Spreads, Ovoids, Opposites and Irreducible Group Representations

Peter Sin, U. of Florida

UD Discrete Math. Seminar, November 5th, 2018.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ovoids and Spreads

New bounds

Oppositeness and simple modules

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Association Schemes

Joint work with Ferdinand Ihringer and Qing Xiang

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Ovoids and Spreads

New bounds

Oppositeness and simple modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Association Schemes

By a polar space we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.

By a *polar space* we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

the maximal totally isotropic subspaces are called generators.

- By a *polar space* we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.
- the maximal totally isotropic subspaces are called generators.
- A partial ovoid is a set of points (1-spaces) that intersects every generator in at most one point. It is an ovoid if it meets every generator.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- By a *polar space* we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.
- the maximal totally isotropic subspaces are called generators.
- A partial ovoid is a set of points (1-spaces) that intersects every generator in at most one point. It is an ovoid if it meets every generator.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

A partial spread is a set generators where no two generators have a point in common. It is a spread if it covers every point.

Hermitian polar space

► The Hermitian polar space H(2d - 1, q²), for q = p^t a prime power, is given by a non-degenerate Hermitian form f of F^{2d}_{q²}. The generators of F^{2d}_{q²} have dimension d. A simple counting argument shows a partial spread of H(2d - 1, q²) has size at most q^{2d-1} + 1. (No spreads exist, as shown bt Segre (d = 2) and Thas (d > 2).)

(日) (日) (日) (日) (日) (日) (日)

- ► The Hermitian polar space H(2d 1, q²), for q = p^t a prime power, is given by a non-degenerate Hermitian form f of F^{2d}_{q²}. The generators of F^{2d}_{q²} have dimension d. A simple counting argument shows a partial spread of H(2d 1, q²) has size at most q^{2d-1} + 1. (No spreads exist, as shown bt Segre (d = 2) and Thas (d > 2).)
- When d is odd, Vanhove found a better upper bound of q^d + 1 for partial spreads, and both Aguglia and Luyckx showed that partial spreads of that size exist. So we are interested in the case when d is even.

A generalized n-gon of order (s, r) is a triple $\Gamma = (\mathcal{P}, \mathcal{L}, I)$, where elements of \mathcal{P} are called *points*, elements of \mathcal{L} are called *lines*, and $I \subseteq \mathcal{P} \times \mathcal{L}$ is an *incidence relation* between the points and lines, which satisfies the following axioms:

- 1. Each line is incident with s + 1 points.
- 2. Each point is incident with r + 1 lines.
- 3. The *incidence graph* has diameter *n* and girth 2*n*.

Here the incidence graph is the bipartite graph with $\mathcal{P} \cup \mathcal{L}$ as vertices, $p \in \mathcal{P}$ and $\ell \in \mathcal{L}$ are adjacent if $(p, \ell) \in I$.

(日) (日) (日) (日) (日) (日) (日)

A partial ovoid of a generalized *n*-gon Γ is a set of points pairwise at distance *n* in the incidence graph. An easy counting argument shows that the size of a partial ovoid of a generalized octagon of order (s, r) is at most $(sr)^2 + 1$. A partial ovoid of a generalized octagon of order (s, r) is called an *ovoid* if it has the maximum possible size $(sr)^2 + 1$. The Ree-Tits octagon $O(2^t)$ is a generalized octagon of order $(2^t, 4^t)$, so the size of an ovoid is $64^t + 1$. The only known thick finite generalized octagons are the *Ree-Tits octagons* $O(2^t)$, *t* odd, and their duals.

Partial spreads in polar spaces and partial ovoids in generalized polygons are examples of mutual oppositeness in the Tits building of a finite group of Lie type.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Partial spreads in polar spaces and partial ovoids in generalized polygons are examples of mutual oppositeness in the Tits building of a finite group of Lie type.
- An partial ovoid is a clique in the oppositenes graph on points. A *partial spread* in a polar space is a clique in the oppositeness graph on the set of generators.

(日) (日) (日) (日) (日) (日) (日)

Lemma

Let (X, \sim) be a graph. Let A be the adjacency matrix of X. Let Y be a clique of X. Then

$$|Y| \leq \begin{cases} \operatorname{rank}_p(A) + 1, & \text{if } p \text{ divides } |Y| - 1, \\ \operatorname{rank}_p(A), & \text{otherwise.} \end{cases}$$

Proof.

Let *J* be the all-ones matrix of size $|Y| \times |Y|$. Let *I* be the identity matrix of size $|Y| \times |Y|$. As *Y* is a clique, the submatrix *A'* of *A* indexed by *Y* is *J* – *I*. Hence, the submatrix has *p*-rank |Y| - 1 if *p* divides |Y| - 1, and it has *p*-rank |Y| if *p* does not divide |Y| - 1. As rank_{*p*}(*A'*) \leq rank_{*p*}(*A*), the assertion follows.

Ovoids and Spreads

New bounds

Oppositeness and simple modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Association Schemes

A new bound for partial ovoids in the *Ree-Tits* octagons

Theorem 1

The size of a partial ovoid of the Ree-Tits octagon $O(2^t)$, t odd, is at most $26^t + 1$. In particular, no ovoids exist.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Coolsaet and Van Maldeghem (2000) showed that in O(2) a partial ovoid has at most 27 points. They conjectured nonexistence of ovoids.

Theorem 2 Let $q = p^t$ with p prime and $t \ge 1$. Let Y be a partial spread of $H(2d - 1, q^2)$, where d is even. (a) If d = 2, then $|Y| \le \left(\frac{2p^3 + p}{3}\right)^t + 1$. (b) If d = 2 and p = 3, then $|Y| \le 19^t$. (c) If d > 2, then $|Y| \le \left(p^{2d-1} - p\frac{p^{2d-2}-1}{p+1}\right)^t + 1$.

For d = 2 the previous best known bound is (q³ + q + 2)/2 by DeBeule (2008). For fixed p (and let q = p^t), the bound in part (a) is o(q³), which is asymptotically better than the bound of (q³ + q + 2)/2.

For d > 2 the new bound improves all previous bounds if t > 1. **Ovoids and Spreads**

New bounds

Oppositeness and simple modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Association Schemes

 Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

 Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

 Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

Proposition (S, 2012)

Let G(q), $q = p^t$ a prime power, be a finite group of Lie type and let A(q) denote the oppositeness matrix for objects of a fixed self-opposite type in the building of G(q).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
- Proposition (S, 2012)

Let G(q), $q = p^t$ a prime power, be a finite group of Lie type and let A(q) denote the oppositeness matrix for objects of a fixed self-opposite type in the building of G(q).

1. The column space of A(q) over $\overline{\mathbf{F}}_q$ is a simple $\overline{\mathbf{F}}_q G(q)$ -module with highest weight $(q - 1)\omega$, where ω is a (explicity known) sum of fundamental weights.

(日) (日) (日) (日) (日) (日) (日)

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
- Proposition (S, 2012)

Let G(q), $q = p^t$ a prime power, be a finite group of Lie type and let A(q) denote the oppositeness matrix for objects of a fixed self-opposite type in the building of G(q).

- 1. The column space of A(q) over $\overline{\mathbf{F}}_q$ is a simple $\overline{\mathbf{F}}_q G(q)$ -module with highest weight $(q 1)\omega$, where ω is a (explicity known) sum of fundamental weights.
- 2. We have

$$rank_p(A(q)) = rank_p(A(p))^t$$
.

(日) (日) (日) (日) (日) (日) (日)

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
- Proposition (S, 2012)

Let G(q), $q = p^t$ a prime power, be a finite group of Lie type and let A(q) denote the oppositeness matrix for objects of a fixed self-opposite type in the building of G(q).

1. The column space of A(q) over $\overline{\mathbf{F}}_q$ is a simple $\overline{\mathbf{F}}_q G(q)$ -module with highest weight $(q - 1)\omega$, where ω is a (explicity known) sum of fundamental weights.

2. We have

$$rank_p(A(q)) = rank_p(A(p))^t$$
.

▶ This result reduces the *p*-rank problem to the case *q* = *p*.

Let q = 2^t, t odd. There is a Steinberg endomorphism τ of the algebraic group F₄ (over an algebraic closure of F₂) such that the Ree group G(q) is the subgroup of fixed points of τ, and the subgroup of fixed points of τ² is the Chevalley group F₄(q). The octagon O(2^t) is the building of G(q). When q = 2, we find that ω is one of the fundamental weights, and the corresponding simple module has dimension 26.

- Let q = 2^t, t odd. There is a Steinberg endomorphism τ of the algebraic group F₄ (over an algebraic closure of F₂) such that the Ree group G(q) is the subgroup of fixed points of τ, and the subgroup of fixed points of τ² is the Chevalley group F₄(q). The octagon O(2^t) is the building of G(q). When q = 2, we find that ω is one of the fundamental weights, and the corresponding simple module has dimension 26.
- For H(3, p²), we use its duality to Q[−](5, p), so the oppositeness matrix of lines of of H(3, p²) is the oppositeness matrix of points in Q[−](5, p). The dimension of the oppositeness module was calculated by Arslan-S.(2011) using algebraic group methods.

p-ranks from representation theory

Lemma

- (a) The 2-rank of the oppositeness matrix of O(2) is equal to 26.
- (b) The p-rank of the oppositeness matrix of lines of H(3, p^2) is $\frac{2p^3+p}{3}$.

(日) (日) (日) (日) (日) (日) (日)

Theorem 1 and the Theorem 2(a)-(b) now follow. For Theorem 2(c), the corresponding dimension of the oppositeness module is not known, and the *p*-rank of the oppositeness matrix is bounded using the representation theory of *association schemes*. **Ovoids and Spreads**

New bounds

Oppositeness and simple modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Association Schemes

Definition

Let *X* be a finite set of size *n*. An association scheme with d + 1 classes is a pair (X, \mathcal{R}) , where $\mathcal{R} = \{R_0, \dots, R_d\}$ is a set of symmetric binary relations on *X* with the following properties:

- (a) \mathcal{R} is a partition of $X \times X$.
- (b) R_0 is the identity relation.
- (c) There are numbers p_{ij}^k such that for $x, y \in X$ with xR_ky there are exactly p_{ij}^k elements z with xR_iz and zR_jy .

The relations R_i are described by their *adjacency matrices* $A_i \in \mathbb{C}^{n,n}$ defined by

$$(A_i)_{xy} = egin{cases} 1, & ext{if } xR_iy, \ 0, & ext{otherwise}. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 A_d is the oppositeness matrix.

idempotents

Denote the all-ones matrix by *J*. There exist idempotent Hermitian matrices $E_j \in \mathbb{C}^{n,n}$ with the properties

$$\sum_{j=0}^{d} E_{j} = I, \qquad E_{0} = n^{-1}J,$$
$$A_{j} = \sum_{i=0}^{d} P_{ij}E_{i}, \qquad E_{j} = \frac{1}{n}\sum_{i=0}^{d} Q_{ij}A_{i},$$

where $P = (P_{ij}) \in \mathbb{C}^{d+1,d+1}$ and $Q = (Q_{ij}) \in \mathbb{C}^{d+1,d+1}$ are the so-called eigenmatrices of the association scheme. The P_{ij} are the eigenvalues of A_i . The multiplicity f_i of P_{ij} satisfies

$$f_i = \operatorname{rank}(E_i) = \operatorname{tr}(E_i) = Q_{0i}.$$

Association scheme for $H(2d - 1, q^2)$

From $H(2d - 1, q^2)$ we get the following association scheme. Let *X* be the set of generators of $H(2d - 1, q^2)$ and two generators *a*, *b* are in relation R_i , where $0 \le i \le d$, if and only if *a* and *b* intersect in codimension *i*. For this scheme it is known that

$$f_d = q^{2d} \frac{q^{1-2d}+1}{q+1} = q^{2d-1} - q \frac{q^{2d-2}-1}{q+1},$$

and

$$Q_{id} = rac{P_{di}}{P_{0i}} Q_{0d} = rac{(-1)^i f_d}{q^i}$$

 E_d has rank

$$f_d = p^{2d-1} - p \frac{p^{2d-2} - 1}{p+1}$$

・ロト・個ト・モト・モト ヨー のへで

When *d* even the matrix $np^{d-1}E_d$ has only integer entries and we have $A_d \equiv np^{d-1}E_d \mod p$. Hence, rank_p(A_d) = rank_p($np^{d-1}E_d$) \leq rank($np^{d-1}E_d$) = rank(E_d) = $p^{2d-1} - p\frac{p^{2d-2}-1}{p+1}$.

(日) (日) (日) (日) (日) (日) (日)

Lemma

The *p*-rank of the oppositeness matrix of generators of $H(2d - 1, p^2)$, *d* even, is at most $p^{2d-1} - p \frac{p^{2d-2}-1}{p+1}$. Theorem 2(c) now follows.

Thank you for your attention!

References

- A. Aguglia, A. Cossidente, and G. L. Ebert. Complete spans on Hermitian varieties. In *Proceedings of the Conference on Finite Geometries (Oberwolfach, 2001)*, volume 29, pages 7–15, 2003.
- O. Arslan and P. Sin. Some simple modules for classical groups and *p*-ranks of orthogonal and Hermitian geometries. *J. Algebra*, 327:141–169, 2011.
- A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.
- K. Coolsaet. Some large partial ovoids of $Q^-(5, q)$, for odd q. *Des. Codes Cryptogr.*, 72(1):119–128, 2014.

References

- K. Coolsaet and H. Van Maldeghem. Some new upper bounds for the size of partial ovoids in slim generalized polygons and generalized hexagons of order (s, s³). J. Algebraic Combin., 12(2):107−113, 2000.
- J. De Beule, A. Klein, K. Metsch, and L. Storme. Partial ovoids and partial spreads in Hermitian polar spaces. *Des. Codes Cryptogr.*, 47(1-3):21–34, 2008.
- F. Ihringer. A new upper bound for constant distance codes of generators on hermitian polar spaces of type $H(2d 1, q^2)$. J. Geom., 105(3):457–464, 2014.
- D. Luyckx On maximal partial spreads of $H(2n + 1, q^2)$. Discrete Math., 308(2-3):375–379, 2008.

References

- J. Parkinson, B. Temmermans, and H. Van Maldeghem. The combinatorics of automorphisms and opposition in generalised polygons. *Ann. Comb.*, 19(3):567–619, 2015.
- P. Sin. Oppositeness in buildings and simple modules for finite groups of Lie type. In *Buildings, finite geometries and groups*, volume 10 of *Springer Proc. Math.*, pages 273–286. Springer, New York, 2012.
- J. A. Thas. Ovoids and spreads of finite classical polar spaces. *Geom. Dedicata*, 10(1-4):135–143, 1981.
- J. Tits. Moufang octagons and the Ree groups of type ${}^{2}F_{4}$. *Amer. J. Math.*, 105(2):539–594, 1983.

- H. Van Maldeghem. *Generalized Polygons*. Birkhäuser Basel, 1998.
- F. Vanhove. The maximum size of a partial spread in $H(4n+1, q^2)$ is $q^{2n+1} + 1$. *Electron. J. Combin.*, 16(1):Note 13, 6, 2009.
- F. Vanhove. *Incidence geometry from an algebraic graph theory point of view*. PhD thesis, Ghent University, 2011.
- F. D. Veldkamp. Representations of algebraic groups of type F₄ in characteristic 2. J. Algebra, 16:326–339, 1970.