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Let A be an m × n matrix with integer entries.

A can be regarded as the relation matrix of an abelian
group S(A) = Zm/Col(A)

The cyclic decomposition of S(A) is given by the Smith
Normal Form of A: There exist unimodular P, Q such that
D = PAQ has nonzero entries d1,. . . dr only on the leading
diagonal, and di divides di+1.
Other diagonal forms also describe S(A).
Generalizes from Z to principal ideal domains.
For each prime p, can find S(A)p by working over a p-local
ring. Then the di are powers of p called the p-elementary
divisors.
Survey article on SNFs in combinatorics by R. Stanley
(JCTA 2016).
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Smith group and critical group

A(Γ), an adjacency matrix of a graph Γ.

L(Γ) = D(Γ)− A(Γ), Laplacian matrix.
The Smith normal forms of A(Γ) and L(Γ) are invariants of
Γ.
S(Γ) = S(A(Γ)) is called the Smith group of Γ

K (Γ) = Tor(S(L(Γ))) is called the critical group of Γ.
|K (Γ)| = number of spanning trees (Kirchhoff’s Matrix-tree
Theorem).
Origins and early work on K (Γ) include: Sandpile model
(Dhar), Chip-firing game (Biggs), Cycle Matroids (Vince).
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Strongly Regular Graphs

Definition
A strongly regular graph with parameters (v , k , λ, µ) is a
k -regular graph such that (i) any two adjacent vertices have λ
neighbors in common and (ii) any two nonadjacent vertices
have µ neighbors in common.

A has eigenvalues k , (mult. 1) r (mult. f ) , s (mult. g).
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S(Γ) and K (Γ) for some SRG families

I Wheel graphs (Biggs, 1990)

I Complete multipartite graphs
(Jacobson-Niedermaier-Reiner, 2003)

I Conference graphs with a squarefree number of vertices
(Lorenzini, 2008)

I Random Graphs (Wood, 2015)
I Paley graphs (Chandler-Xiang-S, (2015))
I Peisert graphs (S, (2016))
I Grassmann and skewness graphs of lines in PG(n − 1,q)

(Brouwer-Ducey-S,(2012); Ducey-S, (2017))
I Classical polar graphs (Pantangi-S, (2017))
I Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
I Van Lint-Schrijver cyclotomic SRGs (Pantangi, 2018)
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special char. p

p-adic character sumsp-modular group reps

general module theory

cross-char. `

DFT `-modular group reps

geometric vectors
SRG, eigenvalues



Permutation modules, filtrations

V = vertex set of Γ, G ≤ Aut(Γ)

Fix prime `, R = Z` (or suitable extension), residue field
F = R/`R.
A or L defines RG-module homomorphism

α : RV → RV

M = RV , M = F V , Mi = {m ∈ M | α(m) ∈ `iM}

M = M0 ⊇ M1 ⊇ · · · ⊇ Mr = Ker(α) ⊇ 0.

M = M0 ⊇ M1 ⊇ · · · ⊇ M r = Ker(α) ⊇ 0.
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ei = ei(α) := multiplicity of `i as an elementary divisor of α.
(e0 = rank(α)).

dim Ma = 1 +
∑

i≥a ei .

All quotients Ma/Ma+1 are FG-modules, so the number of
nonzero ei is at most the composition length of M as a
FG-module.
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Lemma
Let M, and α be as above. Let d be the `-adic valuation of the
product of the nonzero elementary divisors of α, counted with
multiplicities. Suppose that we have an increasing sequence of
indices 0 < a1 < a2 < · · · < ah and a corresponding sequence
of lower bounds b1 > b2 > · · · > bh satisfying the following
conditions.
(a) dimF Maj ≥ bj for j = 1,. . . , h.

(b)
∑h

j=1(bj − bj+1)aj = d, where we set bh+1 = dimF ker(φ).
Then the following hold.

(i) eaj (φ) = bj − bj+1 for j = 1,. . . , h.

(ii) e0(φ) = dimF M − b1.
(iii) ei(φ) = 0 for i /∈ {0,a1, . . . ,ah}.
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Paley graphs (Chandler-S-Xiang 2015)

Uses: DFT (Fq-action) to get the p′-part, F∗q-action Jacobi sums
and Transfer matrix method for p-part. The following gives the
p-part of K (Γ).

Theorem
Let q = pt be a prime power congruent to 1 modulo 4. Then the
number of p-adic elementary divisors of L(Paley(q)) which are
equal to pλ, 0 ≤ λ < t , is

f (t , λ) =

min{λ,t−λ}∑
i=0

t
t − i

(
t − i

i

)(
t − 2i
λ− i

)
(−p)i

(
p + 1

2

)t−2i

.

The number of p-adic elementary divisors of L(Paley(q)) which

are equal to pt is
(

p+1
2

)t
− 2.



Examples

K (Paley(53)) ∼= (Z/31Z)62⊕(Z/5Z)36⊕(Z/25Z)36⊕(Z/125Z)25.

K (Paley(54)) ∼= (Z/156Z)312 ⊕ (Z/5Z)144 ⊕ (Z/25Z)176

⊕ (Z/125Z)144 ⊕ (Z/625Z)79.



Lines in PG(n,q) (Ducey-S 2017)

Γ= Grassmann graph or Skew lines graph.

For p′-part: Cross
characteristic permutation modules (G. James).

` | [ n
1 ]q, ` |
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1

]
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Grassmann graph of lines

From eigenvalues, L(Γ) has no p-elementary divisors.

For A(Γ), we can see that only k is divisible by p, so S(Γ) is
cyclic of order pt .
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Skew lines graph

For skew lines graph, S(Γ) and K (Γ) have large p-parts.

In char p the number of composition factors of M grows
like nt , where q = pt .
Subspace character sums (D. Wan)
Structure of mod p permutation modules for GL(n,q)
(Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices
(Chandler-S-Xiang 2006).

I Much of the difficulty was handled in earlier work
(Brouwer-Ducey-S 2012) for the case n = 4.
Note A(Γ) ≡ −L(Γ) mod (p4t ), so just consider A(Γ).
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(Brouwer-Ducey-S 2012) for the case n = 4.
Note A(Γ) ≡ −L(Γ) mod (p4t ), so just consider A(Γ).
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Example: Skew lines in PG(3,9)

Elem. Div. 1 3 32 34 35 36 38

Multiplicity 361 256 6025 202 256 361 1



Polar graphs

(Pantangi-S 2017) Uses: eigenvalue methods, structure of
cross characteristric permutation modules (S-Tiep, 2005 ). The
p-part is cyclic.



Symplectic polar graph

q = pt , V symplectic vector space of dimension 2m over Fq

Γ = (P1(V ),E) with (< x >,< y >) ∈ E iff < x >6=< y >
and x ⊥ y .
Γ is an
SRG(

[2m
1

]
q, q

[m−1
1

]
q(1 + qm−1),

[2m−2
1

]
q − 2,

[2m−2
1

]
q) .

Spec(A) = (k , r , s) =
(q
[m−1

1

]
q(1 + qm−1),qm−1 − 1,−(1 + qm−1)) with

multiplicities
(1, f ,g) = (1, q(qm−1)(qm−1+1)

2(q−1) , q(qm+1)(qm−1−1)
2(q−1) )

I |S| = |det(A)| = |kr f sg | and |K | = t f ug/v (by Kirchhoff’s
matrix-tree theorem.)
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Description of S(Γ) for Symplectic polar graph

Theorem
Let ` | |S|. Then
(1) If ` is odd prime with v`(1 + qm−1) = a > 0, then

ea(`) = g + 1, e0(`) = f and ei(`) = 0 otherwise.

(2) If ` is an odd prime with v`(
[m−1

1

]
q) = a and v`(q − 1) = b,

we have
(i) If a > 0, b > 0, ea+b(`) = f , ea(`) = 1, e0(`) = g and

ei (`) = 0 for i 6= 0,a + b,a
(ii) If b = 0, ea(`) = f + 1, e0(`) = g and ei (`) = 0 for i 6= 0,a
(iii) If a = 0, eb(`) = f , e0(`) = g + 1 and ei (`) = 0 for i 6= 0,b



(Theorem Cont’d)
(3) If ` | q, ev`(q)(`) = 1, e0(q) = f + g and ei(`) = 0 for

i 6= v`(q).

(4) If ` = 2 and q is odd,
(i) If m is even, ea(2) = f − g − 1, ea+b(2) = g + 1,

e0(2) = g + 1 and ei (2) = 0 for all other i ′s, where
a = v2(q − 1) and b = v2(qm−1 + 1).

(ii) If m is odd, ea+b+1(2) = g + 1, ea+b(2) = f − g − 1,
ea(2) = 1, e0(2) = g and ei (2) = 0 for all other i ′s. Here,
v2(
[m−1

1

]
q) = a, v2(q − 1) = b.



Example: q = 9, m = 3

Γ is an SRG(66430,7380,818,820). Eigenvalues
(7380,80,−82) with multiplicities (1,33579,32850).

S = Z/9Z×(Z/41Z)32581×(Z/5Z)33580×(Z/2Z)×(Z/16Z)728

× (Z/32Z)32851

K = (Z/2Z)×(Z/4Z)728×(Z/8Z)32851×(Z/41Z)×(Z/91Z)32580

× (Z/25Z)33578 × (Z/5Z)× (Z/73Z)33579



Thank you for your attention!
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