Smith Normal Forms of Strongly Regular graphs

Peter Sin, U. of Florida

UD Discrete Math. Seminar, May 7th, 2018.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Some results

Methods

Illustrative Results

The coauthors for various parts of this talk are: Andries Brouwer, David Chandler, Josh Ducey, Venkata Raghu Tej Pantangi and Qing Xiang.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \operatorname{Col}(A)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \operatorname{Col}(A)$

The cyclic decomposition of S(A) is given by the **Smith Normal Form** of *A*: There exist unimodular *P*, *Q* such that D = PAQ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1} .

(日) (日) (日) (日) (日) (日) (日)

A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \operatorname{Col}(A)$

The cyclic decomposition of S(A) is given by the **Smith Normal Form** of *A*: There exist unimodular *P*, *Q* such that D = PAQ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1} .

(ロ) (同) (三) (三) (三) (○) (○)

Other diagonal forms also describe S(A).

A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \operatorname{Col}(A)$

The cyclic decomposition of S(A) is given by the **Smith Normal Form** of *A*: There exist unimodular *P*, *Q* such that D = PAQ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1} .

(ロ) (同) (三) (三) (三) (○) (○)

Other diagonal forms also describe S(A).

Generalizes from $\ensuremath{\mathbb{Z}}$ to principal ideal domains.

A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \operatorname{Col}(A)$

The cyclic decomposition of S(A) is given by the **Smith Normal Form** of *A*: There exist unimodular *P*, *Q* such that D = PAQ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1} .

Other diagonal forms also describe S(A).

Generalizes from $\ensuremath{\mathbb{Z}}$ to principal ideal domains.

For each prime p, can find $S(A)_p$ by working over a *p*-local ring. Then the d_i are powers of *p* called the *p*-elementary divisors.

(ロ) (同) (三) (三) (三) (○) (○)

A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \operatorname{Col}(A)$

The cyclic decomposition of S(A) is given by the **Smith Normal Form** of *A*: There exist unimodular *P*, *Q* such that D = PAQ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1} .

Other diagonal forms also describe S(A).

Generalizes from $\ensuremath{\mathbb{Z}}$ to principal ideal domains.

For each prime p, can find $S(A)_p$ by working over a *p*-local ring. Then the d_i are powers of *p* called the *p*-elementary divisors.

Survey article on SNFs in combinatorics by R. Stanley (JCTA 2016).

Smith normal forms associated with graphs

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

 $A(\Gamma)$, an adjacency matrix of a graph Γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $A(\Gamma)$, an adjacency matrix of a graph Γ. $L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

 $A(\Gamma)$, an adjacency matrix of a graph Γ .

 $L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.

The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $A(\Gamma)$, an adjacency matrix of a graph Γ .

 $L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.

The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ .

(ロ) (同) (三) (三) (三) (○) (○)

 $S(\Gamma) = S(A(\Gamma))$ is called the **Smith group** of Γ

 $A(\Gamma)$, an adjacency matrix of a graph Γ .

 $L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.

The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $S(\Gamma) = S(A(\Gamma))$ is called the **Smith group** of Γ $K(\Gamma) = \text{Tor}(S(L(\Gamma)))$ is called the **critical group** of Γ . $A(\Gamma)$, an adjacency matrix of a graph Γ .

 $L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.

The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ .

 $S(\Gamma) = S(A(\Gamma))$ is called the **Smith group** of Γ

 $K(\Gamma) = \operatorname{Tor}(S(L(\Gamma)))$ is called the **critical group** of Γ .

 $|\mathcal{K}(\Gamma)| =$ number of spanning trees (Kirchhoff's Matrix-tree Theorem).

 $A(\Gamma)$, an adjacency matrix of a graph Γ .

 $L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.

The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ .

 $S(\Gamma) = S(A(\Gamma))$ is called the **Smith group** of Γ

 $K(\Gamma) = \operatorname{Tor}(S(L(\Gamma)))$ is called the **critical group** of Γ .

 $|\mathcal{K}(\Gamma)| =$ number of spanning trees (Kirchhoff's Matrix-tree Theorem).

Origins and early work on $K(\Gamma)$ include: Sandpile model (Dhar), Chip-firing game (Biggs), Cycle Matroids (Vince).

Smith normal forms associated with graphs

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a *k*-regular graph such that (i) any two adjacent vertices have λ neighbors in common and (ii) any two nonadjacent vertices have μ neighbors in common.

(日) (日) (日) (日) (日) (日) (日)

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a *k*-regular graph such that (i) any two adjacent vertices have λ neighbors in common and (ii) any two nonadjacent vertices have μ neighbors in common.

(日) (日) (日) (日) (日) (日) (日)

A has eigenvalues k, (mult. 1) r (mult. f), s (mult. g).

Smith normal forms associated with graphs

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Wheel graphs (Biggs, 1990)

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Random Graphs (Wood, 2015)

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))
- ► Grassmann and skewness graphs of lines in PG(n 1, q) (Brouwer-Ducey-S,(2012); Ducey-S, (2017))

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))
- ► Grassmann and skewness graphs of lines in PG(n 1, q) (Brouwer-Ducey-S,(2012); Ducey-S, (2017))

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Classical polar graphs (Pantangi-S, (2017))

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))
- ► Grassmann and skewness graphs of lines in PG(n 1, q) (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
- Classical polar graphs (Pantangi-S, (2017))
- Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))
- ► Grassmann and skewness graphs of lines in PG(n 1, q) (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
- Classical polar graphs (Pantangi-S, (2017))
- Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
- Van Lint-Schrijver cyclotomic SRGs (Pantangi, 2018)

Smith normal forms associated with graphs

Smith normal form

Smith normal forms associated with graphs

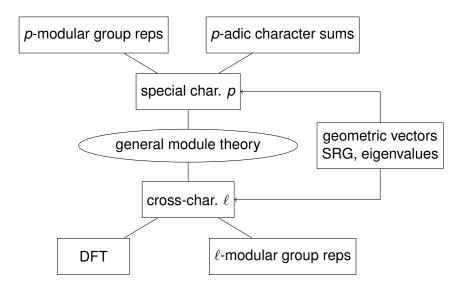
Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

▲□▶▲□▶▲目▶▲目▶ 目 のへで



Permutation modules, filtrations

$$V =$$
vertex set of Γ , $G \leq Aut(\Gamma)$

Permutation modules, filtrations

 $V = \text{vertex set of } \Gamma, \ G \leq \text{Aut}(\Gamma)$ Fix prime $\ell, \ R = \mathbb{Z}_{\ell}$ (or suitable extension), residue field $F = R/\ell R$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Permutation modules, filtrations

V = vertex set of Γ , $G \leq Aut(\Gamma)$

Fix prime ℓ , $R = \mathbb{Z}_{\ell}$ (or suitable extension), residue field $F = R/\ell R$.

A or L defines RG-module homomorphism

$$\alpha: \mathbf{R}^{\mathbf{V}} \to \mathbf{R}^{\mathbf{V}}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

$$M = R^{V}, \overline{M} = F^{V}, M_{i} = \{m \in M \mid \alpha(m) \in \ell^{i}M\}$$

Permutation modules, filtrations

V = vertex set of Γ , $G \leq Aut(\Gamma)$

Fix prime ℓ , $R = \mathbb{Z}_{\ell}$ (or suitable extension), residue field $F = R/\ell R$.

A or L defines RG-module homomorphism

$$\alpha : \mathbb{R}^{V} \to \mathbb{R}^{V}$$

$$M = \mathbb{R}^{V}, \overline{M} = \mathbb{F}^{V}, M_{i} = \{ m \in M \mid \alpha(m) \in \ell^{i}M \}$$

$$M = M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{r} = \operatorname{Ker}(\alpha) \supseteq 0.$$

$$\overline{M} = \overline{M}_{0} \supseteq \overline{M}_{1} \supseteq \cdots \supseteq \overline{M}_{r} = \overline{\operatorname{Ker}(\alpha)} \supseteq 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$e_i = e_i(\alpha) :=$$
 multiplicity of ℓ^i as an elementary divisor of α .
 $(e_0 = \operatorname{rank}(\overline{\alpha})).$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$e_i = e_i(\alpha) :=$$
 multiplicity of ℓ^i as an elementary divisor of α .
 $(e_0 = \operatorname{rank}(\overline{\alpha})).$
dim $\overline{M}_a = 1 + \sum_{i \ge a} e_i.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

 $e_i = e_i(\alpha) :=$ multiplicity of ℓ^i as an elementary divisor of α . $(e_0 = \operatorname{rank}(\overline{\alpha})).$

dim
$$\overline{M}_a = 1 + \sum_{i \ge a} e_i$$
.

All quotients $\overline{M}_a/\overline{M}_{a+1}$ are *FG*-modules, so the number of nonzero e_i is at most the composition length of \overline{M} as a *FG*-module.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Lemma

Let M, and α be as above. Let d be the ℓ -adic valuation of the product of the nonzero elementary divisors of α , counted with multiplicities. Suppose that we have an increasing sequence of indices $0 < a_1 < a_2 < \cdots < a_h$ and a corresponding sequence of lower bounds $b_1 > b_2 > \cdots > b_h$ satisfying the following conditions.

(a) $\dim_F \overline{M}_{a_j} \ge b_j$ for j = 1, ..., h. (b) $\sum_{j=1}^h (b_j - b_{j+1}) a_j = d$, where we set $b_{h+1} = \dim_F \overline{\ker(\phi)}$. Then the following hold.

(日) (日) (日) (日) (日) (日) (日)

(i)
$$e_{a_j}(\phi) = b_j - b_{j+1}$$
 for $j = 1, ..., h$.
(ii) $e_0(\phi) = \dim_F \overline{M} - b_1$.
(iii) $e_i(\phi) = 0$ for $i \notin \{0, a_1, ..., a_h\}$.

Smith normal forms associated with graphs

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Paley graphs (Chandler-S-Xiang 2015)

Uses: DFT (\mathbb{F}_q -action) to get the p'-part, \mathbb{F}_q^* -action Jacobi sums and Transfer matrix method for p-part. The following gives the p-part of $K(\Gamma)$.

Theorem

Let $q = p^t$ be a prime power congruent to 1 modulo 4. Then the number of p-adic elementary divisors of L(Paley(q)) which are equal to p^{λ} , $0 \le \lambda < t$, is

$$f(t,\lambda) = \sum_{i=0}^{\min\{\lambda,t-\lambda\}} \frac{t}{t-i} \binom{t-i}{i} \binom{t-2i}{\lambda-i} (-p)^i \left(\frac{p+1}{2}\right)^{t-2i}$$

The number of *p*-adic elementary divisors of L(Paley(*q*)) which are equal to p^t is $\left(\frac{p+1}{2}\right)^t - 2$.

Examples

 $\mathcal{K}(\operatorname{Paley}(5^3)) \cong (\mathbb{Z}/31\mathbb{Z})^{62} \oplus (\mathbb{Z}/5\mathbb{Z})^{36} \oplus (\mathbb{Z}/25\mathbb{Z})^{36} \oplus (\mathbb{Z}/125\mathbb{Z})^{25}.$

$$\begin{split} \mathcal{K}(\operatorname{Paley}(5^4)) &\cong (\mathbb{Z}/156\mathbb{Z})^{312} \oplus (\mathbb{Z}/5\mathbb{Z})^{144} \oplus (\mathbb{Z}/25\mathbb{Z})^{176} \\ &\oplus (\mathbb{Z}/125\mathbb{Z})^{144} \oplus (\mathbb{Z}/625\mathbb{Z})^{79}. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

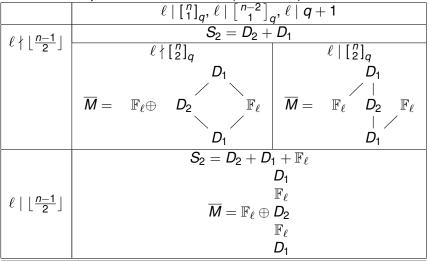
Lines in PG(n, q) (Ducey-S 2017)

 Γ = Grassmann graph or Skew lines graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lines in PG(n, q) (Ducey-S 2017)

 Γ = Grassmann graph or Skew lines graph. For *p*'-part: Cross characteristic permutation modules (G. James).



From eigenvalues, $L(\Gamma)$ has no *p*-elementary divisors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

From eigenvalues, $L(\Gamma)$ has no *p*-elementary divisors. For $A(\Gamma)$, we can see that only *k* is divisible by *p*, so $S(\Gamma)$ is cyclic of order p^t .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For skew lines graph, $S(\Gamma)$ and $K(\Gamma)$ have large *p*-parts.

(ロ) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Subspace character sums (D. Wan)

Structure of mod *p* permutation modules for GL(n,q) (Bardoe-S 2000)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Subspace character sums (D. Wan)

Structure of mod *p* permutation modules for GL(n,q) (Bardoe-S 2000)

p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).

(日) (日) (日) (日) (日) (日) (日)

Subspace character sums (D. Wan)

Structure of mod *p* permutation modules for GL(n,q) (Bardoe-S 2000)

p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).

(ロ) (同) (三) (三) (三) (○) (○)

Much of the difficulty was handled in earlier work (Brouwer-Ducey-S 2012) for the case n = 4.

Subspace character sums (D. Wan)

Structure of mod *p* permutation modules for GL(n,q) (Bardoe-S 2000)

p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).

Much of the difficulty was handled in earlier work (Brouwer-Ducey-S 2012) for the case n = 4.

Note $A(\Gamma) \equiv -L(\Gamma) \mod (p^{4t})$, so just consider $A(\Gamma)$.

Example: Skew lines in PG(3, 9)

3² 3⁵ 3⁶ 3⁸ 3⁴ Elem. Div. 3 1 Multiplicity 361 256 6025 202 256 361 1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Pantangi-S 2017) Uses: eigenvalue methods, structure of cross characteristric permutation modules (S-Tiep, 2005). The p-part is cyclic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $q = p^t$, *V* symplectic vector space of dimension 2m over \mathbb{F}_q

 $q = p^t$, *V* symplectic vector space of dimension 2m over \mathbb{F}_q $\Gamma = (\mathbb{P}^1(V), E)$ with $(\langle x \rangle, \langle y \rangle) \in E$ iff $\langle x \rangle \neq \langle y \rangle$ and $x \perp y$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $q = p^t$, *V* symplectic vector space of dimension 2m over \mathbb{F}_q $\Gamma = (\mathbb{P}^1(V), E)$ with $(\langle x \rangle, \langle y \rangle) \in E$ iff $\langle x \rangle \neq \langle y \rangle$ and $x \perp y$.

Γ is an

 $\operatorname{SRG}(\begin{bmatrix} 2m \\ 1 \end{bmatrix}_q, \ q\begin{bmatrix} m-1 \\ 1 \end{bmatrix}_q (1+q^{m-1}), \ \begin{bmatrix} 2m-2 \\ 1 \end{bmatrix}_q - 2, \ \begin{bmatrix} 2m-2 \\ 1 \end{bmatrix}_q).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $q = p^t$, *V* symplectic vector space of dimension 2m over \mathbb{F}_q $\Gamma = (\mathbb{P}^1(V), E)$ with $(\langle x \rangle, \langle y \rangle) \in E$ iff $\langle x \rangle \neq \langle y \rangle$ and $x \perp y$.

$$\begin{split} &\Gamma \text{ is an } \\ &\mathrm{SRG}(\begin{bmatrix} 2m \\ 1 \end{bmatrix}_q, \ q \begin{bmatrix} m-1 \\ 1 \end{bmatrix}_q (1+q^{m-1}), \ \begin{bmatrix} 2m-2 \\ 1 \end{bmatrix}_q - 2, \ \begin{bmatrix} 2m-2 \\ 1 \end{bmatrix}_q) \,. \\ &\mathrm{Spec}(A) = (k,r,s) = \\ &(q \begin{bmatrix} m-1 \\ 1 \end{bmatrix}_q (1+q^{m-1}), q^{m-1}-1, -(1+q^{m-1})) \text{ with } \\ &\mathrm{multiplicities} \\ &(1,f,g) = (1, \ \frac{q(q^m-1)(q^{m-1}+1)}{2(q-1)}, \ \frac{q(q^m+1)(q^{m-1}-1)}{2(q-1)}) \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $q = p^t$, *V* symplectic vector space of dimension 2m over \mathbb{F}_q $\Gamma = (\mathbb{P}^1(V), E)$ with $(\langle x \rangle, \langle y \rangle) \in E$ iff $\langle x \rangle \neq \langle y \rangle$ and $x \perp y$.

Γ is an SRG($\begin{bmatrix} 2m \\ 1 \end{bmatrix}_q$, $q\begin{bmatrix} m-1 \\ 1 \end{bmatrix}_q$ (1 + q^{m-1}), $\begin{bmatrix} 2m-2 \\ 1 \end{bmatrix}_q - 2$, $\begin{bmatrix} 2m-2 \\ 1 \end{bmatrix}_q$). Spec(A) = (k, r, s) = ($q\begin{bmatrix} m-1 \\ 1 \end{bmatrix}_q$ (1 + q^{m-1}), $q^{m-1} - 1$, -(1 + q^{m-1})) with multiplicities (1, f, g) = (1, $\frac{q(q^m-1)(q^{m-1}+1)}{2(q-1)}$, $\frac{q(q^m+1)(q^{m-1}-1)}{2(q-1)}$) ► $|S| = |det(A)| = |kr^f s^g|$ and $|K| = t^f u^g / v$ (by Kirchhoff's matrix-tree theorem.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Description of $S(\Gamma)$ for Symplectic polar graph

Theorem

Let $\ell \mid |S|$. Then

- (1) If ℓ is odd prime with $v_{\ell}(1 + q^{m-1}) = a > 0$, then $e_a(\ell) = g + 1$, $e_0(\ell) = f$ and $e_i(\ell) = 0$ otherwise.
- (2) If ℓ is an odd prime with $v_{\ell}({m-1 \brack 1}_q) = a$ and $v_{\ell}(q-1) = b$, we have

(i) If
$$a > 0$$
, $b > 0$, $e_{a+b}(\ell) = f$, $e_a(\ell) = 1$, $e_0(\ell) = g$ and $e_i(\ell) = 0$ for $i \neq 0, a + b, a$

(ii) If b = 0, $e_a(\ell) = f + 1$, $e_0(\ell) = g$ and $e_i(\ell) = 0$ for $i \neq 0$, a (iii) If a = 0, $e_b(\ell) = f$, $e_0(\ell) = g + 1$ and $e_i(\ell) = 0$ for $i \neq 0$, b (Theorem Cont'd)

(3) If
$$\ell \mid q$$
, $e_{v_{\ell}(q)}(\ell) = 1$, $e_0(q) = f + g$ and $e_i(\ell) = 0$ for $i \neq v_{\ell}(q)$.

- (4) If $\ell = 2$ and q is odd,
 - (i) If *m* is even, $e_a(2) = f g 1$, $e_{a+b}(2) = g + 1$, $e_0(2) = g + 1$ and $e_i(2) = 0$ for all other *i*'s, where $a = v_2(q-1)$ and $b = v_2(q^{m-1} + 1)$.
 - (ii) If *m* is odd, $e_{a+b+1}(2) = g+1$, $e_{a+b}(2) = f-g-1$, $e_a(2) = 1$, $e_0(2) = g$ and $e_i(2) = 0$ for all other *i*'s. Here, $v_2(\begin{bmatrix} m-1\\1 \end{bmatrix}_q) = a$, $v_2(q-1) = b$.

(日) (日) (日) (日) (日) (日) (日)

Γ is an SRG(66430, 7380, 818, 820). Eigenvalues (7380, 80, -82) with multiplicities (1, 33579, 32850).

$$S = \mathbb{Z}/9\mathbb{Z} imes (\mathbb{Z}/41\mathbb{Z})^{32581} imes (\mathbb{Z}/5\mathbb{Z})^{33580} imes (\mathbb{Z}/2\mathbb{Z}) imes (\mathbb{Z}/16\mathbb{Z})^{728}
onumber \ imes (\mathbb{Z}/32\mathbb{Z})^{32851}$$

$$\begin{split} \mathcal{K} &= (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/4\mathbb{Z})^{728} \times (\mathbb{Z}/8\mathbb{Z})^{32851} \times (\mathbb{Z}/41\mathbb{Z}) \times (\mathbb{Z}/91\mathbb{Z})^{32580} \\ &\times (\mathbb{Z}/25\mathbb{Z})^{33578} \times (\mathbb{Z}/5\mathbb{Z}) \times (\mathbb{Z}/73\mathbb{Z})^{33579} \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Thank you for your attention!