.

Determining the dimensions of simple G-modules is a central unsolved problem in representation theory.

For our modules, we managed to compute the dimensions by applying the machinery of Weyl modules, Jantzen Sum formula and good filtrations. Ogul Arslan will discuss this.
The problem of determining the p-rank of A_{11} has now been reduced to the problem of finding the dimension of the simple \mathbf{G}-module $L((p - 1)\omega)$.

Determining the dimensions of simple \mathbf{G}-modules is a central unsolved problem in representation theory.

For our modules, we managed to compute the dimensions by applying the machinery of Weyl modules, Jantzen Sum formula and good filtrations. Ogul Arslan will discuss this.
The problem of determining the p-rank of A_{11} has now been reduced to the problem of finding the dimension of the simple G-module $L((p - 1)\omega)$.

Determining the dimensions of simple G-modules is a central unsolved problem in representation theory.

For our modules, we managed to compute the dimensions by applying the machinery of Weyl modules, Jantzen Sum formula and good filtrations. Ogul Arslan will discuss this.
Points and flats in projective space

Hamada’s Formula

$$\text{rank}_p A(L_1, L_r) = 1 + \sum_{(s_0, \ldots, s_{t-1})} \prod_{j=0}^{t-1} \left(\sum_{i=0}^{ps_{j+1} - s_j \leq n} (-1)^i \binom{n+1}{i} \binom{n + ps_{j+1} - s_j - ip}{n} \right) \text{subject to } r + 1 \leq s_j \leq n, 0 \leq ps_{j+1} - s_j \leq (n+1)(p-1)$$
Module interpretation of Hamada

- $\eta_r : k[L_r] \rightarrow k[L_1]$.
- $\text{Im } \eta_r$ is a kG-submodule of $k[L_1]$.
- The kG-submodule lattice was completely described by Bardoe-Sin (2000).
- At the level of composition factors,

\[
\text{Im } \eta_r = k + \sum_{(\lambda_0, \ldots, \lambda_{t-1}) \in \Lambda_r} \bigotimes_{j=0}^{t-1} S(\lambda_j)^{(p^j)}
\]

- $k[L_1]$ has a special monomial basis M.
- Every kG-submodule of $k[L_1]$ has a basis which is a subset of M.
Module interpretation of Hamada

- $\eta_r : k[L_r] \rightarrow k[L_1]$.
- Im η_r is a kG-submodule of $k[L_1]$.
- The kG-submodule lattice was completely described by Bardoe-Sin (2000).
- At the level of composition factors,

 \[\text{Im} \, \eta_r = k + \sum_{(\lambda_0, \ldots, \lambda_{t-1}) \in \Lambda_r} \bigotimes_{j=0}^{t-1} S(\lambda_j)^{(p^j)} \]

- $k[L_1]$ has a special monomial basis M.
- Every kG-submodule of $k[L_1]$ has a basis which is a subset of M!
Module interpretation of Hamada

- $\eta_r : k[L_r] \rightarrow k[L_1]$.
- $\text{Im} \, \eta_r$ is a kG-submodule of $k[L_1]$.
- The kG-submodule lattice was completely described by Bardoe-Sin (2000).
- At the level of composition factors,

\[
\text{Im} \, \eta_r = k + \sum_{(\lambda_0, \ldots, \lambda_{t-1}) \in \Lambda_r} \bigotimes_{j=0}^{t-1} S(\lambda_j)(p^j)
\]

- $k[L_1]$ has a special monomial basis \mathcal{M}.
- Every kG-submodule of $k[L_1]$ has a basis which is a subset of \mathcal{M}!
Module interpretation of Hamada

- $\eta_r : k[L_r] \to k[L_1]$.
- $\text{Im} \eta_r$ is a kG-submodule of $k[L_1]$.
- The kG-submodule lattice was completely described by Bardoe-Sin (2000).
- At the level of composition factors,

$$\text{Im} \eta_r = k + \sum_{(\lambda_0, \ldots, \lambda_{t-1}) \in \Lambda_r} \bigotimes_{j=0}^{t-1} S(\lambda_j)(\rho^j)$$

- $k[L_1]$ has a special monomial basis \mathcal{M}.
- Every kG-submodule of $k[L_1]$ has a basis which is a subset of \mathcal{M}!
Module interpretation of Hamada

- $\eta_r : k[L_r] \to k[L_1]$.
- $\text{Im } \eta_r$ is a kG-submodule of $k[L_1]$.
- The kG-submodule lattice was completely described by Bardoe-Sin (2000).
- At the level of composition factors,

 $$\text{Im } \eta_r = k + \sum_{(\lambda_0, \ldots, \lambda_{t-1}) \in \Lambda_r} \bigotimes_{j=0}^{t-1} S(\lambda_j)(p^j)$$

- $k[L_1]$ has a special monomial basis \mathcal{M}.
- Every kG-submodule of $k[L_1]$ has a basis which is a subset of \mathcal{M}!
Module interpretation of Hamada

- $\eta_r : k[L_r] \rightarrow k[L_1]$.
- $\text{Im} \eta_r$ is a kG-submodule of $k[L_1]$.
- The kG-submodule lattice was completely described by Bardoe-Sin (2000).
- At the level of composition factors,

$$\text{Im} \eta_r = k + \sum_{(\lambda_0, \ldots, \lambda_{t-1}) \in \Lambda_r} \bigotimes_{j=0}^{t-1} S(\lambda_j)^{(p_j)}$$

- $k[L_1]$ has a special monomial basis \mathcal{M}.
- Every kG-submodule of $k[L_1]$ has a basis which is a subset of \mathcal{M}!
Chandler-Sin-Xiang (2005-8)

Let V be a $2m$-dimensional space with a nonsingular alternating form, $G = \text{Sp}(V)$.

I_r the set of r-dimensional subspaces which are either totally isotropic or the complements of such.

Assume p is odd. $k[I_1]$ has a special basis B with the following properties.

1. Each kG-submodule generated by a single element of B is spanned as a vector space by a subset of the basis.
2. Each such module has a unique maximal submodule.
3. From these properties, the dimension and composition factors of the submodule generated by any subset of the basis can be determined.
Let V be a $2m$-dimensional space with a nonsingular alternating form, $G = \text{Sp}(V)$.

I_r the set of r-dimensional subspaces which are either totally isotropic or the complements of such.

Assume p is odd. $k[I_1]$ has a special basis B with the following properties.

1. Each kG-submodule generated by a single element of B is spanned as a vector space by a subset of the basis.
2. Each such module has a unique maximal submodule.
3. From these properties, the dimension and composition factors of the submodule generated by any subset of the basis can be determined.
Points and symplectic flats

- Chandler-Sin-Xiang (2005-8)
- Let V be a $2m$-dimensional space with a nonsingular alternating form, $G = \text{Sp}(V)$.
- I_r the set of r-dimensional subspaces which are either totally isotropic or the complements of such.
- Assume p is odd. $k[I_1]$ has a special basis B with the following properties.
 1. Each kG-submodule generated by a single element of B is spanned as a vector space by a subset of the basis.
 2. Each such module has a unique maximal submodule.
 3. From these properties, the dimension and composition factors of the submodule generated by any subset of the basis can be determined.
Points and symplectic flats

- Chandler-Sin-Xiang (2005-8)
- Let V be a $2m$-dimensional space with a nonsingular alternating form, $G = \text{Sp}(V)$.
- I_r the set of r-dimensional subspaces which are either totally isotropic or the complements of such.
- Assume p is odd. $k[I_1]$ has a special basis B with the following properties.
 1. Each kG-submodule generated by a single element of B is spanned as a vector space by a subset of the basis.
 2. Each such module has a unique maximal submodule.
 3. From these properties, the dimension and composition factors of the submodule generated by any subset of the basis can be determined.
Points and symplectic flats

► Chandler-Sin-Xiang (2005-8)
► Let V be a $2m$-dimensional space with a nonsingular alternating form, $G = \text{Sp}(V)$.
► I_r the set of r-dimensional subspaces which are either totally isotropic or the complements of such.
► Assume p is odd. $k[I_1]$ has a special basis B with the following properties.
 1. Each kG-submodule generated by a single element of B. is spanned as a vector space by a subset of the basis.
 2. Each such module has a unique maximal submodule.
 3. From these properties, the dimension and composition factors of the submodule generated by any subset of the basis can be determined.
Chandler-Sin-Xiang (2005-8)

Let V be a $2m$-dimensional space with a nonsingular alternating form, $G = Sp(V)$.

I_r the set of r-dimensional subspaces which are either totally isotropic or the complements of such.

Assume p is odd. $k[I_1]$ has a special basis B with the following properties.

1. Each kG-submodule generated by a single element of B. is spanned as a vector space by a subset of the basis.
2. Each such module has a unique maximal submodule.
3. From these properties, the dimension and composition factors of the submodule generated by any subset of the basis can be determined.
Points and symplectic flats

- Chandler-Sin-Xiang (2005-8)
- Let V be a $2m$-dimensional space with a nonsingular alternating form, $G = \text{Sp}(V)$.
- I_r the set of r-dimensional subspaces which are either totally isotropic or the complements of such.
- Assume p is odd. $k[I_1]$ has a special basis \mathcal{B} with the following properties.
 1. Each kG-submodule generated by a single element of \mathcal{B} is spanned as a vector space by a subset of the basis.
 2. Each such module has a unique maximal submodule.
 3. From these properties, the dimension and composition factors of the submodule generated by any subset of the basis can be determined.
Symplectic analogue of Hamada’s formula

Theorem

Let $A(I_1, I_r)$ be the (I_1, I_r) incidence matrix of $W(2m - 1, p^t)$. Assume that p is odd. Then

1. If $r \neq m$, then $\text{rank}_p A(I_1, I_r)$ is the same as for all r-dimensional subspaces, so is given by Hamada’s formula.

2. If $r = m$,

$$
\text{rank}_p A(I_1, I_m) = 1 + \sum_{(s_0, \ldots, s_{t-1})} \prod_{j=0}^{t-1} d(s_j, s_{j+1}),
$$

where

$$
d(s_j, s_{j+1}) = \begin{cases}
(d_{m(p-1)} + p^m)/2, & \text{if } s_j = s_{j+1} = m, \\
\lambda_j, & \text{otherwise.}
\end{cases}
$$
Characteristic 2

The characteristic 2 case can also be analyzed using this point of view. The results [C-S-X, 2008] are analogous but more complicated, reflecting greater complexity in the module structure.
Outline

Introduction

Fundamental examples

Permutation Modules

Point-Hyperplane Incidences

Points versus flats

Application to GQs

Open problems

Conclusion
Theorem

Let \(q = p^t \), \(p \) odd and \(A(l_1, l_2) \) the point-line incidence matrix of the symplectic GQ over \(\mathbb{F}_q \). Then

\[
\text{rank}_p A(l_1, l_2) = 1 + \alpha_1^t + \alpha_2^t,
\]

where

\[
\alpha_1, \alpha_2 = \frac{p(p + 1)^2}{4} \pm \frac{p(p + 1)(p - 1)}{12} \sqrt{17}.
\]

Together with earlier results (Bagchi-Brouwer-Wilbrink, Sastry-Sin, de Caen-Moorhouse) this completes the determination of the \(p \)-ranks for the symplectic GQs.
Theorem

Let \(q = p^t \), \(p \) odd and \(A(l_1, l_2) \) the point-line incidence matrix of the symplectic GQ over \(\mathbb{F}_q \). Then

\[
\text{rank}_p A(l_1, l_2) = 1 + \alpha_1^t + \alpha_2^t,
\]

where

\[
\alpha_1, \alpha_2 = \frac{p(p + 1)^2}{4} \pm \frac{p(p + 1)(p - 1)}{12} \sqrt{17}.
\]

Together with earlier results (Bagchi-Brouwer-Wilbrink, Sastry-Sin, de Caen-Moorhouse) this completes the determination of the \(p \)-ranks for the symplectic GQs.
Outline

Introduction

Fundamental examples

Permutation Modules

Point-Hyperplane Incidences

Points versus flats

Application to GQs

Open problems

Conclusion
Problem 1. General case of \((L_r, L_s)\) where \(I\) is any relation other than nonzero intersection.

For subsets of a set the relations of inclusion and nonempty intersection lead to equivalent problems. However, for subspaces inclusion and nonzero intersection are different.

Problem 2. Orthogonal and unitary analogues of Hamada’s formula.

Problem 3. Analogue of Problem 1 for distinguished subspaces for any \(I\).

The known cases suggest that the easiest cases will be for complementary dimensions and the relation of nonzero intersection.

Problem 4. \(p\)-ranks for point-line incidences of classical generalized polygons.
Problem 1. General case of \((L_r, L_s)\) where \(I\) is any relation other than nonzero intersection. For subsets of a set the relations of inclusion and nonempty intersection lead to equivalent problems. However, for subspaces inclusion and nonzero intersection are different.

Problem 2. Orthogonal and unitary analogues of Hamada’s formula.

Problem 3. Analogue of Problem 1 for distinguished subspaces for any \(I\).

The known cases suggest that the easiest cases will be for complementary dimensions and the relation of nonzero intersection.

Problem 4. \(p\)-ranks for point-line incidences of classical generalized polygons.
Problem 1. General case of (L_r, L_s) where I is any relation other than nonzero intersection. For subsets of a set the relations of inclusion and nonempty intersection lead to equivalent problems. However, for subspaces inclusion and nonzero intersection are different.

Problem 2. Orthogonal and unitary analogues of Hamada’s formula.

Problem 3. Analogue of Problem 1 for distinguished subspaces for any I.

The known cases suggest that the easiest cases will be for complementary dimensions and the relation of nonzero intersection.

Problem 4. p-ranks for point-line incidences of classical generalized polygons.
Open p-rank problems

Problem 1. General case of (L_r, L_s) where I is any relation other than nonzero intersection. For subsets of a set the relations of inclusion and nonempty intersection lead to equivalent problems. However, for subspaces inclusion and nonzero intersection are different.

Problem 2. Orthogonal and unitary analogues of Hamada’s formula.

Problem 3. Analogue of **Problem 1** for distinguished subspaces for any I.

The known cases suggest that the easiest cases will be for complementary dimensions and the relation of nonzero intersection.

Problem 4. p-ranks for point-line incidences of classical generalized polygons.
Problem 1. General case of \((L_r, L_s)\) where \(I\) is any relation other than nonzero intersection.
For subsets of a set the relations of inclusion and nonempty intersection lead to equivalent problems. However, for subspaces inclusion and nonzero intersection are different.

Problem 2. Orthogonal and unitary analogues of Hamada’s formula.

Problem 3. Analogue of Problem 1 for distinguished subspaces for any \(I\).

The known cases suggest that the easiest cases will be for complementary dimensions and the relation of nonzero intersection.

Problem 4. \(p\)-ranks for point-line incidences of classical generalized polygons.
Open p-rank problems

Problem 1. General case of (L_r, L_s) where I is any relation other than nonzero intersection. For subsets of a set the relations of inclusion and nonempty intersection lead to equivalent problems. However, for subspaces inclusion and nonzero intersection are different.

Problem 2. Orthogonal and unitary analogues of Hamada’s formula.

Problem 3. Analogue of Problem 1 for distinguished subspaces for any I.

The known cases suggest that the easiest cases will be for complementary dimensions and the relation of nonzero intersection.

Problem 4. p-ranks for point-line incidences of classical generalized polygons.
Outline

Introduction

Fundamental examples

Permutation Modules

Point-Hyperplane Incidences

Points versus flats

Application to GQs

Open problems

Conclusion
We considered some problems where there is a natural connection between incidence matrices and representation theory of classical groups in the defining characteristic of the geometry.

The p-adic, integral and cross-characteristic versions of these problems are also interesting, but were not discussed.

Thank you for your attention!
We considered some problems where there is a natural connection between incidence matrices and representation theory of classical groups in the defining characteristic of the geometry.

The p-adic, integral and cross-characteristic versions of these problems are also interesting, but were not discussed.

Thank you for your attention!
We considered some problems where there is a natural connection between incidence matrices and representation theory of classical groups in the defining characteristic of the geometry.

The ρ-adic, integral and cross-characteristic versions of these problems are also interesting, but were not discussed.

Thank you for your attention!