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G-invariant quadratic forms
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Introduction

The Frobenius-Schur indicator ([4], Chap. X1, § 8) tells us whether a self-dual complex
representation of a finite group is an orthogonal or a symplectic one. In the p-modular
theory, there is an algorithm derived from this criterion for determining the type of a
G-invariant form on a self-dual, simple module as long as p is odd (see [5]). In characteristic
two, the problem appears to be subtle and has not yet found a satisfactory answer. We
therefore aim in this paper to investigate systematically modules with G-invariant quadratic
forms, paying particular attention to fields of characteristic two. Our main result gives a
simple way to compute the Witt index of a G-invariant quadratic form when G is a finite
solvable group and the field is finite of characteristic two. Our methods allow us to simplify
and unify some known results along the way (2.3, 2.4, 3.4).

Several of the results (Proposition 4.9(b), Proposition 4.10 and Theorem 5.4) have
been obtained first by M. Aschbacher in [2] ((7.3)(1), (7.3)(2) and (7.6) respectively), but we
have included the proofs for the convenience of the reader and because our argument in
Theorem 5.4 differs from his proof of [2], (7.6). We wish to thank the referee for drawing our
attention to this work.

§ 1. Quadratic modules in characteristic two

Let k be a perfect field of characteristic two and V a finite-dimensional k-vector space.
Since k is perfect, the Frobenius map
o:x = x?
is an automorphism of k. We denote by ¥® the k-module with the same underlying group as
V but with scalars operating by
Aovi=0"1(A)v,
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where the right hand side is the original multiplication. Let S?(V'*) and A4?(V*) denote
respectively the spaces of quadratic and symplectic forms on V. We recall that a quadratic
form is defined to be a map

Q:V >k
satisfying the following conditions (1.1):

@) Q(Av) =4’Q ), (Rek,veV);
(b) The map B: VX V — k defined by B(v,w)=Q@w+w)—Q@w)—Q(w) is a
symmetric bilinear form.

Of course, in characteristic two, the associated symmetric bilinear forms are
symplectic; condition (b) gives a natural map (polarization)

0:S2(V*) —» A*(V¥)

taking a quadratic form to its associated symplectic form. Now a quadratic form Q lies in the
kernel of 0 if and only if it satisfies the following (1.2):

@) Q(iv) =1’Q ), (Aek,veV);
(b) Q+w)=Q@®+Q2W), (,weV).

Since all field elements are squares, these conditions simply say that Q € V?* By
considering dimensions, we obtain the exact sequence of natural maps

(1.3) 0 - VO* o §2(r*) L 42(1*) > 0.

Next, we consider the space V'* ®, V'* of bilinear forms on V. Each bilinear form Bon V
defines a quadratic form Q by “restriction to the diagonal”: Q (v) := B(v, v), forv e V. Thus,
we obtain a natural map

(V@ V* - S2(V*)

whose kernel is obviously A2(FV*). Since { is also surjective, we see that the following
sequence of natural maps is exact:.

(1.4) 0 » A2(V*) > V*@, V* 5 S2(V*) - 0.

We note that (1.4) holds over any field, and splits naturally if the characteristic of k is
not two.

We end this section with some further basic definitions and facts which we shall use
freely without further reference. First, the (left) radical of Be V* ®, V* is defined by
Rad B = {ve V|B(v,w) = 0 for all we V'}, and B is nonsingular if Rad B = 0. Under the
natural isomorphism V* ®, V* =~ Hom, (V, V'*), nonsingular forms correspond to isomor-
phisms. Finally, we have natural isomorphisms
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SZV*@WH xS (V) @S2 (WX V*® W*
and

AV*@WH= A2V @ A (W*) @ V* R W*.

§ 2. Quadratic kG-modules

We keep the notation of the previous section. Let G be a group, acting as
automorphisms of V. Then the induced automorphisms define G-module structures on
S2(V*), A2(V*)and V* ®, V* and the subspaces S*(V*)%, A2(V*)¢ and (V* ®, V*)% of
G-fixed points are precisely the G-invariant forms of the various kinds. Since the space of
G-invariant bilinear forms on V is isomorphic to the space Hom,; (¥, V'*) of G-equivariant
linear maps from ¥ to its dual, there is a nonsingular G-invariant bilinear form on V if and

only if V =, V*. If V is simple, then any nonzero G-invariant form is nonsingular because
its radical is a G-submodule.

Combining (1.3) and (1.4) we obtain the following diagram of natural maps:
0
1
(2.1) 0 » VO* 5 S2(r*) L L2(1*) 5 0
| (1
V*®, V*
T
A2(V'*)

0
Taking cohomology, we obtain the diagram

H' (G, A4*(V™))

T
2.2) 0 » (Y@%)S 5 2% L 22(V9)° > HY(G, V™)

(1

(V* @ V*°
1

A2(V*)©

1
0

in which both the vertical and horizontal sequences are exact.
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Now we may read off various results from (2.2).

Proposition 2.3 (Fong), (cf. [4], Chap. VI, 8.13). Let V * 0 be a self-dual G-module
over k with V¢ = 0. Then V has a nonzero G-invariant symplectic form.

Proof. Since V= V* we have (V* ®, V*)¢ £ 0. Since V¢ =0, it follows that
(V@*)G = (., Therefore the map 0 in (2.2) is injective. Thus, the map 6 in (2.2) has either a
nonzero image or a nonzero kernel, so the proposition is proved.

Proposition 2.4 (cf. [6], Satz 2.5). Let V be a self-dual G-module over k and suppose
that H' (G, V) = 0. Then every G-invariant symplectic form on V is the polarization of a
G-invariant quadratic form.

Proof. AsV=V* H'(G,V)=0implies H' (G, V?*) = 0, and the result follows
from the horizontal sequence of (2.2).

The hypothesis on the cohomology in 2.4 is obviously satisfied if V is a projective
indecomposable kG-module for a finite group G. If in addition, V is self-dual and not equal
to the projective cover of the trivial module, then A%(V*)€ % 0 by 2.3, since V¢ =0.
However, there may not be a nonsingular G-invariant symplectic form, as shown by the
following easy example with a group of order 12.

Example 2.5. Let G= (g, t|g3=1t*=1,g'=g"'), and k = F,. The projective
cover V of the simple 2-dimensional kG-module M is an extension of M with itself, and is
self-dual since M is. One easily computes that A% (V) is isomorphic to the direct sum of M
and the projective cover of the trivial module, hence that A2(V)¢ ~ k. Since we already
know of a G-invariant symplectic form on V, namely the one lifted from M =~ V/M, and since
this is singular, all G-invariant symplectic forms on V are singular.

Proposition 2.6. Let G be a finite group. Suppose that 0,.(G) + 1 and that V is a
faithful, self-dual, indecomposable kG-module. Then there exist (non-zero) G-invariant
symplectic forms on V and every one is the polarization of some G-invariant quadratic form.

Proof. We first note that V" does not lie in the principal block, for if so, we would have
V = fV, where

1
f=
RGN

is the principal block indempotent. Then 0,.(G) would act trivially on V, contrary to our
hypothesis. Thus, V is an indecomposable module not in the principal block, whence both
V% and H!(G, V) are zero. The result now follows from 2.3 and 2.4.

We note that 2.6 applies to self-dual simple nontrivial modules for solvable groups.
Here, 0,.(G/Ker V) # 1. This special case is Satz 2.8 of [6].

We close this section with a criterion for the nonexistence of G-invariant quadratic
forms.
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Proposition 2.7.  Suppose V % k is a self-dual, absolutely simple G-module over k. Then
if H*(G, 4*>(V)) = 0 there is no G-invariant quadratic form on V.

Proof. By 2.3, we have A?(F*)¢+ 0, and by absolute irreducibility, we have
(V* ®, V*)¢ = k. Now the assertion follows from the vertical sequence of (2.2).
§ 3. Tensor products

In this section, k is still a perfect field of characteristic two. The basic lemma for dealing
with tensor products is the following.

Lemma 3.1. Let V and W be finite dimensional vector spaces over k. Then in the pull-
back diagram

0> (VR WP L s2(r*@ w* L L2 @ W* -0
I U Tu
0> VRWP* L  EWV, W) L £2(r*) QA4 (W*) > 0
the bottom row splits naturally.
Proof. E(V, W) is the space of quadratic forms on ¥V ®, W whose associated

symplectic forms lie in A2 (V*) ®, A*(W*). The latter vanish on pairs (v ® w,v’ ® w’)
whenever v = v’ or w=w'. Let Qe E(V, W). Define

Go: VXW - k by ¢o(v,w)=0@0Q@w).

for all ve V and we W. Then

Ppo0+0v, W) =0 R®w+v' @w)
=0w®w +Q@W ®w) (since Qe E(V, W))
= ¢ (v, W)+ P (v, w).

Similarly, ¢, is additive on W. Furthermore,
bo(v, w) = Qv @ w) = 22 Q(0 ® W) = A2 Py (v, W).
Thus ¢,, defines an element of (V' ®, W)®*, and we obtain a natural map
p:E(V, W) = (V@ W)P*,
mapping Q to ¢,, which clearly splits the inclusion i.
As an application, we obtain the next result which was first proved by R. Gow and the

second author using different methods. Via Steinberg’s Tensor Product Theorem it has
applications to the representation theory of Chevalley groups in characteristic two. We
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mention here only that one consequence is that for finite Chevalley groups in characteristic
two, all of the self-dual projective indecomposable modules carry an invariant nonsingular
quadratic form, which may be surprising in view of Example 2.5.

For the sequel, we recall that the Witt index of a nonsingular quadratic module (U, Q)

1
is the dimension of a maximal isotropic subspace of U and is bounded by 3 dim, U (see [1]).

Proposition 3.4. Let V and W be finite-dimensional modules over k for groups G and H
respectively. Then every symplectic form in A2(V*)¢ ®, A>(W*)H is the polarization of a
G x H-invariant quadratic form on V ®, W. Moreover, a form in A*(V*)¢ ®, A2(W*)H
arising from a nonsingular G-invariant symplectic form on V and a nonsingular H-invariant one
on W is the polarization of a nonsingular G X H-invariant quadratic form on V @, W of
maximal Witt index. -

Proof. The first statement is an immediate consequence of 3.1. Let B, and By be
forms as in the second statement. Then B, ® B, is also nonsingular. By 3.1, we may choose
QeKer¢p with 0(Q)=B, @ By. Then Qw@®w)=0 for all veV and weW,
so that

Q@ w+v' ®w)=(B, ® By) (v ® w,v' ® w') = B, (v, 0") By (w, w)

forall v, v’ € ¥V and w, w’' € W. It follows that if I is a maximal isotropic subspace of V" with
respect to By, then Q(I ®, W) = 0. Hence Q is of maximal Witt index, as

dim, (I ®, W) = ! dlmk(V ®, W).

This gives rise to a well known isomorphism. Suppose 4 < |k| < c0. By 3.4 and
consideration of determinants we have

SL(2,k)xSL(2,k) = Sp(2,k) xSp(2,k) = SO*(4,k).
From the orders, we see that in fact the inclusion on the right is an equality.
We end this section with another corollary of the exact sequence (2.2).

Proposition 3.5. Let G and H be groups, V a kG-module with V*C =0 and W a
kH-module with W*H = 0. Then we have an isomorphism

S2(V* @ W H = A2(V* @ W) H.

Proof. We apply the horizontal sequence of (2.2) to G X H and V ®, W. The term
((V ®, W) »*)G*H 5 zero by hypothesis, and the term H* (G x H, (V ®, W)®*) vanishes
by the Kiinneth formula.
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§ 4. Field extensions

Throughout this section, unless otherwise stated explicitly, k is an arbitrary field and X
a finite Galois extension of k. V' and W will always denote a (finite-dimensional) K-module
and k-module respectively. Then V is also a k-module by restriction, and we shall indicate
this by the notation ¥}, with corresponding notations V;* = Hom, (V;, k), S*(V}¥), etc. If
necessary, we shall also write V; for V in its original role as K-module. This should not be
confused with ¥, ®, K. Similar conventions apply to intermediate fields.

Galois theory provides an isomorphism

4.1) Vi K= @ VvV, v®4 - (67 (A)0)secamm -

oeGal(K/k)

Here, V° denotes the K-module obtained from V by letting K act via 0~ (cf. §1). The
action of Gal(K/k) on V, ® K given by c(v ® ) =v ® o(4) for ve V, o€ Gal(K/k)
becomes, under the isomorphism (4.1), the coordinate permutation

4.2) o ((Ur )teGal(K/k)) = (Vg-1, )tsGal(K/k)

for v_e V", and the k-submodule ¥ ®, 1 becomes identified with the diagonal
= {(v,)|v, = v for all € Gal(K/k)} .

Suppose Vis a G-module over K for a group G. Then (V°)* = (V'*)? as G-modules over
K, and (4.1) is an isomorphism of G-modules over the smaller field k.

For Q € S2(V'*) we define Q%€ S2((V°)*) by
4.3) Q°(v) =Q)° for veV=V°
and the Galois trace,
Trgy: S2(V*) - S2(V¥)
by
(4.4) (Trg Q)W) = ), Q7).

oeGal(K/k)
We may also define an exterior Galois trace

Trg: S2(V*) - S2((V & K)*)
using (4.1) by

@4.5) T @) (O secamm) = = 271,

oeGal(K/k)

In other words, the quadratic K-module (/I\/ ®, K, T?KMQ) is the orthogoqal sum of Fhe
quadratic modules (V?, Q). In particular, Trg, Q is nonsingular if and only if Q is. If Vis a
G-module, then both trace maps are G-module maps over k.
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Finally, for a k-module W and Q € S?(W*), we define Q ® Ke S?((W ®, K)*) by
(4.6) QORK)(w® ) =42Q(w) for weW and AeK.

If B is the associated symmetric form of Q, then the symmetric form B ® K associated to
0 ® K is given by

47 BIK(WR®Aw ® u)=AuBw,w’), for w,w'eW and A uek.
In particular, @ ® K is nonsingular if and only if Q is. Again, the map
—Q K:S2(W*) > S*((W®,K)*)
commutes with k-linear group actions. With these notations we have
Proposition 4.8. (a) The following diagram commutes:

sy =25 s (Ve K)¥)
Trg i—?x/m

S2(V*).
(b) All maps in (a) are injective and preserve nonsingular forms.

Proof. (a) For Qe S2(V*),ve V and 1€ K we have

T QD= Y 0°(c ' (Wv)

aeGal(K/k)

=AY Q'

oeGal(K/k)

=T 0@ K)v® 4).

(b) We have already seen that ’/F\r,(,k and — ® K preserve nonsingular forms. They are
also clearly injective. Since the diagram commutes, Trg, also has these properties.

Proposition 4.9 ([2], (7.3)(1)). Suppose K is finite and that dimgV and dim,W are
even. Then the following hold:

a) Try, and —® K preserve nonsingular quadratic forms of maximal Witt index.
K/k p g q

(b) IfQ € S*(V*)is nonsingular, then Q is of maximal Witt index if and only if Trg, Q is
of maximal Witt index.

(c) Tr Kk Carries nonsingular quadratic forms of non-maximal Witt index on V to forms of
maximal Witt index on V ®, K if and only if | K : k| is even.

(d) — ® K carries nonsingular forms of non-maximal index on W to forms of maximal
index on W @, K if and only if | K : k| is even.
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Proof. (a) Both maps send isotropic subspaces to isotropic subspaces.

(b) In view of (a) it remains to prove that if Q has non-maximal index, then so does
Trg, Q. This is a consequence of the fact that a quadratic module (V, Q) is of non-maximal
index if and only if there is an irreducible automorphism (Singer cycle) of V preserving Q (see

[3], in particular “Bemerkung” on page 148). Such an automorphism also acts irreducibly
on ¥, and preserves Trg, Q.

(c) For Q e S2(V*), the quadratic module (V ®, K, '/F\rK/kQ) is the orthogonal sum of
the | K : k| quadratic modules (V?, Q°), all of which clearly have the same index. Witt’s
theorem implies that the orthogonal sum of two even dimensional nonsingular quadratic
modules with the same Witt index has maximal Witt index.

(d) Suppose Q € S?(W*) is nonsingular of non-maximal index. By part (a) and the
theory of normal forms for quadratic forms, we may assume that (W, Q) is 2-dimensional
and anisotropic. Thus, Q is given in suitable coordinates by

Q(x,y)=x*+xy+ay?, with a¢{u?—ulueck}
if k is of characteristic two, and
Q(x,y) =x%—ay?, with a¢k?

if k has odd characteristic. By (4.6), Q ® K is given by the same formula, and it is clear that
the conditions a € {v2 — v|v € K}, respectively « € K* will hold if and only if | K : k| is even.

If K is finite and | K : k| is odd then the Witt index cannot change under — ®, K or trace
maps. Thus only the case where dimyV is odd and |K: k| is even is left. In this case the
characteristic has to be odd, because a nonsingular symplectic space is even dimensional.

Proposition 4.10 ([2], (7.3)(2)). Suppose |k| = q and | K| = q*™. Suppose that dimgV is
odd and that Q € S*(V*) is a nonsingular form. Write V as the orthogonal sum

W L (v)
with respect to Q, where the restriction of Q to W is nonsingular of maximal index.

(@ T}K/kQ has maximal index.

(b) Ifq™ = 1(mod4) then Try , Q has maximal index if and only if Q (v) is not a square in K.

() If g™ = 3(mod4) then Try, Q has maximal index if and only if Q(v) is a square in K.

Proof. Let Q(v) = a. (a) Since (V &, K, TrK,kQ) is the orthogonal sum of the mod-
ules (V?, 0°), o € Gal (K/k), the result will follow once we show that the restriction of Try Q9
to the 2-dimensional space (v> L (v}’ (¢ # 1) has a nonzero isotropic vector. Since both —1
and a’a ! are squares, the equation

ax 2 +a ay 2 _ 0

has a solution (x, y) % (0, 0).
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(b),(c) Letk < L < Kwith|L| = q™. By 4.9 (b), it is sufficient to determine the type of
Trg,, Q. By 4.9 (b) again, the type of Trg,, Q is the same as that of its restriction to the
2-dimensional space {v),. For A€ K™, we have Trg,, Q(4v) = A*a + (A2a)*" = O if and only

. ~— « 1 e
if(A2a)7" 1= —1.Now |K*?| = 3 (@™ — 1)(g™ + 1), so the elements of multiplicative order

2(g™ — 1) lie in K*? in case (c) and outside K*? in case (b). Thus, the vector Av is isotropic
precisely when A2a is not a square in case (b), and when it is not a square in (c).

§ 5. The Witt index of simple G-modules

Let k be any finite field and G a finite group. Let V be a simple kG-module and
K = End,; (V). Then Kis a finite Galois extension of k and V has the structure of a K-module
which we denote by V;, with similar notations for intermediate fields. K is a splitting field for
Vand (V;), = V.

Lemma 5.1.  Suppose V is self-dual but that Vy is not. Then |K : k| is even and for the
element t € Gal(K/k) of order 2 and its fixed subfield L = K" the following hold:

(a) V, is self-dual as an LG-module.
(b) Under the isomorphism

(V* ®, V*)® = End,s(V) = K

the subfield L becomes identified with A*(V*)© on the left and on the right, for any nonzero
Be A2(V*)C, with the set of self-adjoint kG-maps with respect to B.

Proof. WehaveV@®, K=~ (@ Vg,inwhichthemodules Vg areabsolutely simple
oeGal(K/k)
and mutually nonisomorphic. Since (Vg)* = (V¥)’, none of the Vy is self-dual. But V ®, K

is self-dual, hence V¥ = V§ for some { € Gal(K/k). Since ¥, = (V¥)*, it follows that { has
order 2, s0 { =7. Now V, ®, K= V; @ Vg = V; @ V¢ is self-dual, therefore V] is too,
proving (a).

To prove (b), we write V ®, K~ X @ X*, with Homg; (X, X*) = 0. Then

A2VHR K= A2((V @, K)*)¢ = (X* & X)¢ = Endgg (X) < Endgge(V ®, K)
~End,(V)® K= KR, K.

Thus, 4%2(V*)¢ < K. Now fix 0 + Be A2(V*)°. Then all G-invariant k-bilinear forms on V'
are of the form B,, a € End, ; (¥), given by B, (v, w) = B(v, aw), for v, v’ € V. It is clear that
taking adjoints is an automorphism of the field K, and all statements will be proved if we
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show that the fixed subfield is 4 (V*)S. Let a® be the adjoint of a with respect to B. If K
has odd characteristic then we have:

B(¢*v,v") = B(v,av’) = B, (v, v")
and
B(av,v") =—=B(’,av) = — B,(v',v).

Since Bis nonsingular, these equations show that B, € A2(V*)Cifand only if « = ®4. If K is
of characteristic two, and a = a®%, there exists f§ = ¢ such that 2 = «. Then

B, (v, v) = B(v, av) = B(v, B** Bv) = B(Bv, fv) = 0.
This shows that B, € 4% (V*)S. Conversely, if B, e A2 (V*)¢, then
0=B,v+w,v+w) = B(v,aw) + B(av, w),
which shows that a = a9,
Lemma 5.2. Suppose V is a self-dual simple kG-module and that V, is an even-dimen-

sional self-dual LG-module for some field L withk < L < K = End,; (V). Then for any natural
number e,

Try,: S2(eVF)E —» S2(eV*)S

is a k-isomorphism which preserves nonsingular forms and maximality or non-maximality of
Witt indices. (Here eV, denotes the direct sum of e isomorphic copies of the LG-module V| etc.)

Proof. By 4.8(b) and 4.9(b), we know that Tr,, is an injective kG-map which
preserves nonsingular forms and the type of Witt index. Thus, G-fixed points are mapped to
G-fixed points and only surjectivity remains to be shown. We have

e(e—1)
2

S*(eVE) =eS(VH° @ VE@VH°

and

S2(eV*)S ~eS2(V*)S @ ‘?(e—z_l—)(V* R, V*)S.

Since (V'* ®, V*)¢ = End,;(V) = K= End, (V) = (V} ®, V*)°, we will be done if we
prove

dim, S(V*)® = dim, S2(V})°
But this is true since

S2(W*)S @ L= S*(V*® L= @ SHIDHYT,

oeGal(L/k)

SO

dim, S2(V*)¢ = | L : k|dim, S2(V})¢ = dim, S? (V).
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Lemma 5.3. Let (V, B) be a nonsingular symplectic or symmetric k-space. Let
B e End, (V) and let B be its adjoint with respect to B.

(@) If B+ + B, then there is some ve V such that B(v, Bv) + 0.

(b) If, in addition the minimal polynomial of B is irreducible of degree two and
B+ B = pek™, then (V, B) is the orthogonal direct sum of B-invariant 2-dimensional
subspaces.

(c) In(b), if B is symplectic then restriction to each of these 2-dimensional spaces of the
quadratic form Q(v) = B(v, Bv) is anisotropic.

Proof. (a) Suppose B(v, fv) = 0 for all ve V. Then

0=B(v+v',B(v+v) = B, fv') + B(', Bv)
= B(p*v,v") £ B(Bv,v") = B((B £ p**)v,0")

for all v, v’ € V, contradicting the nonsingularity of B.

(b) By (a), we may choose v € V such that B(v, fv) + 0. Set H = (v, fv>. Then His a
B-invariant subspace. Moreover, for he H and h' € H*, we have

B(Bh*, h) = B(h*, p*h) = B(h*, (u—B)h) =0,

so H' is B-invariant. The hypothesis on the minimum polynomial is valid for | ., so the

HJ.’
result follows by induction on dimension.
(c) Let H be as above and suppose B(v, fv) = €€k ™. Let
mg(x) = x>+ Ax +a

be the minimal polynomial of . Then the matrix of Q|, with respect to the basis v, fv is

0 &\ /(0 —a) ¢ 1 -2
-¢o/\1 -2) "\0 «)’
and Q| is anisotropic because x* — Ax + a = mg(—x) is irreducible over k.

Theorem 5.4 (see [2], (7.6)). Let V be a self-dual, simple, even-dimensional k G-module
and let K = End,;(V). Then one of the following holds:

(@) Vg kg Vi anddim,Vj is even. Then V has a nonsingular G-invariant quadratic form
if and only if Vi does. All nonsingular forms on V and Vi have the same type of Witt index.

(b) Vi &g VE. Then V has anonsingular G-invariant quadratic form and all nonsingular
G-invariant forms have the same type of Witt index, which is maximal if and only if dimgVy
is even.
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(© YV =ge VE anddimyly is odd. Then V has a nonsingular G-invariant quadratic form

if and only if Vi does. If so, then V has G-invariant quadratic forms of both maximal and non-
maximal Witt index.

Proof. (a) If there is a nonzero G-invariant quadratic form on ¥ then it is unique up
to K-scalars. Therefore, (a) is an immediate corollary of 5.2.

(b) Letk < L < Kwith |K: L| =2asin 5.1. Then by 5.2 we may assume that L = k,
and so by 5.1(b), 42(V*)¢ =~ k. Now taking G-fixed points in the two exact sequences (1.3)
and (1.4) yields that S%(V*)¢ = k, so all nonzero G-invariant quadratic forms on ¥ have the
same Witt index and it remains to determine this.

Pick 0 % Be A%(V*)¢ and choose § € K with minimal polynomial x2 + x + a over k.
Then by 5.1(b), the adjoint B¢ of B with respect to B is the other root of this polynomial, so
B¢ = — (B +1). We may now apply 5.3(c). The orthogonal sum of two 2-dimensional
anisotropic quadratic modules over a finite field has maximal Witt index (see [1]). Thus, Q is
of maximal index if and only if the number of 2-dimensional subspaces in the decomposition

1
of 5.3(b), namely EdimkV = dimy V%, is even. This completes the proof.

(c) Since V has even dimension, | K : k| must be even. Letk € L £ Kwith |[K: L| = 2.
Then ¥, is self dual and of even dimension, so by 5.2 we may assume k = L. The first
assertion in (c) now follows from the isomorphism

S2V*)° @, K=S*(V¥H)° e S*(Vy*)%, 1#rteGal(K/L).
The last part is an immediate consequence of 4.10.

Remark. In 5.4(b), it can be shown that the module V; carries a nonsingular
G-invariant Hermitian form (see [2], (7.6)(3)).

If G has odd order, then the absolutely simple module ¥ in the theorem is not self-dual.
Also it has odd dimension; for characteristic two this is an elementary fact, but for odd
characteristic it is a consequence of the Feit-Thompson theorem on the solvability of groups
of odd order and the Fong-Swan theorem on the liftability of absolutely simple modules for
solvable groups. Thus:

Corollary 5.5. The orthogonal group O* (Q) of an even-dimensional quadratic module
of maximal index over a finite field has no irreducible subgroups of odd order.

Lemma 5.6. Let V be a kG-module carrying a nonsingular G-invariant quadratic form
Q. Suppose V = U @ U* where U is a kG-submodule with Hom, (U, U*) = 0. Then Q is of
maximal index.

Proof. Since

SX(U @ U*)C = (U* ®, U)° = End,(U),
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every G-invariant quadratic form on U is of the form Q, for a« € End,;(U), where

Q.(u,f)=f(au), for uelU, feU*.

Thus, for all @, the submodule U of U @ U *isisotropic of half the dimensionof U @ U*, so
in particular Q is of maximal index.

Lemma5.7. Let Z = (z) be acyclic group of odd order and suppose V is the direct sum
of e isomorphic copies of a nontrivial, simple, self-dual kZ-module W. Then there exist
Z-invariant nonsingular quadratic forms on V, and all of them have the same Witt index, which
is maximal if and only if e is even.

Proof. Since the nontrivial absolutely simple modules for Z are not self-dual, W must
have even dimension and so 5.4 (b) shows that there is a nonsingular G-invariant quadratic
form on W. By forming an orthogonal sum, we obtain one on V, proving existence.

Let K = End,,(W). Since W is not self-dual, 5.1 yields an intermediate field L with
|K: L| = 2 and such that W, is self-dual, and two-dimensional since W is one-dimensional.
By 5.2, it suffices to prove that every nonsingular Z-invariant form on ¥, = eW], has the
claimed Witt index. Thus we may assume k = L. Then the minimal polynomial of z is
irreducible of degree 2, and z has determinant 1 on W because it preserves a nonsingular
symplectic or symmetric form, and z has odd order. Therefore the minimum polynomial is
x2 + Ax + 1, forsome A # 0. Let Q be any nonsingular Z-invariant quadratic form on ¥, and
let z¢ be the adjoint of z with respect to the associated bilinear form. Then since
Z < K = End,,(W), 5.1 implies that z* = —(z + 4). Thus, by 5.3(b), the direct sum
decomposition of ¥ into e copies of W can be chosen to be an orthogonal decomposition
with respect to Q. Since the restriction of Q to one of the e components in this decomposition
is anisotropic, by 5.3(b), the proof is complete.

Combining the last two lemmas yields the following result.
Theorem 5.8. Let V be a kG-module carrying a nonsingular G-invariant quadratic form

Q. Suppose that G has an elementary abelian r-subgroup A for some odd prime r for which
V4 = 0. Let m be the multiplicative order of | k| (mod r). Then Q is of maximal index if and only

if m divides %dimk V.
Proof. Write
Ma=U®U*® j@:‘)lejo’
where the W, are self-dual, simple and pairwise nonisomorphic k4-modules and
Hom, ,(U, U*) =0.

Each W, being a self-dual module for a group of odd order, has even dimension, so V" does
too. Setting ¥, = e; W,, we have an orthogonal decomposition

Vu=U@UHLV, L. LV,
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with respect to Q. If U + 0, the restriction of Q to U @ U* is of maximal index by 5.6. Next,
suppose ¥; + 0 and consider 0, . Since 4/Ker (W,) s cyclic of order r, 5.7 applies. Thus, Q is
of maximal index if and only if ) e; is even. Now all nontrivial simple k 4-modules have

J
dimension m, so if dim, U = tm, we have dim, V = 2tm + m Z e;, and the theorem follows.
J

Corollary 5.9. Let V be a faithful, simple kG-module admitting a nonzero G-invariant
quadratic form. Let dim, V = 2n. Suppose G has a nontrivial normal r-subgroup for some odd
primer. Let m be the multiplicative order of | k| (mod r). Then all nonzero G-invariant quadratic
forms on V have the same Witt index, which is maximal if and only if m divides n.

Proof. Let A be a nontrivial, elementary abelian, normal r-subgroup of G. Then since
V is faithful, r is different from the characteristic of k and V4 = 0.

Finally, we summarize our results for 2-modular representations.

Corollary 5.10. Let 1 % G be a finite solvable group, k a finite field of characteristic two
and V a self-dual, faithful, simple kG-module. Let r be a prime divisor of the order of the Fitting
subgroup and m the multiplicative order of |k| (modr). Then there exist nonsingular
G-invariant quadratic forms on V, and they all have the same Witt index, which is maximal if

1
and only if m divides 2 dim, V.

Proof. This is immediate by 2.6 and 5.9.

Remark. If & is a finite field of characteristic two and G is solvable, our results show
that G cannot be embedded as an irreducible subgroup of both O*(2n, k) and O~ (2n, k) for
any n. We know of no example of a group G for which this may happen.
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