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Ovoids and spreads in polar spaces

I By a polar space we mean a finite vector space equipped
with a non-degenerate alternating bilinear form, quadratic
form or hermitian form.

I the maximal totally isotropic subspaces are called
generators.

I A partial ovoid is a set of points (1-spaces) that intersects
every generator in at most one point. It is an ovoid if it
meets every generator.

I A partial spread is a set generators where no two
generators have a point in common. It is a spread if it
covers every point.
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Hermitian polar space

I The Hermitian polar space H(2d − 1,q2), for q = pt a
prime power, is given by a non-degenerate Hermitian form
f of F2d

q2 . The generators of F2d
q2 have dimension d . A

simple counting argument shows a partial spread of
H(2d − 1,q2) has size at most q2d−1 + 1. (No spreads
exist, as shown bt Segre (d = 2) and Thas (d > 2).)

I When d is odd, Vanhove found a better upper bound of
qd + 1 for partial spreads, and both Aguglia and Luyckx
showed that partial spreads of that size exist. So we are
interested in the case when d is even.
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Ovoids in Generalized Polygons

A generalized n-gon of order (s, r) is a triple Γ = (P,L, I),
where elements of P are called points, elements of L are called
lines, and I ⊆ P× L is an incidence relation between the points
and lines, which satisfies the following axioms:

1. Each line is incident with s + 1 points.
2. Each point is incident with r + 1 lines.
3. The incidence graph has diameter n and girth 2n.

Here the incidence graph is the bipartite graph with P ∪ L as
vertices, p ∈ P and ` ∈ L are adjacent if (p, `) ∈ I.



A partial ovoid of a generalized n-gon Γ is a set of points
pairwise at distance n in the incidence graph. An easy counting
argument shows that the size of a partial ovoid of a generalized
octagon of order (s, r) is at most (sr)2 + 1. A partial ovoid of a
generalized octagon of order (s, r) is called an ovoid if it has the
maximum possible size (sr)2 + 1. The Ree-Tits octagon O(2t )
is a generalized octagon of order (2t ,4t ), so the size of an ovoid
is 64t + 1. The only known thick finite generalized octagons are
the Ree-Tits octagons O(2t ), t odd, and their duals.



Oppositeness

I Partial spreads in polar spaces and partial ovoids in
generalized polygons are examples of mutual
oppositeness in the Tits building of a finite group of Lie
type.

I An partial ovoid is a clique in the oppositenes graph on
points. A partial spread in a polar space is a clique in the
oppositeness graph on the set of generators.



Oppositeness

I Partial spreads in polar spaces and partial ovoids in
generalized polygons are examples of mutual
oppositeness in the Tits building of a finite group of Lie
type.

I An partial ovoid is a clique in the oppositenes graph on
points. A partial spread in a polar space is a clique in the
oppositeness graph on the set of generators.



Lemma
Let (X ,∼) be a graph. Let A be the adjacency matrix of X . Let
Y be a clique of X . Then

|Y | ≤

{
rankp(A) + 1, if p divides |Y | − 1,
rankp(A), otherwise.

Proof.
Let J be the all-ones matrix of size |Y | × |Y |. Let I be the
identity matrix of size |Y | × |Y |. As Y is a clique, the submatrix
A′ of A indexed by Y is J − I. Hence, the submatrix has p-rank
|Y | − 1 if p divides |Y | − 1, and it has p-rank |Y | if p does not
divide |Y | − 1. As rankp(A′) ≤ rankp(A), the assertion
follows.
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A new bound for partial ovoids in the Ree-Tits
octagons

.

Theorem 1
The size of a partial ovoid of the Ree-Tits octagon O(2t ), t odd,
is at most 26t + 1. In particular, no ovoids exist.
Coolsaet and Van Maldeghem (2000) showed that in O(2) a
partial ovoid has at most 27 points. They conjectured
nonexistence of ovoids.



A new bound for partial spreads in Hermitian spaces

Theorem 2
Let q = pt with p prime and t ≥ 1. Let Y be a partial spread of
H(2d − 1,q2), where d is even.

(a) If d = 2, then |Y | ≤
(

2p3+p
3

)t
+ 1.

(b) If d = 2 and p = 3, then |Y | ≤ 19t .

(c) If d > 2, then |Y | ≤
(

p2d−1 − p p2d−2−1
p+1

)t
+ 1.

I For d = 2 the previous best known bound is (q3 + q + 2)/2
by DeBeule (2008). For fixed p (and let q = pt ), the bound
in part (a) is o(q3), which is asymptotically better than the
bound of (q3 + q + 2)/2.

I For d > 2 the new bound improves all previous bounds if
t > 1.
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Oppositeness modules

I Representation theory of groups of Lie type is used to get
p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

I Proposition (S, 2012)
Let G(q), q = pt a prime power, be a finite group of Lie type
and let A(q) denote the oppositeness matrix for objects of a
fixed self-opposite type in the building of G(q).

1. The column space of A(q) over Fq is a simple
FqG(q)-module with highest weight (q − 1)ω, where ω is a
(explicity known) sum of fundamental weights.

2. We have

rankp(A(q)) = rankp(A(p))t .

I This result reduces the p-rank problem to the case q = p.
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I Let q = 2t , t odd. There is a Steinberg endomorphism τ of
the algebraic group F4 (over an algebraic closure of F2)
such that the Ree group G(q) is the subgroup of fixed
points of τ , and the subgroup of fixed points of τ2 is the
Chevalley group F4(q). The octagon O(2t ) is the building
of G(q). When q = 2, we find that ω is one of the
fundamental weights, and the corresponding simple
module has dimension 26.

I For H(3,p2), we use its duality to Q−(5,p), so the
oppositeness matrix of lines of of H(3,p2) is the
oppositeness matrix of points in Q−(5,p). The dimension
of the oppositeness module was calculated by
Arslan-S.(2011) using algebraic group methods.
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p-ranks from representation theory

Lemma

(a) The 2-rank of the oppositeness matrix of O(2) is equal to
26.

(b) The p-rank of the oppositeness matrix of lines of H(3,p2)

is 2p3+p
3 .

Theorem 1 and the Theorem 2(a)-(b) now follow. For
Theorem 2(c), the corresponding dimension of the
oppositeness module is not known, and the p-rank of the
oppositeness matrix is bounded using the representation
theory of association schemes.
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Definition
Let X be a finite set of size n. An association scheme with d + 1
classes is a pair (X ,R), where R = {R0, . . . ,Rd} is a set of
symmetric binary relations on X with the following properties:
(a) R is a partition of X × X .
(b) R0 is the identity relation.
(c) There are numbers pk

ij such that for x , y ∈ X with xRky
there are exactly pk

ij elements z with xRiz and zRjy .



The relations Ri are described by their adjacency matrices
Ai ∈ Cn,n defined by

(Ai)xy =

{
1, if xRiy ,
0, otherwise.

Ad is the oppositeness matrix.



idempotents

Denote the all-ones matrix by J. There exist idempotent
Hermitian matrices Ej ∈ Cn,n with the properties

d∑
j=0

Ej = I, E0 = n−1J,

Aj =
d∑

i=0

PijEi , Ej =
1
n

d∑
i=0

QijAi ,

where P = (Pij) ∈ Cd+1,d+1 and Q = (Qij) ∈ Cd+1,d+1 are the
so-called eigenmatrices of the association scheme. The Pij are
the eigenvalues of Aj . The multiplicity fi of Pij satisfies

fi = rank(Ei) = tr(Ei) = Q0i .



Association scheme for H(2d − 1,q2)

From H(2d − 1,q2) we get the following association scheme.
Let X be the set of generators of H(2d − 1,q2) and two
generators a,b are in relation Ri , where 0 ≤ i ≤ d , if and only if
a and b intersect in codimension i . For this scheme it is known
that

fd = q2d q1−2d + 1
q + 1

= q2d−1 − q
q2d−2 − 1

q + 1
,

and

Qid =
Pdi

P0i
Q0d =

(−1)i fd
qi

Ed has rank

fd = p2d−1 − p
p2d−2 − 1

p + 1
.



When d even the matrix npd−1Ed has only integer entries and
we have Ad ≡ npd−1Ed mod p. Hence,
rankp(Ad ) = rankp(npd−1Ed ) ≤ rank(npd−1Ed ) = rank(Ed ) =

p2d−1 − p p2d−2−1
p+1 .

Lemma
The p-rank of the oppositeness matrix of generators of
H(2d − 1,p2), d even, is at most p2d−1 − p p2d−2−1

p+1 .
Theorem 2(c) now follows.



Thank you for your attention!
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