This exam is open book. You may use your textbook and your own notes.
Write your proofs using complete English sentences as well as mathematical formulae. You may refer to results from the text by number or by briefly stating them.
Work which the grader cannot follow may receive a grade of zero.
Extra credit may be awarded for particularly well-written answers.
In this exam F denotes a field and \mathbb{R} denotes the field of real numbers.

Name: \qquad

1. (8 points) In $P_{3}(\mathbb{R})$, consider the set

$$
X=\left\{1+2 x-x^{3}, x+x^{2}, 2+4 x^{2}-2 x^{3}, 1+x-x^{2}-x^{3}\right\} .
$$

of four polynomials. Find a subset of X which is a basis for the span of X.

Solution:

We must find a linearly independent subset Y of X such that the span of Y is the span of X. Let $f_{1}=1+2 x-x^{3}, f_{2}=x+x^{2}, f_{3}=2+4 x^{2}-2 x^{3}$, and $f_{4}=1+x-x^{2}-x^{3}$, and fix the standard basis $\beta=\left\{1, x, x^{2}, x^{3}\right\}$. Then these are linearly independent in $P_{3}(\mathbb{R})$ if and only if their coordinate vectors are linearly independent in \mathbb{R}^{4}. Let

$$
A=\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
2 & 1 & 0 & 1 \\
0 & 1 & 4 & -1 \\
-1 & 0 & -2 & -1
\end{array}\right)
$$

be the matrix with the coordinate of f_{i} as the i-th column. Note that this has reduced row echelon form

$$
B=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

which has rank 3, and the first, second and third rows are e_{1}, e_{2}, and e_{3}, respectively. By Theorem 3.16 of the text, we have that these columns are linearly independent, and have the span equal to that of the span of the whole column set. Hence, $\left\{f_{1}, f_{2}, f_{3}\right\}$ are linearly independent.
2. Let the linear map $T: P_{3}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be given by $T(f(x))=\left(\begin{array}{cc}f(1) & f^{\prime}(1) \\ f^{\prime \prime}(1) & f^{\prime \prime \prime}(1)\end{array}\right)$.
(a) (4 points) By computing with the matrix of T or otherwise, prove that T is invertible.
(b) (4 points) Compute $T^{-1}\left(\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right)$.

Solution: (a) Let $\alpha=\left\{1, x, x^{2}, x^{3}\right\}$ and $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$.
Note then that T is invertible if and only if

$$
[T]_{\alpha}^{\beta}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 6
\end{array}\right)
$$

is invertible. As it is an upper triangular matrix, we get that it has determinant $(1)(1)(2)(6)=12 \neq 0$. Hence, $[T]_{\alpha}^{\beta}$ is invertible.
(b) As T is invertible, it suffices to find $f \in P_{3}(\mathbb{R})$ such that $T(f)=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Suppose that $f=a+b x+c x^{2}+d x^{3}$ if such a polynomial, then $6 d=f^{\prime \prime \prime}(1)=1$ so $d=1 / 6$. Then $1=f^{\prime \prime}(1)=2 c+6 d=2 c+1$ implies $c=0$. With $1=f^{\prime}(1)=b+2 c x+3 d=b+(1 / 2)$ we get $b=1 / 2$, and so $1=f(1)=a+b+c+d=a+(2 / 3)$ we get that $a=1 / 3$. Thus, $T\left(\frac{1}{3}+\frac{1}{2} x+\frac{1}{6} x^{3}\right)=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
3. (8 points) Determine whether the linear map $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
T\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cc}
-a & b-2 a \\
-c-2 b+2 a & -d-2 b+2 a
\end{array}\right)
$$

is diagonalizable or not. is diagonalizable or not. If so, find a basis of $M_{2 \times 2}(\mathbb{R})$ consisting of eigenvectors of T.

Solution: Let $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$, the standard basis for $M_{2 \times 2}(\mathbb{R})$. Computing the values under T, we get that

$$
[T]_{\beta}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
2 & -2 & -1 & 0 \\
2 & -2 & 0 & -1
\end{array}\right)
$$

so that the characteristic polynomial is

$$
f(t)=\operatorname{det}\left(\left(\begin{array}{cccc}
-1-t & 0 & 0 & 0 \\
-2 & 1-t & 0 & 0 \\
2 & -2 & -1-t & 0 \\
2 & -2 & 0 & -1-t
\end{array}\right)\right)=(t-1)(t+1)^{3}
$$

which has roots 1 and -1 of multiplicity 1 and 3 , respectively. For diagonalizability, we need only check -1 . Consider the eigenspace E_{-1} and the matrix

$$
B_{-1}=[T]_{\beta}+I=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-2 & 2 & 0 & 0 \\
2 & -2 & 0 & 0 \\
2 & -2 & 0 & 0
\end{array}\right)
$$

which has rank 1. Now, $\operatorname{dim}\left(E_{-1}\right)=\operatorname{dim}\left(N\left(L_{B_{-1}}\right)\right)=4-\operatorname{rank}\left(B_{-1}\right)=4-1=3$ so T is indeed diagonalizable. Solving

$$
B_{-1}\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

yields the solution set $\left\{u\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)+t\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)+s\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right): u, t, s \in \mathbb{R}\right\}$ so that

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

is a basis for the B_{-1}-eigenspace of -1 . Converting, we get that

$$
\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

is a basis for the T-eigenspace of -1 . Now for

$$
B_{1}=[T]_{\beta}-I=\left(\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
2 & -2 & -2 & 0 \\
2 & -2 & 0 & -2
\end{array}\right)
$$

solving

$$
B_{1}=\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

yields the solution set

$$
\left\{t\left(\begin{array}{c}
0 \\
-1 \\
1 \\
1
\end{array}\right): t \in \mathbb{R}\right\}
$$

so that $\left\{\left(\begin{array}{c}0 \\ -1 \\ 1 \\ 1\end{array}\right)\right\}$ is a basis for the B_{1}-eigenspace of 1 , so $\left\{\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)\right\}$ is a basis
for the T-eigenspace of 1 . Thus,

$$
\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)\right\}
$$

is a basis for $M_{2 \times 2}(\mathbb{R})$ consisting of eigenvectors of T.
4. (8 points) Use the Gram-Schmidt procedure to find an orthonormal basis of the subspace of \mathbb{R}^{4} spanned by $(1,0,0,-1),(1,0,-1,0)$, and $(1,-1,0,0)$.

Solution: Recall that the Gram-Schmidt procedure requires a linearly independent set, though a quick check will verify that these are indeed linearly independent. Let $v_{1}=(1,0,0,-1)$. We have that

$$
\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(1 / 2,0,0,-1 / 2)
$$

so

$$
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(1,0,-1,0)-(1 / 2,0,0,-1 / 2)=(1 / 2,0,-1,1 / 2)
$$

Now, we have

$$
\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(1 / 2,0,0,-1 / 2)
$$

and

$$
\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}=(1 / 6,0,-1 / 3,1 / 6)
$$

so that

$$
\sum_{i=1}^{2} \frac{\left\langle w_{3}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}=(2 / 3,0,-1 / 3,-1 / 3)
$$

Thus,

$$
v_{3}=w_{3}-\sum_{i=1}^{2} \frac{\left\langle w_{3}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}=(1 / 3,-1,1 / 3,1 / 3)
$$

and $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set with span equal to that of the original set. We may obtain an orthonormal basis by normalizing β. Let

$$
u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}(1,0,0,-1)
$$

$$
u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\sqrt{\frac{2}{3}}(-1 / 2,0,-1,1 / 2)
$$

and

$$
u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\sqrt{\frac{3}{4}}(1 / 3,-1,1 / 3,1 / 3)
$$

so that $\gamma=\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthonormal basis for the span of the original set.
5. Let V be the space of infinitely differentiable functions of the real line.
(a) (2 points) Show that differentiation is a linear map from V to itself.
(b) (2 points) Show that for each $a \in \mathbb{R}$ the function $f(t)=e^{a t}$ is an eigenvector of T, with eigenvalue a.
(c) (4 points) Using the above, or otherwise, show that the set of functions $\left\{e^{a t} \mid a \in \mathbb{R}\right\}$ is linearly independent.
(d) (4 points) (Extra credit) Prove that the set of functions $\{\sin a t \mid a \in \mathbb{R}, a>0\}$ is linearly independent.

Solution: (a) Let $f, g \in V$, let $c \in \mathbb{R}$. If $T: V \rightarrow V$ denotes differentiation, then

$$
T(f+c g)=(f+c g)^{\prime}=f^{\prime}+c g^{\prime}=T(f)+c T(g)
$$

so that T is linear.
(b) We have that

$$
T(f(t))=\frac{d}{d t}\left(e^{a t}\right)=a e^{a t}=a f(t)
$$

so that $f(t)$ is an eigenvector of T with eigenvalue a.
(c) Recall (Theorem 5.5 of the text) that if T is a linear operator on a vector space and $\lambda_{1}, \ldots, \lambda_{k}$ are distinct eigenvalues of T, with v_{i} an eigenvector of λ_{i}, then $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent. To show that $A=\left\{e^{a t}: a \in \mathbb{R}\right\}$ is linearly independent, we must show that any finite subset of A is linearly independent. Consider $B=\left\{e^{a_{1} t}, \ldots, e^{a_{k} t}\right\}$, so that $e^{a_{i} t}$ has eigenvalue a_{i} by part (b). By the beginning remark, we get that B is linearly independent.
(d) Note that $S: V \rightarrow V, S=T \circ T$ is also a linear transformation by composition, and S just maps a function f to its second derivative. Then for $A=\{\sin a t: a \in$ $\mathbb{R}, a>0\}$, we have that for each $a>0, S(\sin a t)=-a^{2} \sin a t$ so that $\sin a t$ is an eigenvector with eigenvalue $-a^{2}$. If $B=\left\{\sin a_{1} t, \ldots, \sin a_{k} t\right\}$ is a finite subset of A, then it will be linearly independent as in part (c).

