Smith Normal Forms of Strongly Regular graphs

Peter Sin, U. of Florida

UD Discrete Math. Seminar, May 7th, 2018.

Smith normal forms

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

Collaborators

The coauthors for various parts of this talk are: Andries Brouwer, David Chandler, Josh Ducey, Venkata Raghu Tej Pantangi and Qing Xiang.

Smith normal forms associated with graphs

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

Let A be an $m \times n$ matrix with integer entries.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.
Other diagonal forms also describe $S(A)$.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.
Other diagonal forms also describe $S(A)$.
Generalizes from \mathbb{Z} to principal ideal domains.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.
Other diagonal forms also describe $S(A)$.
Generalizes from \mathbb{Z} to principal ideal domains.
For each prime p, can find $S(A)_{p}$ by working over a p-local ring. Then the d_{i} are powers of p called the p-elementary divisors.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.
Other diagonal forms also describe $S(A)$.
Generalizes from \mathbb{Z} to principal ideal domains.
For each prime p, can find $S(A)_{p}$ by working over a p-local ring. Then the d_{i} are powers of p called the p-elementary divisors.
Survey article on SNFs in combinatorics by R. Stanley (JCTA 2016).

Smith normal forms associated with graphs

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

Smith group and critical group

$A(\Gamma)$, an adjacency matrix of a graph Γ.

Smith group and critical group

$A(\Gamma)$, an adjacency matrix of a graph Γ.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.

Smith group and critical group

$A(\Gamma)$, an adjacency matrix of a graph Γ.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.
The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ.

Smith group and critical group

$A(\Gamma)$, an adjacency matrix of a graph Γ.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.
The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ.
$S(\Gamma)=S(A(\Gamma))$ is called the Smith group of Γ

Smith group and critical group

$A(\Gamma)$, an adjacency matrix of a graph Γ.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.
The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ.
$S(\Gamma)=S(A(\Gamma))$ is called the Smith group of Γ $K(\Gamma)=\operatorname{Tor}(S(L(\Gamma)))$ is called the critical group of Γ.

Smith group and critical group

$A(\Gamma)$, an adjacency matrix of a graph Γ.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.
The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ.
$S(\Gamma)=S(A(\Gamma))$ is called the Smith group of Γ $K(\Gamma)=\operatorname{Tor}(S(L(\Gamma)))$ is called the critical group of Γ.
$|K(\Gamma)|=$ number of spanning trees (Kirchhoff's Matrix-tree Theorem).

Smith group and critical group

$A(\Gamma)$, an adjacency matrix of a graph Γ.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.
The Smith normal forms of $A(\Gamma)$ and $L(\Gamma)$ are invariants of Γ.
$S(\Gamma)=S(A(\Gamma))$ is called the Smith group of Γ $K(\Gamma)=\operatorname{Tor}(S(L(\Gamma)))$ is called the critical group of Γ.
$|K(\Gamma)|=$ number of spanning trees (Kirchhoff's Matrix-tree Theorem).
Origins and early work on $K(\Gamma)$ include: Sandpile model (Dhar), Chip-firing game (Biggs), Cycle Matroids (Vince).

Smith normal forms associated with graphs

Smith normal form

Smith normal forms associated with graphs

Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

Strongly Regular Graphs

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a k-regular graph such that (i) any two adjacent vertices have λ neighbors in common and (ii) any two nonadjacent vertices have μ neighbors in common.

Strongly Regular Graphs

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a k-regular graph such that (i) any two adjacent vertices have λ neighbors in common and (ii) any two nonadjacent vertices have μ neighbors in common.
A has eigenvalues k, (mult. 1) r (mult. f), s (mult. g).

Smith normal forms associated with graphs

> Smith normal form

> Smith normal forms associated with graphs

> Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))
- Grassmann and skewness graphs of lines in $\operatorname{PG}(n-1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))
- Grassmann and skewness graphs of lines in $\operatorname{PG}(n-1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
- Classical polar graphs (Pantangi-S, (2017))

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))
- Grassmann and skewness graphs of lines in $\operatorname{PG}(n-1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
- Classical polar graphs (Pantangi-S, (2017))
- Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))

$S(\Gamma)$ and $K(\Gamma)$ for some SRG families

- Wheel graphs (Biggs, 1990)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner, 2003)
- Conference graphs with a squarefree number of vertices (Lorenzini, 2008)
- Random Graphs (Wood, 2015)
- Paley graphs (Chandler-Xiang-S, (2015))
- Peisert graphs (S, (2016))
- Grassmann and skewness graphs of lines in $\operatorname{PG}(n-1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
- Classical polar graphs (Pantangi-S, (2017))
- Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
- Van Lint-Schrijver cyclotomic SRGs (Pantangi, 2018)

Smith normal forms associated with graphs

> Smith normal form

> Smith normal forms associated with graphs

> Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

Permutation modules, filtrations

$V=$ vertex set of $\Gamma, G \leq \operatorname{Aut}(\Gamma)$

Permutation modules, filtrations

$V=$ vertex set of $\Gamma, G \leq \operatorname{Aut}(\Gamma)$
Fix prime $\ell, R=\mathbb{Z}_{\ell}$ (or suitable extension), residue field $F=R / \ell R$.

Permutation modules, filtrations

$V=$ vertex set of $\Gamma, G \leq \operatorname{Aut}(\Gamma)$
Fix prime $\ell, R=\mathbb{Z}_{\ell}$ (or suitable extension), residue field $F=R / \ell R$.
A or L defines $R G$-module homomorphism

$$
\begin{gathered}
\alpha: R^{V} \rightarrow R^{V} \\
M=R^{V}, \bar{M}=F^{V}, M_{i}=\left\{m \in M \mid \alpha(m) \in \ell^{i} M\right\}
\end{gathered}
$$

Permutation modules, filtrations

$$
V=\text { vertex set of } \Gamma, G \leq \operatorname{Aut}(\Gamma)
$$

Fix prime $\ell, R=\mathbb{Z}_{\ell}$ (or suitable extension), residue field $F=R / \ell R$.
A or L defines $R G$-module homomorphism

$$
\begin{gathered}
\alpha: R^{V} \rightarrow R^{V} \\
M=R^{V}, \bar{M}=F^{V}, M_{i}=\left\{m \in M \mid \alpha(m) \in \ell^{i} M\right\} \\
M=M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{r}=\operatorname{Ker}(\alpha) \supseteq 0 . \\
\bar{M}=\bar{M}_{0} \supseteq \bar{M}_{1} \supseteq \cdots \supseteq \bar{M}_{r}=\overline{\operatorname{Ker}(\alpha)} \supseteq 0 .
\end{gathered}
$$

$e_{i}=e_{i}(\alpha):=$ multiplicity of ℓ^{i} as an elementary divisor of α. ($e_{0}=\operatorname{rank}(\bar{\alpha})$).
$e_{i}=e_{i}(\alpha):=$ multiplicity of ℓ^{i} as an elementary divisor of α. $\left(e_{0}=\operatorname{rank}(\bar{\alpha})\right)$.
$\operatorname{dim} \bar{M}_{a}=1+\sum_{i \geq a} e_{i}$.
$e_{i}=e_{i}(\alpha):=$ multiplicity of ℓ^{i} as an elementary divisor of α. $\left(e_{0}=\operatorname{rank}(\bar{\alpha})\right)$.
$\operatorname{dim} \bar{M}_{a}=1+\sum_{i \geq a} e_{i}$.
All quotients $\bar{M}_{a} / \bar{M}_{a+1}$ are FG-modules, so the number of nonzero e_{i} is at most the composition length of \bar{M} as a FG-module.

Lemma

Let M, and α be as above. Let d be the ℓ-adic valuation of the product of the nonzero elementary divisors of α, counted with multiplicities. Suppose that we have an increasing sequence of indices $0<a_{1}<a_{2}<\cdots<a_{h}$ and a corresponding sequence of lower bounds $b_{1}>b_{2}>\cdots>b_{h}$ satisfying the following conditions.
(a) $\operatorname{dim}_{F} \bar{M}_{a_{j}} \geq b_{j}$ for $j=1, \ldots, h$.
(b) $\sum_{j=1}^{h}\left(b_{j}-b_{j+1}\right) a_{j}=d$, where we set $b_{h+1}=\operatorname{dim}_{F} \overline{\operatorname{ker}(\phi)}$.

Then the following hold.
(i) $e_{\mathrm{a}_{j}}(\phi)=b_{j}-b_{j+1}$ for $j=1, \ldots, h$.
(ii) $e_{0}(\phi)=\operatorname{dim}_{F} \bar{M}-b_{1}$.
(iii) $e_{i}(\phi)=0$ for $i \notin\left\{0, a_{1}, \ldots, a_{h}\right\}$.

Smith normal forms associated with graphs

> Smith normal form

> Smith normal forms associated with graphs

> Smith and Critical groups of some Strongly Regular graphs

Some results

Methods

Illustrative Results

Paley graphs (Chandler-S-Xiang 2015)

Uses: DFT (\mathbb{F}_{q}-action) to get the p^{\prime}-part, \mathbb{F}_{q}^{*}-action Jacobi sums and Transfer matrix method for p-part. The following gives the p-part of $K(\Gamma)$.
Theorem
Let $q=p^{t}$ be a prime power congruent to 1 modulo 4. Then the number of p-adic elementary divisors of $L(\operatorname{Paley}(q))$ which are equal to $p^{\lambda}, 0 \leq \lambda<t$, is

$$
f(t, \lambda)=\sum_{i=0}^{\min \{\lambda, t-\lambda\}} \frac{t}{t-i}\binom{t-i}{i}\binom{t-2 i}{\lambda-i}(-p)^{i}\left(\frac{p+1}{2}\right)^{t-2 i} .
$$

The number of p-adic elementary divisors of $L(\operatorname{Paley}(q))$ which are equal to p^{t} is $\left(\frac{p+1}{2}\right)^{t}-2$.

Examples

$K\left(\operatorname{Paley}\left(5^{3}\right)\right) \cong(\mathbb{Z} / 31 \mathbb{Z})^{62} \oplus(\mathbb{Z} / 5 \mathbb{Z})^{36} \oplus(\mathbb{Z} / 25 \mathbb{Z})^{36} \oplus(\mathbb{Z} / 125 \mathbb{Z})^{25}$.

$$
\begin{aligned}
K\left(\text { Paley }\left(5^{4}\right)\right) \cong(\mathbb{Z} / 156 \mathbb{Z})^{312} & \oplus(\mathbb{Z} / 5 \mathbb{Z})^{144} \oplus(\mathbb{Z} / 25 \mathbb{Z})^{176} \\
& \oplus(\mathbb{Z} / 125 \mathbb{Z})^{144} \oplus(\mathbb{Z} / 625 \mathbb{Z})^{79} .
\end{aligned}
$$

Lines in $\operatorname{PG}(n, q)$ (Ducey-S 2017)

$\Gamma=$ Grassmann graph or Skew lines graph.

Lines in $\operatorname{PG}(n, q)$ (Ducey-S 2017)

$\Gamma=$ Grassmann graph or Skew lines graph. For p^{\prime}-part: Cross characteristic permutation modules (G. James).

	$\ell\left\|\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}, \ell\right\|\left[\begin{array}{c}n-2 \\ 1\end{array}\right]_{q}$, $\ell \mid q+1$
$\left.\ell \nmid \frac{n-1}{2}\right\rfloor$	$S_{2}=D_{2}+D_{1}$	
$\ell \backslash\left\lfloor\frac{n-1}{2}\right\rfloor$	$\begin{array}{r} S_{2}=D_{2}+D_{1}+\mathbb{F}_{\ell} \\ D_{1} \\ \mathbb{F}_{\ell} \\ \bar{M}=\mathbb{F}_{\ell} \oplus D_{2} \\ \mathbb{F}_{\ell} \\ D_{1} \\ \hline \end{array}$	

Grassmann graph of lines

From eigenvalues, $L(\Gamma)$ has no p-elementary divisors.

Grassmann graph of lines

From eigenvalues, $L(\Gamma)$ has no p-elementary divisors.
For $A(\Gamma)$, we can see that only k is divisible by p, so $S(\Gamma)$ is cyclic of order p^{t}.

Skew lines graph

For skew lines graph, $S(\Gamma)$ and $K(\Gamma)$ have large p-parts.

Skew lines graph

For skew lines graph, $S(\Gamma)$ and $K(\Gamma)$ have large p-parts. In char p the number of composition factors of \bar{M} grows like n^{t}, where $q=p^{t}$.

Skew lines graph

For skew lines graph, $S(\Gamma)$ and $K(\Gamma)$ have large p-parts. In char p the number of composition factors of \bar{M} grows like n^{t}, where $q=p^{t}$.
Subspace character sums (D. Wan)

Skew lines graph

For skew lines graph, $S(\Gamma)$ and $K(\Gamma)$ have large p-parts. In char p the number of composition factors of \bar{M} grows like n^{t}, where $q=p^{t}$.
Subspace character sums (D. Wan)
Structure of mod p permutation modules for $G L(n, q)$ (Bardoe-S 2000)

Skew lines graph

For skew lines graph, $S(\Gamma)$ and $K(\Gamma)$ have large p-parts. In char p the number of composition factors of \bar{M} grows like n^{t}, where $q=p^{t}$.
Subspace character sums (D. Wan)
Structure of mod p permutation modules for $G L(n, q)$ (Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).

Skew lines graph

For skew lines graph, $S(\Gamma)$ and $K(\Gamma)$ have large p-parts. In char p the number of composition factors of \bar{M} grows like n^{t}, where $q=p^{t}$.
Subspace character sums (D. Wan)
Structure of mod p permutation modules for $G L(n, q)$ (Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).

- Much of the difficulty was handled in earlier work (Brouwer-Ducey-S 2012) for the case $n=4$.

Skew lines graph

For skew lines graph, $S(\Gamma)$ and $K(\Gamma)$ have large p-parts.
In char p the number of composition factors of \bar{M} grows like n^{t}, where $q=p^{t}$.
Subspace character sums (D. Wan)
Structure of mod p permutation modules for $G L(n, q)$ (Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).

- Much of the difficulty was handled in earlier work (Brouwer-Ducey-S 2012) for the case $n=4$.
Note $A(\Gamma) \equiv-L(\Gamma) \bmod \left(p^{4 t}\right)$, so just consider $A(\Gamma)$.

Example: Skew lines in PG $(3,9)$

Elem. Div.	1	3	3^{2}	3^{4}	3^{5}	3^{6}	3^{8}
Multiplicity	361	256	6025	202	256	361	1

Polar graphs

(Pantangi-S 2017) Uses: eigenvalue methods, structure of cross characteristric permutation modules (S-Tiep, 2005). The p-part is cyclic.

Symplectic polar graph

$q=p^{t}, V$ symplectic vector space of dimension $2 m$ over \mathbb{F}_{q}

Symplectic polar graph

$q=p^{t}, V$ symplectic vector space of dimension $2 m$ over \mathbb{F}_{q} $\Gamma=\left(\mathbb{P}^{1}(V), E\right)$ with $\left.\left.(<x\rangle,<y\right\rangle\right) \in E$ iff $\left.\langle x\rangle \neq<y\right\rangle$ and $x \perp y$.

Symplectic polar graph

$q=p^{t}, V$ symplectic vector space of dimension $2 m$ over \mathbb{F}_{q}
$\Gamma=\left(\mathbb{P}^{1}(V), E\right)$ with $\left.\left.(<x\rangle,<y\right\rangle\right) \in E$ iff $\left.\langle x\rangle \neq<y\right\rangle$ and $x \perp y$.
Γ is an
$\operatorname{SRG}\left(\left[\begin{array}{c}2 m \\ 1\end{array}\right]_{q}, q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right),\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}-2,\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}\right)$.

Symplectic polar graph

$q=p^{t}, V$ symplectic vector space of dimension $2 m$ over \mathbb{F}_{q}
$\Gamma=\left(\mathbb{P}^{1}(V), E\right)$ with $\left.\left.(<x\rangle,<y\right\rangle\right) \in E$ iff $\left.\langle x\rangle \neq<y\right\rangle$ and $x \perp y$.
Γ is an
$\operatorname{SRG}\left(\left[\begin{array}{c}2 m \\ 1\end{array}\right]_{q}, q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right),\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}-2,\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}\right)$.
$\operatorname{Spec}(A)=(k, r, s)=$
$\left(q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right), q^{m-1}-1,-\left(1+q^{m-1}\right)\right)$ with multiplicities

$$
(1, f, g)=\left(1, \frac{q\left(q^{m}-1\right)\left(q^{m-1}+1\right)}{2(q-1)}, \frac{q\left(q^{m}+1\right)\left(q^{m-1}-1\right)}{2(q-1)}\right)
$$

Symplectic polar graph

$q=p^{t}, V$ symplectic vector space of dimension $2 m$ over \mathbb{F}_{q}
$\Gamma=\left(\mathbb{P}^{1}(V), E\right)$ with $\left.\left.(<x\rangle,<y\right\rangle\right) \in E$ iff $\left.\langle x\rangle \neq<y\right\rangle$ and $x \perp y$.
Γ is an
$\operatorname{SRG}\left(\left[\begin{array}{c}2 m \\ 1\end{array}\right]_{q}, q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right),\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}-2,\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}\right)$.
$\operatorname{Spec}(A)=(k, r, s)=$
$\left(q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right), q^{m-1}-1,-\left(1+q^{m-1}\right)\right)$ with multiplicities

$$
(1, f, g)=\left(1, \frac{q\left(q^{m}-1\right)\left(q^{m-1}+1\right)}{2(q-1)}, \frac{q\left(q^{m}+1\right)\left(q^{m-1}-1\right)}{2(q-1)}\right)
$$

- $|S|=|\operatorname{det}(A)|=\left|k r^{f} s^{g}\right|$ and $|K|=t^{f} u^{g} / v$ (by Kirchhoff's matrix-tree theorem.)

Description of $S(\Gamma)$ for Symplectic polar graph

Theorem
Let $\ell||S|$. Then
(1) If ℓ is odd prime with $v_{\ell}\left(1+q^{m-1}\right)=a>0$, then $e_{a}(\ell)=g+1, e_{0}(\ell)=f$ and $e_{i}(\ell)=0$ otherwise.
(2) If ℓ is an odd prime with $v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a$ and $v_{\ell}(q-1)=b$, we have
(i) If $a>0, b>0, e_{a+b}(\ell)=f, e_{a}(\ell)=1, e_{0}(\ell)=g$ and $e_{i}(\ell)=0$ for $i \neq 0, a+b, a$
(ii) If $b=0, e_{a}(\ell)=f+1, e_{0}(\ell)=g$ and $e_{i}(\ell)=0$ for $i \neq 0, a$
(iii) If $a=0, e_{b}(\ell)=f, e_{0}(\ell)=g+1$ and $e_{i}(\ell)=0$ for $i \neq 0, b$
(Theorem Cont'd)
(3) If $\ell \mid q, e_{v_{\ell}(q)}(\ell)=1, e_{0}(q)=f+g$ and $e_{i}(\ell)=0$ for $i \neq v_{\ell}(q)$.
(4) If $\ell=2$ and q is odd,
(i) If m is even, $e_{a}(2)=f-g-1, e_{a+b}(2)=g+1$, $e_{0}(2)=g+1$ and $e_{i}(2)=0$ for all other $i \prime s$, where $a=v_{2}(q-1)$ and $b=v_{2}\left(q^{m-1}+1\right)$.
(ii) If m is odd, $e_{a+b+1}(2)=g+1, e_{a+b}(2)=f-g-1$, $e_{a}(2)=1, e_{0}(2)=g$ and $e_{i}(2)=0$ for all other i 's. Here, $v_{2}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a, v_{2}(q-1)=b$.

Example: $q=9, m=3$

Γ is an $\operatorname{SRG}(66430,7380,818,820)$. Eigenvalues (7380, 80, -82) with multiplicities (1, 33579, 32850).

$$
\begin{aligned}
S=\mathbb{Z} / 9 \mathbb{Z} \times(\mathbb{Z} / 41 \mathbb{Z})^{32581} \times(\mathbb{Z} / 5 \mathbb{Z})^{33580} & \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 16 \mathbb{Z})^{728} \\
& \times(\mathbb{Z} / 32 \mathbb{Z})^{32851}
\end{aligned}
$$

$$
\begin{aligned}
K=(\mathbb{Z} / 2 \mathbb{Z}) & \times(\mathbb{Z} / 4 \mathbb{Z})^{728} \times(\mathbb{Z} / 8 \mathbb{Z})^{32851} \times(\mathbb{Z} / 41 \mathbb{Z}) \times(\mathbb{Z} / 91 \mathbb{Z})^{32580} \\
& \times(\mathbb{Z} / 25 \mathbb{Z})^{33578} \times(\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 73 \mathbb{Z})^{33579}
\end{aligned}
$$

Thank you for your attention!

