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Skew lines graph

I Joint work with Andries Brouwer and Josh Ducey.
I We consider skewness of pairs of lines in PG(3,q), q = pt .
I Get strongly regular graph with parameters

v = q4+q3+2q2+q+1, k = q4, λ = q4−q3−q2+q, µ = q4−q3.

I Under the Klein Correpondence, two lines are skew iff the
corresponding points of the Klein quadric in PG(5,q) are
not orthogonal, i.e, not joined by a line in the quadric.

I Adjacency matrix A, Laplacian L = D − A, D diagonal
matrix of degrees. In our case D = q4I.
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Smith normal forms

A, L define endomorphisms of the free Z-module on lines.
Cokernel of A is called the Smith group and the torsion
subgroup of the cokernel of L is known as the critical group
or sandpile group.
The order of the critical group is the number of spanning
trees in the graph.
In our case A and L are closely related, and it suffices to
consider the Smith group.
We compute it by using its structure as a module for
GL(4,q).
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All invariants are powers of p

The adjacency matrix of any SRG(v , k , λ, µ) satisfies

A2 + (µ− λ)A + (µ− k)I = µJ

(J is the all-one matrix)
A2 = q4I + (q4 − q3 − q2 + q)A + (q4 − q3)(J − A− I)
Eigenvalues of A are q, −q2, and q4 with respective
multiplicities q4 + q2, q3 + q2 + q, and 1.
Replace Z by a suitable p-adic ring R = Zp[ξ], with ξ a
primitive (q4 − 1)-th root of unity.
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Theorem 1
Let ei = ei(A) = number of invariant factors in the Smith
Normal Form of A which are exactly divisible by pi .

1. e4t = 1.
2. ei = 0 for i > 4t and for t < i < 2t , 3t < i < 4t .
3. ei = e3t−i for 0 ≤ i < t .
4.
∑t

i=0 ei = q4 + q2.
5.
∑3t

i=2t ei = q3 + q2 + q.

Thus we are reduced to finding t of the numbers e0, . . . ,et
(or the numbers e2t , . . . ,e3t ).



Theorem 1
Let ei = ei(A) = number of invariant factors in the Smith
Normal Form of A which are exactly divisible by pi .

1. e4t = 1.
2. ei = 0 for i > 4t and for t < i < 2t , 3t < i < 4t .
3. ei = e3t−i for 0 ≤ i < t .
4.
∑t

i=0 ei = q4 + q2.
5.
∑3t

i=2t ei = q3 + q2 + q.

Thus we are reduced to finding t of the numbers e0, . . . ,et
(or the numbers e2t , . . . ,e3t ).



Theorem 1
Let ei = ei(A) = number of invariant factors in the Smith
Normal Form of A which are exactly divisible by pi .

1. e4t = 1.
2. ei = 0 for i > 4t and for t < i < 2t , 3t < i < 4t .
3. ei = e3t−i for 0 ≤ i < t .
4.
∑t

i=0 ei = q4 + q2.
5.
∑3t

i=2t ei = q3 + q2 + q.

Thus we are reduced to finding t of the numbers e0, . . . ,et
(or the numbers e2t , . . . ,e3t ).



Theorem 1
Let ei = ei(A) = number of invariant factors in the Smith
Normal Form of A which are exactly divisible by pi .

1. e4t = 1.
2. ei = 0 for i > 4t and for t < i < 2t , 3t < i < 4t .
3. ei = e3t−i for 0 ≤ i < t .
4.
∑t

i=0 ei = q4 + q2.
5.
∑3t

i=2t ei = q3 + q2 + q.

Thus we are reduced to finding t of the numbers e0, . . . ,et
(or the numbers e2t , . . . ,e3t ).



Theorem 1
Let ei = ei(A) = number of invariant factors in the Smith
Normal Form of A which are exactly divisible by pi .

1. e4t = 1.
2. ei = 0 for i > 4t and for t < i < 2t , 3t < i < 4t .
3. ei = e3t−i for 0 ≤ i < t .
4.
∑t

i=0 ei = q4 + q2.
5.
∑3t

i=2t ei = q3 + q2 + q.

Thus we are reduced to finding t of the numbers e0, . . . ,et
(or the numbers e2t , . . . ,e3t ).



Theorem 1
Let ei = ei(A) = number of invariant factors in the Smith
Normal Form of A which are exactly divisible by pi .

1. e4t = 1.
2. ei = 0 for i > 4t and for t < i < 2t , 3t < i < 4t .
3. ei = e3t−i for 0 ≤ i < t .
4.
∑t

i=0 ei = q4 + q2.
5.
∑3t

i=2t ei = q3 + q2 + q.

Thus we are reduced to finding t of the numbers e0, . . . ,et
(or the numbers e2t , . . . ,e3t ).



Theorem 1
Let ei = ei(A) = number of invariant factors in the Smith
Normal Form of A which are exactly divisible by pi .

1. e4t = 1.
2. ei = 0 for i > 4t and for t < i < 2t , 3t < i < 4t .
3. ei = e3t−i for 0 ≤ i < t .
4.
∑t

i=0 ei = q4 + q2.
5.
∑3t

i=2t ei = q3 + q2 + q.

Thus we are reduced to finding t of the numbers e0, . . . ,et
(or the numbers e2t , . . . ,e3t ).



Theorem 1
Let ei = ei(A) = number of invariant factors in the Smith
Normal Form of A which are exactly divisible by pi .

1. e4t = 1.
2. ei = 0 for i > 4t and for t < i < 2t , 3t < i < 4t .
3. ei = e3t−i for 0 ≤ i < t .
4.
∑t

i=0 ei = q4 + q2.
5.
∑3t

i=2t ei = q3 + q2 + q.

Thus we are reduced to finding t of the numbers e0, . . . ,et
(or the numbers e2t , . . . ,e3t ).



Outline

Skew lines in PG(3,q)

Eigenvalues and invariants

p-filtrations

Proof of Theorem 1

The missing invariants

Reduction to Point-Line Incidence

SNF of a product



p-filtrations

Let F = R/(p).
For L ≤ R`, set L = (L + pR`)/pR`.
η : Rm → Rn, R-module homomorphism
Mi(η) = {x ∈ Rm | η(x) ∈ piRn}
Ni(η) = {p−iη(x) | x ∈ Mi(η)} (and N−1(η) = {0})
Rm = M0(η) ⊇ M1(η) ⊇ · · ·
N0(η) ⊆ N1(η) ⊆ · · ·
Fm = M0(η) ⊇ M1(η) ⊇ · · ·
N0(η) ⊆ N1(η) ⊆ · · · .
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Lemma
Let η : Rm → Rn be a homomorphism of free R-modules of
finite rank. Then, for i ≥ 0,

ei(η) = dimF

(
Mi(η)/Mi+1(η)

)
= dimF

(
Ni(η)/Ni−1(η)

)
.
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Split off the all-one vector

V , a 4-dimensional vector space over Fq

Lr = set of subspaces of dimension r in V

View A as an R-module map A : RL2 → RL2 .
1 =

∑
x∈L2

x

Y2 =
{∑

x∈L2
axx ∈ RL2

∣∣∣ ∑x∈L2
ax = 0

}
RL2 = R1⊕ Y2

(1)A = q41
Let A′ = A|Y2 (or its matrix in some basis).
e4t(A) = e4t(A′) + 1
ei(A) = ei(A′) for i 6= 4t .
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SRG equation

A(A + (q2 − q)I) = q3I + (q4 − q3)J
On Y2, A′(A′ + (q2 − q)I) = q3I.
Let P and Q be unimodular, with D = PA′Q−1 diagonal.
Then

Q(A′ + (q2 − q)I)P−1 = q3D−1,
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Q(A′ + (q2 − q)I)P−1 = q3D−1

ei(A′) = 0 for i > 3t .
e4t(A) = 1
ei(A′ + (q2 − q)I) = e3t−i(A′)for 0 ≤ i ≤ 3t .
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Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .



Proof of Theorem 1

A′ ≡ A′ + (q2 − q)I (mod pt)

ei(A′) = ei(A′ + (q2 − q)I) = e3t−i(A′), for 0 ≤ i < t
Set E := Frac(R)⊗R RL2

Eλ := λ-eigenspace for A in E .
Eq ∩ RL2 and E−q2 ∩ RL2 are pure R-submodules of Y2.
Eq ∩ RL2 ⊆ Nt(A|Y2) and E−q2 ∩ RL2 ⊆ M2t(A|Y2).

q4 + q2 = dimF(Eq ∩ ZL2
p ) ≤ dimF Nt(A′) =

t∑
i=0

ei(A′)

and

q3+q2+q = dimF(E−q2 ∩ ZL2
p ) ≤ dimF M2t(A′) =

3t∑
i=2t

ei(A′).

Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .



Proof of Theorem 1

A′ ≡ A′ + (q2 − q)I (mod pt)

ei(A′) = ei(A′ + (q2 − q)I) = e3t−i(A′), for 0 ≤ i < t
Set E := Frac(R)⊗R RL2

Eλ := λ-eigenspace for A in E .
Eq ∩ RL2 and E−q2 ∩ RL2 are pure R-submodules of Y2.
Eq ∩ RL2 ⊆ Nt(A|Y2) and E−q2 ∩ RL2 ⊆ M2t(A|Y2).

q4 + q2 = dimF(Eq ∩ ZL2
p ) ≤ dimF Nt(A′) =

t∑
i=0

ei(A′)

and

q3+q2+q = dimF(E−q2 ∩ ZL2
p ) ≤ dimF M2t(A′) =

3t∑
i=2t

ei(A′).

Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .



Proof of Theorem 1

A′ ≡ A′ + (q2 − q)I (mod pt)

ei(A′) = ei(A′ + (q2 − q)I) = e3t−i(A′), for 0 ≤ i < t
Set E := Frac(R)⊗R RL2

Eλ := λ-eigenspace for A in E .
Eq ∩ RL2 and E−q2 ∩ RL2 are pure R-submodules of Y2.
Eq ∩ RL2 ⊆ Nt(A|Y2) and E−q2 ∩ RL2 ⊆ M2t(A|Y2).

q4 + q2 = dimF(Eq ∩ ZL2
p ) ≤ dimF Nt(A′) =

t∑
i=0

ei(A′)

and

q3+q2+q = dimF(E−q2 ∩ ZL2
p ) ≤ dimF M2t(A′) =

3t∑
i=2t

ei(A′).

Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .



Proof of Theorem 1

A′ ≡ A′ + (q2 − q)I (mod pt)

ei(A′) = ei(A′ + (q2 − q)I) = e3t−i(A′), for 0 ≤ i < t
Set E := Frac(R)⊗R RL2

Eλ := λ-eigenspace for A in E .
Eq ∩ RL2 and E−q2 ∩ RL2 are pure R-submodules of Y2.
Eq ∩ RL2 ⊆ Nt(A|Y2) and E−q2 ∩ RL2 ⊆ M2t(A|Y2).

q4 + q2 = dimF(Eq ∩ ZL2
p ) ≤ dimF Nt(A′) =

t∑
i=0

ei(A′)

and

q3+q2+q = dimF(E−q2 ∩ ZL2
p ) ≤ dimF M2t(A′) =

3t∑
i=2t

ei(A′).

Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .



Proof of Theorem 1

A′ ≡ A′ + (q2 − q)I (mod pt)

ei(A′) = ei(A′ + (q2 − q)I) = e3t−i(A′), for 0 ≤ i < t
Set E := Frac(R)⊗R RL2

Eλ := λ-eigenspace for A in E .
Eq ∩ RL2 and E−q2 ∩ RL2 are pure R-submodules of Y2.
Eq ∩ RL2 ⊆ Nt(A|Y2) and E−q2 ∩ RL2 ⊆ M2t(A|Y2).

q4 + q2 = dimF(Eq ∩ ZL2
p ) ≤ dimF Nt(A′) =

t∑
i=0

ei(A′)

and

q3+q2+q = dimF(E−q2 ∩ ZL2
p ) ≤ dimF M2t(A′) =

3t∑
i=2t

ei(A′).

Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .



Proof of Theorem 1

A′ ≡ A′ + (q2 − q)I (mod pt)

ei(A′) = ei(A′ + (q2 − q)I) = e3t−i(A′), for 0 ≤ i < t
Set E := Frac(R)⊗R RL2

Eλ := λ-eigenspace for A in E .
Eq ∩ RL2 and E−q2 ∩ RL2 are pure R-submodules of Y2.
Eq ∩ RL2 ⊆ Nt(A|Y2) and E−q2 ∩ RL2 ⊆ M2t(A|Y2).

q4 + q2 = dimF(Eq ∩ ZL2
p ) ≤ dimF Nt(A′) =

t∑
i=0

ei(A′)

and

q3+q2+q = dimF(E−q2 ∩ ZL2
p ) ≤ dimF M2t(A′) =

3t∑
i=2t

ei(A′).

Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .



Proof of Theorem 1

A′ ≡ A′ + (q2 − q)I (mod pt)

ei(A′) = ei(A′ + (q2 − q)I) = e3t−i(A′), for 0 ≤ i < t
Set E := Frac(R)⊗R RL2

Eλ := λ-eigenspace for A in E .
Eq ∩ RL2 and E−q2 ∩ RL2 are pure R-submodules of Y2.
Eq ∩ RL2 ⊆ Nt(A|Y2) and E−q2 ∩ RL2 ⊆ M2t(A|Y2).

q4 + q2 = dimF(Eq ∩ ZL2
p ) ≤ dimF Nt(A′) =

t∑
i=0

ei(A′)

and

q3+q2+q = dimF(E−q2 ∩ ZL2
p ) ≤ dimF M2t(A′) =

3t∑
i=2t

ei(A′).

Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .



Remark
I Proof uses only the SRG equation, so Theorem 1 is valid

for all SRGs with the same parameters. For q = 2, there
are 3854 such SRGs (Spence).

I When q = p, the Smith group is determined once we know
e0 = rankp A. When q = 2, our A is the unique one with
rank2 A = 6.
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Statement of Theorem 2

[3]t = {(s0, . . . , st−1) | si ∈ {1,2,3} for all i}
For s = (s0, . . . , st−1) ∈ [3]t

λi = psi+1 − si ,

(subscripts mod t) and

λ = (λ0, . . . , λt−1)

For an integer k , set dk to be the coefficient of xk in the
expansion of (1 + x + · · ·+ xp−1)4. Set d(s) =

∏t−1
i=0 dλi .



Theorem 2
Let ei = ei(A) denote the multiplicity of pi as an elementary
divisor of A.
Then, for 0 ≤ i ≤ t ,

e2t+i =
∑

s∈H(i)

d(s),

where

H(i) =
{
(s0, . . . , st−1) ∈ [3]t

∣∣d(s) 6= 0 and #{j |sj = 2} = i
}
.



Example, q = 9

(1 + x + x2)4 =
1 + 4x + 10x2 + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8

H(0) = {(11), (13), (31), (33)},
H(1) = {(21), (23), (12), (32)}, H(2) = {(22)}.
e4 = d(11) + d(13) + d(31) + d(33) = 202
e5 = d(21) + d(23) + d(12) + d(32) = 256
e6 = d(22) = 361



Table: The elementary divisors of the incidence matrix of lines vs.
lines in PG(3,9), where two lines are incident when skew.

Elem. Div. 1 3 32 34 35 36 38

Multiplicity 361 256 6025 202 256 361 1



GL(4, q)-modules

Theorem (Bardoe-S, 2000)

(a) The F GL(4,q)-permutation module FL1 = F1⊕ Y 1 is
multiplicity-free and the composition factors of Y 1
correspond to

H = {s ∈ [3]t | d(s) 6= 0}.

and d(s) gives the dimension.
(b) If we define the partial order s ≤ s′ iff si ≤ s′i for all i , then

the lattice of order ideals is isomorphic to the
F GL(4,q)-submodule lattice of Y 1.



GL(4, q)-modules

Remark
Each subquotient of the F GL(4,q)-module Y 1 determines a
subset of H correponding to its composition factors.
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B := the incidence matrix with rows indexed by L1 and
columns indexed by L2, where incidence again means
zero intersection.

BtB = (q3+q2)I+(q3+q2−q−1)A+(q3+q2−q)(J−A−I).

(1)BtB = q4(q2 + q + 1)(q + 1)1,
ei(BtB) = ei(BtB|Y2) for i 6= 4t .
BtB = −[A + (q2 − q)I] + q2I + (q3 + q2 − q)J
On Y2, BtB = −[A + (q2 − q)I] + q2I.
ei((BtB)|Y2) = ei(A′ + (q2 − q)I) = e3t−i(A), for 0 ≤ i ≤ t .
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Invariants of B

The ei(B) were previously calculated.

Theorem (Chandler-S-Xiang, 2006)
Set B′ := B|Y1 : Y1 → Y2.
(a) The composition factors of Mk (B′)/Mk+1(B′) correspond

to the set

Hk (2) = {s ∈ H|exactly k of the sj are equal to 1}.

(b) The composition factors of N`(B′
t)/N`−1(B′

t) correspond
to

`H(2) = {s ∈ H|exactly ` of the sj are equal to 3}.
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Idea of proof for Theorem 2

Problem is to relate invariants of BtB to those of B.
Suppose that we can diagonalize Bt and B by:

PBtE−1 = D2,1

and
EBQ−1 = D1,2

with the same E in both equations.
Then we can diagonalize the product:

PBtBQ−1 = Dr ,1D1,s,

In general is not possible to find such a matrix E .
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Left and right SNF Bases

For a homomorphism η : Rm → Rn, consider bases
B ⊆ Rm and C ⊆ Rn for which the matrix of η is in diagonal
form.
Call B a left SNF basis for η and C a right SNF basis.
Lifting bases from the M-filtration

M0(η) ⊇ M1(η) ⊇ · · · ⊇ M`(η) ) ker(η)

gives a left SNF basis. The N-filtration gives right SNF
basis.
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Lemma
There exists a basis B of RL1 that is simultaneously a left SNF
basis for B and a right SNF basis for Bt .

GL(4,q) has a cyclic subgroup S acting transitively on L1,
hence all S-isotypic components of RL1 have rank 1.
Taking a generator of each component, we get a basis I of
RL1 compatible with both the M-filtration for B and the
N-filtration for Bt .
I is both a left SNF basis for B and a right SNF basis for
Bt .

Theorem 2
Let ei = ei(A) denote the multiplicity of pi as an elementary
divisor of A. Then, for 0 ≤ i ≤ t ,

e2t+i = et−i(BtB) =
∑

s∈H(i)

d(s).

Note H(i) =
⋃

k+`=t−i Hk (2) ∩ `H(2).
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Thank you for your attention!
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