Spreads, Ovoids, Opposites and Irreducible Group Representations

Peter Sin, U. of Florida

Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes
Collaborators

Joint work with Ferdinand Ihringer and Qing Xiang
Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes
By a *polar space* we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.
By a *polar space* we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.

The maximal totally isotropic subspaces are called *generators*.

A *partial ovoid* is a set of points (1-spaces) that intersects every generator in at most one point. It is an *ovoid* if it meets every generator.

A *partial spread* is a set of generators where no two generators have a point in common. It is a *spread* if it covers every point.
By a polar space we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.

the maximal totally isotropic subspaces are called generators.

A partial ovoid is a set of points (1-spaces) that intersects every generator in at most one point. It is an ovoid if it meets every generator.
Ovoids and spreads in polar spaces

- By a *polar space* we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.
- the maximal totally isotropic subspaces are called *generators*.
- A *partial ovoid* is a set of points (1-spaces) that intersects every generator in at most one point. It is an *ovoid* if it meets every generator.
- A *partial spread* is a set generators where no two generators have a point in common. It is a *spread* if it covers every point.
The *Hermitian polar space* \(H(2d - 1, q^2) \), for \(q = p^t \) a prime power, is given by a non-degenerate Hermitian form \(f \) of \(\mathbb{F}_{q^2}^{2d} \). The generators of \(\mathbb{F}_{q^2}^{2d} \) have dimension \(d \). A simple counting argument shows a partial spread of \(H(2d - 1, q^2) \) has size at most \(q^{2d-1} + 1 \). (No spreads exist, as shown by Segre \((d = 2) \) and Thas \((d > 2) \).)

When \(d \) is odd, Vanhove found a better upper bound of \(q^d + 1 \) for partial spreads, and both Aguglia and Luyckx showed that partial spreads of that size exist. So we are interested in the case when \(d \) is even.
The Hermitian polar space $H(2d - 1, q^2)$, for $q = p^t$ a prime power, is given by a non-degenerate Hermitian form f of $\mathbb{F}_{q^2}^{2d}$. The generators of $\mathbb{F}_{q^2}^{2d}$ have dimension d. A simple counting argument shows a partial spread of $H(2d - 1, q^2)$ has size at most $q^{2d-1} + 1$. (No spreads exist, as shown by Segre ($d = 2$) and Thas ($d > 2$).)

When d is odd, Vanhove found a better upper bound of $q^d + 1$ for partial spreads, and both Aguglia and Luyckx showed that partial spreads of that size exist. So we are interested in the case when d is even.
A generalized \textit{n-gon} of order \((s, r)\) is a triple \(\Gamma = (\mathcal{P}, \mathcal{L}, I)\), where elements of \(\mathcal{P}\) are called \textit{points}, elements of \(\mathcal{L}\) are called \textit{lines}, and \(I \subseteq \mathcal{P} \times \mathcal{L}\) is an \textit{incidence relation} between the points and lines, which satisfies the following axioms:

1. Each line is incident with \(s + 1\) points.
2. Each point is incident with \(r + 1\) lines.
3. The \textit{incidence graph} has diameter \(n\) and girth \(2n\).

Here the incidence graph is the bipartite graph with \(\mathcal{P} \cup \mathcal{L}\) as vertices, \(p \in \mathcal{P}\) and \(\ell \in \mathcal{L}\) are adjacent if \((p, \ell) \in I\).
A partial ovoid of a generalized n-gon Γ is a set of points pairwise at distance n in the incidence graph. An easy counting argument shows that the size of a partial ovoid of a generalized octagon of order (s, r) is at most $(sr)^2 + 1$. A partial ovoid of a generalized octagon of order (s, r) is called an ovoid if it has the maximum possible size $(sr)^2 + 1$. The Ree-Tits octagon $O(2^t)$ is a generalized octagon of order $(2^t, 4^t)$, so the size of an ovoid is $64^t + 1$. The only known thick finite generalized octagons are the Ree-Tits octagons $O(2^t)$, t odd, and their duals.
Oppositeness

- Partial spreads in polar spaces and partial ovoids in generalized polygons are examples of mutual *oppositeness* in the Tits building of a finite group of Lie type.
Partial spreads in polar spaces and partial ovoids in generalized polygons are examples of mutual *oppositeness* in the Tits building of a finite group of Lie type.

An partial ovoid is a clique in the oppositeness graph on points. A *partial spread* in a polar space is a clique in the oppositeness graph on the set of generators.
Lemma

Let (X, \sim) be a graph. Let A be the adjacency matrix of X. Let Y be a clique of X. Then

$$|Y| \leq \begin{cases} \text{rank}_p(A) + 1, & \text{if } p \text{ divides } |Y| - 1, \\ \text{rank}_p(A), & \text{otherwise}. \end{cases}$$

Proof.

Let J be the all-ones matrix of size $|Y| \times |Y|$. Let I be the identity matrix of size $|Y| \times |Y|$. As Y is a clique, the submatrix A' of A indexed by Y is $J - I$. Hence, the submatrix has p-rank $|Y| - 1$ if p divides $|Y| - 1$, and it has p-rank $|Y|$ if p does not divide $|Y| - 1$. As $\text{rank}_p(A') \leq \text{rank}_p(A)$, the assertion follows.
Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes
A new bound for partial ovoids in the *Ree-Tits octagons*

Theorem 1

The size of a partial ovoid of the Ree-Tits octagon $O(2^t)$, t odd, is at most $26^t + 1$. In particular, no ovoids exist.

Coolsaet and Van Maldeghem (2000) showed that in $O(2)$ a partial ovoid has at most 27 points. They conjectured nonexistence of ovoids.
Theorem 2
Let $q = p^t$ with p prime and $t \geq 1$. Let Y be a partial spread of $H(2d - 1, q^2)$, where d is even.

(a) If $d = 2$, then $|Y| \leq \left(\frac{2p^3+p}{3} \right)^t + 1$.

(b) If $d = 2$ and $p = 3$, then $|Y| \leq 19^t$.

(c) If $d > 2$, then $|Y| \leq \left(p^{2d-1} - p^{2d-2} \frac{p^2-1}{p+1} \right)^t + 1$.

- For $d = 2$ the previous best known bound is $(q^3 + q + 2)/2$ by DeBeule (2008). For fixed p (and let $q = p^t$), the bound in part (a) is $o(q^3)$, which is asymptotically better than the bound of $(q^3 + q + 2)/2$.

- For $d > 2$ the new bound improves all previous bounds if $t > 1$.
Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes
Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
Oppositeness modules

- Representation theory of groups of Lie type is used to get \(p \)-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

- **Proposition (S, 2012)**

 Let \(G(q) \), \(q = p^t \) a prime power, be a finite group of Lie type and let \(A(q) \) denote the oppositeness matrix for objects of a fixed self-opposite type in the building of \(G(q) \).
Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

- Proposition (S, 2012)

Let $G(q)$, $q = p^t$ a prime power, be a finite group of Lie type and let $A(q)$ denote the oppositeness matrix for objects of a fixed self-opposite type in the building of $G(q)$.

1. The column space of $A(q)$ over \mathbb{F}_q is a simple $\mathbb{F}_q G(q)$-module with highest weight $(q - 1)\omega$, where ω is a (explicity known) sum of fundamental weights.
Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

- **Proposition (S, 2012)**

 Let $G(q)$, $q = p^t$ a prime power, be a finite group of Lie type and let $A(q)$ denote the oppositeness matrix for objects of a fixed self-opposite type in the building of $G(q)$.

 1. The column space of $A(q)$ over \mathbb{F}_q is a simple $\mathbb{F}_q G(q)$-module with highest weight $(q - 1)\omega$, where ω is a (explicitly known) sum of fundamental weights.

 2. We have

 $$\text{rank}_p(A(q)) = \text{rank}_p(A(p))^t.$$
Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

- **Proposition (S, 2012)**

 Let $G(q)$, $q = p^t$ a prime power, be a finite group of Lie type and let $A(q)$ denote the oppositeness matrix for objects of a fixed self-opposite type in the building of $G(q)$.

 1. The column space of $A(q)$ over \overline{F}_q is a simple $\overline{F}_q G(q)$-module with highest weight $(q - 1)\omega$, where ω is a (explicitly known) sum of fundamental weights.

 2. We have

 $$\text{rank}_p(A(q)) = \text{rank}_p(A(p))^t.$$

- This result reduces the p-rank problem to the case $q = p$.
Let \(q = 2^t, \) t odd. There is a Steinberg endomorphism \(\tau \) of the algebraic group \(F_4 \) (over an algebraic closure of \(F_2 \)) such that the Ree group \(G(q) \) is the subgroup of fixed points of \(\tau \), and the subgroup of fixed points of \(\tau^2 \) is the Chevalley group \(F_4(q) \). The octagon \(O(2^t) \) is the building of \(G(q) \). When \(q = 2 \), we find that \(\omega \) is one of the fundamental weights, and the corresponding simple module has dimension 26.
Let $q = 2^t$, t odd. There is a Steinberg endomorphism τ of the algebraic group F_4 (over an algebraic closure of F_2) such that the Ree group $G(q)$ is the subgroup of fixed points of τ, and the subgroup of fixed points of τ^2 is the Chevalley group $F_4(q)$. The octagon $O(2^t)$ is the building of $G(q)$. When $q = 2$, we find that ω is one of the fundamental weights, and the corresponding simple module has dimension 26.

For $H(3, p^2)$, we use its duality to $Q^-(5, p)$, so the oppositeness matrix of lines of $H(3, p^2)$ is the oppositeness matrix of points in $Q^-(5, p)$. The dimension of the oppositeness module was calculated by Arslan-S. (2011) using algebraic group methods.
Lemma

(a) The 2-rank of the oppositeness matrix of $O(2)$ is equal to 26.

(b) The p-rank of the oppositeness matrix of lines of $H(3, p^2)$ is $\frac{2p^3 + p}{3}$.

Theorem 1 and the Theorem 2(a)-(b) now follow. For Theorem 2(c), the corresponding dimension of the oppositeness module is not known, and the p-rank of the oppositeness matrix is bounded using the representation theory of association schemes.
Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes
Definition
Let X be a finite set of size n. An association scheme with $d + 1$ classes is a pair (X, \mathcal{R}), where $\mathcal{R} = \{R_0, \ldots, R_d\}$ is a set of symmetric binary relations on X with the following properties:

(a) \mathcal{R} is a partition of $X \times X$.

(b) R_0 is the identity relation.

(c) There are numbers p_{ij}^k such that for $x, y \in X$ with xR_ky there are exactly p_{ij}^k elements z with $xR_i z$ and $zR_j y$.

The relations R_i are described by their *adjacency matrices* $A_i \in \mathbb{C}^{n,n}$ defined by

$$(A_i)_{xy} = \begin{cases} 1, & \text{if } xR_iy, \\ 0, & \text{otherwise}. \end{cases}$$

A_d is the oppositeness matrix.
Denote the all-ones matrix by J. There exist idempotent Hermitian matrices $E_j \in \mathbb{C}^{n,n}$ with the properties

$$
\sum_{j=0}^{d} E_j = I, \quad E_0 = n^{-1}J,
$$

$$
A_j = \sum_{i=0}^{d} P_{ij} E_i, \quad E_j = \frac{1}{n} \sum_{i=0}^{d} Q_{ij} A_i,
$$

where $P = (P_{ij}) \in \mathbb{C}^{d+1,d+1}$ and $Q = (Q_{ij}) \in \mathbb{C}^{d+1,d+1}$ are the so-called eigenmatrices of the association scheme. The P_{ij} are the eigenvalues of A_j. The multiplicity f_i of P_{ij} satisfies

$$
f_i = \text{rank}(E_i) = \text{tr}(E_i) = Q_{0i}.
$$
Association scheme for $H(2d - 1, q^2)$

From $H(2d - 1, q^2)$ we get the following association scheme. Let X be the set of generators of $H(2d - 1, q^2)$ and two generators a, b are in relation R_i, where $0 \leq i \leq d$, if and only if a and b intersect in codimension i. For this scheme it is known that

$$f_d = q^{2d} \frac{q^{1-2d} + 1}{q + 1} = q^{2d-1} - q \frac{q^{2d-2} - 1}{q + 1},$$

and

$$Q_{id} = \frac{P_{di}}{P_{0i}} Q_{0d} = \frac{(-1)^i f_d}{q^i}.$$

E_d has rank

$$f_d = p^{2d-1} - p \frac{p^{2d-2} - 1}{p + 1}.$$
When d even the matrix $np^{d-1}E_d$ has only integer entries and we have $A_d \equiv np^{d-1}E_d \mod p$. Hence,
\[\text{rank}_p(A_d) = \text{rank}_p(np^{d-1}E_d) \leq \text{rank}(np^{d-1}E_d) = \text{rank}(E_d) = p^{2d-1} - p^{p^{2d-2}-1} \frac{1}{p+1}. \]

Lemma

The p-rank of the oppositeness matrix of generators of $H(2d - 1, p^2)$, d even, is at most $p^{2d-1} - p^{p^{2d-2}-1} \frac{1}{p+1}$. Theorem 2(c) now follows.
Thank you for your attention!

References

