Spreads, Ovoids, Opposites and Irreducible Group Representations

Peter Sin, U. of Florida

UD Discrete Math. Seminar, November 5th, 2018.

Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes

Collaborators

Joint work with Ferdinand Ihringer and Qing Xiang

Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes

Ovoids and spreads in polar spaces

- By a polar space we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.

Ovoids and spreads in polar spaces

- By a polar space we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.
- the maximal totally isotropic subspaces are called generators.

Ovoids and spreads in polar spaces

- By a polar space we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.
- the maximal totally isotropic subspaces are called generators.
- A partial ovoid is a set of points (1-spaces) that intersects every generator in at most one point. It is an ovoid if it meets every generator.

Ovoids and spreads in polar spaces

- By a polar space we mean a finite vector space equipped with a non-degenerate alternating bilinear form, quadratic form or hermitian form.
- the maximal totally isotropic subspaces are called generators.
- A partial ovoid is a set of points (1-spaces) that intersects every generator in at most one point. It is an ovoid if it meets every generator.
- A partial spread is a set generators where no two generators have a point in common. It is a spread if it covers every point.

Hermitian polar space

- The Hermitian polar space $\mathrm{H}\left(2 d-1, q^{2}\right)$, for $q=p^{t}$ a prime power, is given by a non-degenerate Hermitian form f of $\mathbf{F}_{q^{2}}^{2 d}$. The generators of $\mathbf{F}_{q^{2}}^{2 d}$ have dimension d. A simple counting argument shows a partial spread of $\mathrm{H}\left(2 d-1, q^{2}\right)$ has size at most $q^{2 d-1}+1$. (No spreads exist, as shown bt Segre $(d=2)$ and Thas $(d>2)$.)

Hermitian polar space

- The Hermitian polar space $\mathrm{H}\left(2 d-1, q^{2}\right)$, for $q=p^{t}$ a prime power, is given by a non-degenerate Hermitian form f of $\mathbf{F}_{q^{2}}^{2 d}$. The generators of $\mathbf{F}_{q^{2}}^{2 d}$ have dimension d. A simple counting argument shows a partial spread of $\mathrm{H}\left(2 d-1, q^{2}\right)$ has size at most $q^{2 d-1}+1$. (No spreads exist, as shown bt Segre $(d=2)$ and Thas $(d>2)$.)
- When d is odd, Vanhove found a better upper bound of $q^{d}+1$ for partial spreads, and both Aguglia and Luyckx showed that partial spreads of that size exist. So we are interested in the case when d is even.

Ovoids in Generalized Polygons

A generalized n-gon of order (s, r) is a triple $\Gamma=(\mathcal{P}, \mathcal{L}, \mathrm{I})$, where elements of \mathcal{P} are called points, elements of \mathcal{L} are called lines, and $I \subseteq \mathcal{P} \times \mathcal{L}$ is an incidence relation between the points and lines, which satisfies the following axioms:

1. Each line is incident with $s+1$ points.
2. Each point is incident with $r+1$ lines.
3. The incidence graph has diameter n and girth $2 n$.

Here the incidence graph is the bipartite graph with $\mathcal{P} \cup \mathcal{L}$ as vertices, $p \in \mathcal{P}$ and $\ell \in \mathcal{L}$ are adjacent if $(p, \ell) \in \mathrm{I}$.

A partial ovoid of a generalized n-gon Γ is a set of points pairwise at distance n in the incidence graph. An easy counting argument shows that the size of a partial ovoid of a generalized octagon of order (s, r) is at most $(s r)^{2}+1$. A partial ovoid of a generalized octagon of order (s, r) is called an ovoid if it has the maximum possible size $(s r)^{2}+1$. The Ree-Tits octagon $\mathrm{O}\left(2^{t}\right)$ is a generalized octagon of order $\left(2^{t}, 4^{t}\right)$, so the size of an ovoid is $64^{t}+1$. The only known thick finite generalized octagons are the Ree-Tits octagons $\mathrm{O}\left(2^{t}\right), t$ odd, and their duals.

Oppositeness

- Partial spreads in polar spaces and partial ovoids in generalized polygons are examples of mutual oppositeness in the Tits building of a finite group of Lie type.

Oppositeness

- Partial spreads in polar spaces and partial ovoids in generalized polygons are examples of mutual oppositeness in the Tits building of a finite group of Lie type.
- An partial ovoid is a clique in the oppositenes graph on points. A partial spread in a polar space is a clique in the oppositeness graph on the set of generators.

Lemma

Let (X, \sim) be a graph. Let A be the adjacency matrix of X. Let Y be a clique of X. Then

$$
|Y| \leq \begin{cases}\operatorname{rank}_{p}(A)+1, & \text { if } p \text { divides }|Y|-1, \\ \operatorname{rank}_{p}(A), & \text { otherwise. }\end{cases}
$$

Proof.

Let J be the all-ones matrix of size $|Y| \times|Y|$. Let / be the identity matrix of size $|Y| \times|Y|$. As Y is a clique, the submatrix A^{\prime} of A indexed by Y is $J-I$. Hence, the submatrix has p-rank $|Y|-1$ if p divides $|Y|-1$, and it has p-rank $|Y|$ if p does not divide $|Y|-1$. As $\operatorname{rank}_{p}\left(A^{\prime}\right) \leq \operatorname{rank}_{p}(A)$, the assertion follows.

Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes

A new bound for partial ovoids in the Ree-Tits octagons

Theorem 1
The size of a partial ovoid of the Ree-Tits octagon $\mathrm{O}\left(2^{t}\right), t$ odd, is at most $26^{t}+1$. In particular, no ovoids exist.
Coolsaet and Van Maldeghem (2000) showed that in O(2) a partial ovoid has at most 27 points. They conjectured nonexistence of ovoids.

A new bound for partial spreads in Hermitian spaces

Theorem 2
Let $q=p^{t}$ with p prime and $t \geq 1$. Let Y be a partial spread of $\mathrm{H}\left(2 d-1, q^{2}\right)$, where d is even.
(a) If $d=2$, then $|Y| \leq\left(\frac{2 p^{3}+p}{3}\right)^{t}+1$.
(b) If $d=2$ and $p=3$, then $|Y| \leq 19^{t}$.
(c) If $d>2$, then $|Y| \leq\left(p^{2 d-1}-p^{\frac{p^{2 d-2}-1}{p+1}}\right)^{t}+1$.

- For $d=2$ the previous best known bound is $\left(q^{3}+q+2\right) / 2$ by DeBeule (2008). For fixed p (and let $q=p^{t}$), the bound in part (a) is $o\left(q^{3}\right)$, which is asymptotically better than the bound of $\left(q^{3}+q+2\right) / 2$.
- For $d>2$ the new bound improves all previous bounds if $t>1$.

Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes

Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).

Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
- Proposition (S, 2012)

Let $G(q), q=p^{t}$ a prime power, be a finite group of Lie type and let $A(q)$ denote the oppositeness matrix for objects of a fixed self-opposite type in the building of $G(q)$.

Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
- Proposition (S, 2012)

Let $G(q), q=p^{t}$ a prime power, be a finite group of Lie type and let $A(q)$ denote the oppositeness matrix for objects of a fixed self-opposite type in the building of $G(q)$.

1. The column space of $A(q)$ over $\overline{\mathbf{F}}_{q}$ is a simple $\bar{F}_{q} G(q)$-module with highest weight $(q-1) \omega$, where ω is a (explicity known) sum of fundamental weights.

Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
- Proposition (S, 2012)

Let $G(q), q=p^{t}$ a prime power, be a finite group of Lie type and let $A(q)$ denote the oppositeness matrix for objects of a fixed self-opposite type in the building of $G(q)$.

1. The column space of $A(q)$ over $\overline{\mathbf{F}}_{q}$ is a simple $\bar{F}_{q} G(q)$-module with highest weight $(q-1) \omega$, where ω is a (explicity known) sum of fundamental weights.
2. We have

$$
\operatorname{rank}_{p}(A(q))=\operatorname{rank}_{p}(A(p))^{t}
$$

Oppositeness modules

- Representation theory of groups of Lie type is used to get p-ranks. (Carter-Lusztig (1976), Steinberg (1963)).
- Proposition (S, 2012)

Let $G(q), q=p^{t}$ a prime power, be a finite group of Lie type and let $A(q)$ denote the oppositeness matrix for objects of a fixed self-opposite type in the building of $G(q)$.

1. The column space of $A(q)$ over $\overline{\mathbf{F}}_{q}$ is a simple $\bar{F}_{q} G(q)$-module with highest weight $(q-1) \omega$, where ω is a (explicity known) sum of fundamental weights.
2. We have

$$
\operatorname{rank}_{p}(A(q))=\operatorname{rank}_{p}(A(p))^{t}
$$

- This result reduces the p-rank problem to the case $q=p$.
- Let $q=2^{t}, t$ odd. There is a Steinberg endomorphism τ of the algebraic group F_{4} (over an algebraic closure of F_{2}) such that the Ree group $G(q)$ is the subgroup of fixed points of τ, and the subgroup of fixed points of τ^{2} is the Chevalley group $\mathrm{F}_{4}(q)$. The octagon $\mathrm{O}\left(2^{t}\right)$ is the building of $G(q)$. When $q=2$, we find that ω is one of the fundamental weights, and the corresponding simple module has dimension 26.
- Let $q=2^{t}, t$ odd. There is a Steinberg endomorphism τ of the algebraic group F_{4} (over an algebraic closure of F_{2}) such that the Ree group $G(q)$ is the subgroup of fixed points of τ, and the subgroup of fixed points of τ^{2} is the Chevalley group $\mathrm{F}_{4}(q)$. The octagon $\mathrm{O}\left(2^{t}\right)$ is the building of $G(q)$. When $q=2$, we find that ω is one of the fundamental weights, and the corresponding simple module has dimension 26.
- For $\mathrm{H}\left(3, p^{2}\right)$, we use its duality to $\mathrm{Q}^{-}(5, p)$, so the oppositeness matrix of lines of of $\mathrm{H}\left(3, p^{2}\right)$ is the oppositeness matrix of points in $\mathrm{Q}^{-}(5, p)$. The dimension of the oppositeness module was calculated by Arslan-S.(2011) using algebraic group methods.

p-ranks from representation theory

Lemma

(a) The 2-rank of the oppositeness matrix of $\mathrm{O}(2)$ is equal to 26.
(b) The p-rank of the oppositeness matrix of lines of $\mathrm{H}\left(3, p^{2}\right)$ is $\frac{2 p^{3}+p}{3}$.

Theorem 1 and the Theorem 2(a)-(b) now follow. For Theorem 2(c), the corresponding dimension of the oppositeness module is not known, and the p-rank of the oppositeness matrix is bounded using the representation theory of association schemes.

Ovoids and Spreads

New bounds

Oppositeness and simple modules

Association Schemes

Definition

Let X be a finite set of size n. An association scheme with $d+1$ classes is a pair (X, \mathcal{R}), where $\mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}$ is a set of symmetric binary relations on X with the following properties:
(a) \mathcal{R} is a partition of $X \times X$.
(b) R_{0} is the identity relation.
(c) There are numbers $p_{i j}^{k}$ such that for $x, y \in X$ with $x R_{k} y$ there are exactly $p_{i j}^{k}$ elements z with $x R_{i} z$ and $z R_{j} y$.

The relations R_{i} are described by their adjacency matrices $A_{i} \in \mathbb{C}^{n, n}$ defined by

$$
\left(A_{i}\right)_{x y}= \begin{cases}1, & \text { if } x R_{i} y \\ 0, & \text { otherwise }\end{cases}
$$

A_{d} is the oppositeness matrix.

idempotents

Denote the all-ones matrix by J. There exist idempotent Hermitian matrices $E_{j} \in \mathbb{C}^{n, n}$ with the properties

$$
\begin{array}{ll}
\sum_{j=0}^{d} E_{j}=I, & E_{0}=n^{-1} J \\
A_{j}=\sum_{i=0}^{d} P_{i j} E_{i}, & E_{j}=\frac{1}{n} \sum_{i=0}^{d} Q_{i j} A_{i}
\end{array}
$$

where $P=\left(P_{i j}\right) \in \mathbb{C}^{d+1, d+1}$ and $Q=\left(Q_{i j}\right) \in \mathbb{C}^{d+1, d+1}$ are the so-called eigenmatrices of the association scheme. The $P_{i j}$ are the eigenvalues of A_{j}. The multiplicity f_{i} of $P_{i j}$ satisfies

$$
f_{i}=\operatorname{rank}\left(E_{i}\right)=\operatorname{tr}\left(E_{i}\right)=Q_{0 i}
$$

Association scheme for $\mathrm{H}\left(2 d-1, q^{2}\right)$

From $\mathrm{H}\left(2 d-1, q^{2}\right)$ we get the following association scheme. Let X be the set of generators of $\mathrm{H}\left(2 d-1, q^{2}\right)$ and two generators a, b are in relation R_{i}, where $0 \leq i \leq d$, if and only if a and b intersect in codimension i. For this scheme it is known that

$$
f_{d}=q^{2 d} \frac{q^{1-2 d}+1}{q+1}=q^{2 d-1}-q \frac{q^{2 d-2}-1}{q+1},
$$

and

$$
Q_{i d}=\frac{P_{d i}}{P_{0 i}} Q_{0 d}=\frac{(-1)^{i} f_{d}}{q^{i}}
$$

E_{d} has rank

$$
f_{d}=p^{2 d-1}-p \frac{p^{2 d-2}-1}{p+1} .
$$

When d even the matrix $n p^{d-1} E_{d}$ has only integer entries and we have $A_{d} \equiv n p^{d-1} E_{d} \bmod p$. Hence,
$\operatorname{rank}_{p}\left(A_{d}\right)=\operatorname{rank}_{p}\left(n p^{d-1} E_{d}\right) \leq \operatorname{rank}\left(n p^{d-1} E_{d}\right)=\operatorname{rank}\left(E_{d}\right)=$ $p^{2 d-1}-p^{p^{2 d-2}-1}$.
Lemma
The p-rank of the oppositeness matrix of generators of $\mathrm{H}\left(2 d-1, p^{2}\right)$, d even, is at most $p^{2 d-1}-p^{p^{2 d-2}-1} p$.
Theorem 2(c) now follows.

Thank you for your attention!

References

A. Aguglia, A. Cossidente, and G. L. Ebert. Complete spans on Hermitian varieties. In Proceedings of the Conference on Finite Geometries (Oberwolfach, 2001), volume 29, pages 7-15, 2003.
O. Arslan and P. Sin. Some simple modules for classical groups and p-ranks of orthogonal and Hermitian geometries. J. Algebra, 327:141-169, 2011.
目 A. E. Brouwer, A. M. Cohen, and A. Neumaier.
Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.

囯 K. Coolsaet. Some large partial ovoids of $Q^{-}(5, q)$, for odd q. Des. Codes Cryptogr., 72(1):119-128, 2014.

References

回 K．Coolsaet and H．Van Maldeghem．Some new upper bounds for the size of partial ovoids in slim generalized polygons and generalized hexagons of order（ s, s^{3} ）．J． Algebraic Combin．，12（2）：107－113， 2000.
© J．De Beule，A．Klein，K．Metsch，and L．Storme．Partial ovoids and partial spreads in Hermitian polar spaces．Des． Codes Cryptogr．，47（1－3）：21－34， 2008.
围 F．Ihringer．A new upper bound for constant distance codes of generators on hermitian polar spaces of type H（2d－1，$\left.q^{2}\right)$ ．J．Geom．，105（3）：457－464， 2014.
国 D．Luyckx On maximal partial spreads of $H\left(2 n+1, q^{2}\right)$ ． Discrete Math．，308（2－3）：375－379， 2008.

References

國 J．Parkinson，B．Temmermans，and H．Van Maldeghem． The combinatorics of automorphisms and opposition in generalised polygons．Ann．Comb．，19（3）：567－619， 2015.
嗇 P．Sin．Oppositeness in buildings and simple modules for finite groups of Lie type．In Buildings，finite geometries and groups，volume 10 of Springer Proc．Math．，pages 273－286．Springer，New York， 2012.

冨 J．A．Thas．Ovoids and spreads of finite classical polar spaces．Geom．Dedicata，10（1－4）：135－143， 1981.
（ J．Tits．Moufang octagons and the Ree groups of type ${ }^{2} F_{4}$ ． Amer．J．Math．，105（2）：539－594， 1983.

References

围 H. Van Maldeghem. Generalized Polygons. Birkhäuser Basel, 1998.
E. F. Vanhove. The maximum size of a partial spread in $H\left(4 n+1, q^{2}\right)$ is $q^{2 n+1}+1$. Electron. J. Combin., 16(1):Note 13, 6, 2009.
(F. Vanhove. Incidence geometry from an algebraic graph theory point of view. PhD thesis, Ghent University, 2011.

R F. D. Veldkamp. Representations of algebraic groups of type F_{4} in characteristic 2. J. Algebra, 16:326-339, 1970.

