Oppositeness in buildings and representations of finite groups of Lie type

Peter Sin
University of Florida

Conference on Designs, Codes and Geometries
Lewes, Delaware, March 30th, 2010.
Outline

Introduction

Notation and terminology

Oppositeness

Permutation modules

Carter-Lusztig Theorem

Relation to representations of algebraic groups

An E_6 Example
The oppositeness graph of the Tits building of a finite group $G = G(q)$ of Lie type is a q-analog of the classical Kneser graph.
In this talk we consider oppositeness from the point of view of representation theory of G.
Outline

Introduction

Notation and terminology

Oppositeness

Permutation modules

Carter-Lusztig Theorem

Relation to representations of algebraic groups

An E_6 Example
Groups with BN-pairs

- $G = G(q)$ group with a split BN-pair $(B = UH, N)$, characteristic p, rank ℓ
- $I = \{1, \ldots, \ell\}$
- W, Weyl group euclidean reflection group in a real vector space V,
- root system R, positive roots R^+, simple roots $S = \{\alpha_i \mid i \in I\}$
- w_i reflection in hyperplane perpendicular to α_i.
- $W = \langle w_i \mid i \in I \rangle$ Coxeter group.
- $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_i.
- $\ell(w) = $ the number of positive roots which w transforms to negative roots.
- w_0 unique longest element of W, sends all positive roots to negative roots.
Groups with BN-pairs

- $G = G(q)$ group with a split BN-pair $(B = UH, N)$, characteristic p, rank ℓ

- $I = \{1, \ldots, \ell\}$

- W, Weyl group euclidean reflection group in a real vector space V,

- root system R, positive roots R^+, simple roots $S = \{\alpha_i \mid i \in I\}$

- w_i reflection in hyperplane perpendicular to α_i.

- $W = \langle w_i \mid i \in I \rangle$ Coxeter group.

- $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_i.

- $\ell(w) =$ the number of positive roots which w transforms to negative roots.

- w_0 unique longest element of W, sends all positive roots to negative roots.
Groups with BN-pairs

- \(G = G(q) \) group with a split BN-pair \((B = UH, N) \), characteristic \(p \), rank \(\ell \)
- \(I = \{1, \ldots, \ell\} \)
- \(W \), Weyl group euclidean reflection group in a real vector space \(V \),
- root system \(R \), positive roots \(R^+ \), simple roots \(S = \{\alpha_i \mid i \in I\} \)
- \(w_i \) reflection in hyperplane perpendicular to \(\alpha_i \).
- \(W = \langle w_i \mid i \in I \rangle \) Coxeter group.
- \(\ell(w) \), is the length of the shortest expression for \(w \) as a word in the generators \(w_i \).
- \(\ell(w) = \) the number of positive roots which \(w \) transforms to negative roots.
- \(w_0 \) unique longest element of \(W \), sends all positive roots to negative roots.
Groups with BN-pairs

- $G = G(q)$ group with a split BN-pair $(B = UH, N)$, characteristic p, rank ℓ
- $I = \{1, \ldots, \ell\}$
- W, Weyl group euclidean reflection group in a real vector space V,
- root system R, positive roots R^+, simple roots $S = \{\alpha_i | i \in I\}$
- w_i reflection in hyperplane perpendicular to α_i.
- $W = \langle w_i | i \in I \rangle$ Coxeter group.
- $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_i.
- $\ell(w) = \text{the number of positive roots which } w \text{ transforms to negative roots}$.
- w_0 unique longest element of W, sends all positive roots to negative roots.
Groups with BN-pairs

- \(G = G(q) \) group with a split BN-pair \((B = UH, N) \), characteristic \(p \), rank \(\ell \)
- \(I = \{1, \ldots, \ell\} \)
- \(W \), Weyl group euclidean reflection group in a real vector space \(V \),
- root system \(R \), positive roots \(R^+ \), simple roots \(S = \{\alpha_i \mid i \in I\} \)
- \(w_i \) reflection in hyperplane perpendicular to \(\alpha_i \).
- \(W = \langle w_i \mid i \in I \rangle \) Coxeter group.
- \(\ell(w) \), is the length of the shortest expression for \(w \) as a word in the generators \(w_i \).
- \(\ell(w) = \) the number of positive roots which \(w \) transforms to negative roots.
- \(w_0 \) unique longest element of \(W \), sends all positive roots to negative roots.
Groups with BN-pairs

- $G = G(q)$ group with a split BN-pair $(B = UH, N)$, characteristic p, rank ℓ
- $I = \{1, \ldots, \ell\}$
- W, Weyl group euclidean reflection group in a real vector space V,
- root system R, positive roots R^+, simple roots $S = \{\alpha_i \mid i \in I\}$
- w_i reflection in hyperplane perpendicular to α_i.
- $W = \langle w_i \mid i \in I \rangle$ Coxeter group.

- $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_i.
- $\ell(w) = \text{the number of positive roots which } w \text{ transforms to negative roots.}$
- w_0 unique longest element of W, sends all positive roots to negative roots.
Groups with BN-pairs

- $G = G(q)$ group with a split BN-pair $(B = UH,N)$, characteristic p, rank ℓ
- $I = \{1, \ldots, \ell\}$
- W, Weyl group euclidean reflection group in a real vector space V, root system R, positive roots R^+, simple roots $S = \{\alpha_i \mid i \in I\}$
- w_i reflection in hyperplane perpendicular to α_i.
- $W = \langle w_i \mid i \in I \rangle$ Coxeter group.
- $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_i.
- $\ell(w) = \text{the number of positive roots which } w \text{ transforms to negative roots}$.
- w_0 unique longest element of W, sends all positive roots to negative roots.
Groups with BN-pairs

- $G = G(q)$ group with a split BN-pair $(B = UH, N)$, characteristic p, rank ℓ

- $I = \{1, \ldots, \ell\}$

- W, Weyl group euclidean reflection group in a real vector space V,

- root system R, positive roots R^+, simple roots $S = \{\alpha_i \mid i \in I\}$

- w_i reflection in hyperplane perpendicular to α_i.

- $W = \langle w_i \mid i \in I \rangle$ Coxeter group.

- $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_i.

- $\ell(w) =$ the number of positive roots which w transforms to negative roots.

- w_0 unique longest element of W, sends all positive roots to negative roots.
Groups with BN-pairs

- $G = G(q)$ group with a split BN-pair $(B = UH, N)$, characteristic p, rank ℓ
- $I = \{1, \ldots, \ell\}$
- W, Weyl group euclidean reflection group in a real vector space V,
- root system R, positive roots R^+, simple roots $S = \{\alpha_i \mid i \in I\}$
- w_i reflection in hyperplane perpendicular to α_i.
- $W = \langle w_i \mid i \in I \rangle$ Coxeter group.
- $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_i.
- $\ell(w) =$ the number of positive roots which w transforms to negative roots.
- w_0 unique longest element of W, sends all positive roots to negative roots.
Parabolic subgroups

- $J \subseteq I$
- $W_J := \langle w_i \mid i \in J \rangle$ standard parabolic subgroup of W
- $P_J = BW_JB$ is a standard parabolic subgroup of G.
Parabolic subgroups

- $J \subseteq I$
- $W_J := \langle w_i \mid i \in J \rangle$ standard parabolic subgroup of W
- $P_J = BW_JB$ is a standard parabolic subgroup of G.
Parabolic subgroups

- $J \subseteq I$
- $W_J := \langle w_i \mid i \in J \rangle$ standard parabolic subgroup of W
- $P_J = BW_J B$ is a standard parabolic subgroup of G.
Types and objects of the building

- A type and its cotype are simply a subset of I and its complement.
- An object of cotype J is a right coset of P_J in G.
Types and objects of the building

- A *type* and its *cotype* are simply a subset of I and its complement.
- An object of cotype J is a right coset of P_J in G.
Outline

Introduction

Notation and terminology

Oppositeness

Permutation modules

Carter-Lusztig Theorem

Relation to representations of algebraic groups

An E_6 Example
Opposite types

Definition
Two types \(J \) and \(K \) are *opposite* if

\[
\{-w_0(\alpha_i) \mid i \in J\} = \{\alpha_j \mid j \in K\},
\]
or, equivalently, if

\[
\{w_0 w_i w_0 \mid i \in J\} = \{w_i \mid i \in K\}.
\]
A_3, skew lines in $PG(3, q)$
D_5, flags in oriflamme geometry
E_6
Let J and K be fixed opposite types.

Definition

An object P_Jg of cotype J is *opposite* an object P_Kh of cotype K iff

\[P_Kh g^{-1} P_J = P_K w_0 P_J \]

\[\iff P_Kh \subseteq P_K w_0 P_J g \]

\[\iff P_J g \subseteq P_J w_0 P_K h \]
The oppositeness matrix

Let $A = A(J, K)$ be the oppositeness matrix for objects of cotype J and K.

Theorem
(Brouwer, 2009) The square of every eigenvalue λ of A is a power of q.

We will show that the p-rank of A is the degree of an irreducible representation of G.
Let \(A = A(J, K) \) be the oppositeness matrix for objects of cotype \(J \) and \(K \).

Theorem

(Brouwer, 2009) \(\text{The square of every eigenvalue } \lambda \text{ of } A \text{ is a power of } q. \)

We will show that the \(p \)-rank of \(A \) is the degree of an irreducible representation of \(G \).
The oppositeness matrix

Let $A = A(J, K)$ be the oppositeness matrix for objects of cotype J and K.

Theorem (Brouwer, 2009) The square of every eigenvalue λ of A is a power of q.

- We will show that the p-rank of A is the degree of an irreducible representation of G.
Outline

Introduction

Notation and terminology

Oppositeness

Permutation modules

Carter-Lusztig Theorem

Relation to representations of algebraic groups

An E_6 Example
Let k be a field of characteristic p. Let \mathcal{F}_J denote the space of functions from the set $P_J \setminus G$ of objects of cotype J to k. Then \mathcal{F}_J is a left kG-module by the rule

$$(xf)(P_Jg) = f(P_Jgx), \quad f \in \mathcal{F}_J, \quad g, x \in G.$$

Let δ_{P_Jg} denote the characteristic function of the object $P_Jg \in P_J \setminus G$. Then \mathcal{F}_J is generated as a kG-module by δ_{P_Jg}.
The oppositeness homomorphism

The relation of oppositeness defines a kG-homomorphism $\eta : \mathcal{F}_J \to \mathcal{F}_K$ given by

$$\eta(f)(P_K h) = \sum_{P_J g \subseteq P_J w_0 P_K h} f(P_J g).$$

We have

$$\eta(\delta_{P_J g}) = \sum_{P_K h \subseteq P_K w_0 P_J g} \delta_{P_K h}.$$

so the characteristic function of an object of cotype J is sent to the sum of the characteristic functions of all objects opposite to it.
The oppositeness homomorphism

- The relation of oppositeness defines a kG-homomorphism $\eta : \mathcal{F}_J \rightarrow \mathcal{F}_K$ given by

$$\eta(f)(P_Kh) = \sum_{P_Jg \subseteq P_Jw_0P_Kh} f(P_Jg).$$

- We have

$$\eta(\delta_{P_Jg}) = \sum_{P_Kh \subseteq P_Kw_0P_Jg} \delta_{P_Kh}.$$

so the characteristic function of an object of cotype J is sent to the sum of the characteristic functions of all objects opposite to it.
Theorem
The image of η is a simple module, uniquely characterized by the property that its one-dimensional U-invariant subspace has full stabilizer equal to P_J, which acts trivially on it.

This result is essentially a corollary of a more general result of Carter and Lusztig (1976) on the Iwahori-Hecke Algebra $\text{End}_{kG}(F_\emptyset)$. We next describe their result.
Outline

Introduction

Notation and terminology

Oppositeness

Permutation modules

Carter-Lusztig Theorem

Relation to representations of algebraic groups

An E_6 Example
The Iwahori-Hecke Algebra

- $\mathcal{F} = \mathcal{F}_{\emptyset}$.
- For $w \in W$ define $T_w \in \text{End}_k(\mathcal{F})$ by
 \[T_w(f)(Bg) = \sum_{Bg' \subseteq Bw^{-1}Bg} f(Bg'). \]
- Then
 \[T_w \in \text{End}_{kG}(\mathcal{F}), \quad \text{for all } w \in W. \]
- One can show that
 \[T_{ww'} = T_w T_{w'} \quad \text{if } \ell(ww') = \ell(w) + \ell(w'). \]
The Iwahori-Hecke Algebra

- $\mathcal{F} = \mathcal{F}_\emptyset$.
- For $w \in W$ define $T_w \in \text{End}_k(\mathcal{F})$ by

$$T_w(f)(Bg) = \sum_{Bg' \subseteq Bw^{-1}Bg} f(Bg').$$

- Then

$$T_w \in \text{End}_{kG}(\mathcal{F}), \text{ for all } w \in W.$$

- One can show that

$$T_{ww'} = T_w T_{w'} \text{ if } \ell(ww') = \ell(w) + \ell(w').$$
The Iwahori-Hecke Algebra

- $\mathcal{F} = \mathcal{F}_\emptyset$.
- For $w \in W$ define $T_w \in \text{End}_k(\mathcal{F})$ by
 \[
 T_w(f)(Bg) = \sum_{Bg' \subseteq Bw^{-1}Bg} f(Bg').
 \]
- Then $T_w \in \text{End}_{kG}(\mathcal{F})$, for all $w \in W$.
- One can show that
 \[
 T_{ww'} = T_w T_{w'} \quad \text{if} \quad \ell(ww') = \ell(w) + \ell(w').
 \]
The Iwahori-Hecke Algebra

- \(\mathcal{F} = \mathcal{F}_\emptyset \).
- For \(w \in W \) define \(T_w \in \text{End}_k(\mathcal{F}) \) by
 \[
 T_w(f)(Bg) = \sum_{Bg' \subseteq Bw^{-1}Bg} f(Bg').
 \]
- Then \(T_w \in \text{End}_{kG}(\mathcal{F}) \), for all \(w \in W \).
- One can show that
 \[
 T_{ww'} = T_w T_{w'} \quad \text{if} \quad \ell(ww') = \ell(w) + \ell(w').
 \]
Let \(w \in W \) have reduced expression

\[w_{j_n} \cdots w_{j_1}. \]

We consider the partial products \(w_{j_1}, w_{j_2} w_{j_1}, \ldots w_{j_n} \cdots w_{j_1} \).

Each partial product sends exactly one more positive root to a negative root than its predecessors, namely

\[w_{j_1} \cdots w_{j_{i-1}} (r_{j_i}). \]

Let \(J \) be a subset of \(I \).

\(V_J := \) subspace of \(V \) spanned by \(S_J = \{ \alpha_i \mid i \in J \} \).
Let \(w \in W \) have reduced expression
\[
w_{j_n} \cdots w_{j_1}.
\]

We consider the partial products \(w_{j_1}, w_{j_2} w_{j_1}, \ldots w_{j_n} \cdots w_{j_1} \).

Each partial product sends exactly one more positive root to a negative root than its predecessors, namely
\(w_{j_1} \cdots w_{j_i-1} (r_j) \).

Let \(J \) be a subset of \(I \).

\(V_J := \text{subspace of } V \) spanned by \(S_J = \{ \alpha_i \mid i \in J \} \).
Let $w \in W$ have reduced expression

$$w_{j_n} \cdots w_{j_1}.$$

We consider the partial products $w_{j_1}, \, w_{j_2}w_{j_1}, \, \ldots \, w_{j_n} \cdots w_{j_1}.$

Each partial product sends exactly one more positive root to a negative root than its predecessors, namely $w_{j_1} \cdots w_{j_{i-1}} (r_{j_i}).$

Let J be a subset of $I.$

$V_J :=$ subspace of V spanned by $S_J = \{ \alpha_i \mid i \in J \}.$
Let \(w \in W \) have reduced expression

\[w_{j_n} \cdots w_{j_1}. \]

We consider the partial products \(w_{j_1}, w_{j_2} w_{j_1}, \ldots w_{j_n} \cdots w_{j_1}. \)

Each partial product sends exactly one more positive root to a negative root than its predecessors, namely

\[w_{j_1} \cdots w_{j_{i-1}} (r_{j_i}). \]

Let \(J \) be a subset of \(I \).

\[V_J := \text{subspace of } V \text{ spanned by } S_J = \{ \alpha_i \mid i \in J \}. \]
Let $w \in W$ have reduced expression

$$w_{j_n} \cdots w_{j_1}.$$

We consider the partial products $w_{j_1}, w_{j_2} w_{j_1}, \ldots w_{j_n} \cdots w_{j_1}$.

Each partial product sends exactly one more positive root to a negative root than its predecessors, namely $w_{j_1} \cdots w_{j_{i-1}}(r_{j_i})$.

Let J be a subset of I.

$V_J :=$ subspace of V spanned by $S_J = \{\alpha_i \mid i \in J\}$.
For any reduced expression

\[w_0 = w_{j_k} \cdots w_{j_1} \]

define

\[\Theta_{j_i} = \begin{cases} T_{w_{j_i}} & \text{if } w_{j_1} \cdots w_{j_{i-1}}(r_{j_i}) \notin V_J \\ I + T_{w_{j_i}} & \text{if } w_{j_1} \cdots w_{j_{i-1}}(r_{j_i}) \in V_J \end{cases} \]

and set

\[\Theta^J_{w_0} = \Theta_{j_k} \Theta_{j_{k-1}} \cdots \Theta_{j_1}. \]

The definition depends on the choice of reduced expression but it can be seen that different expressions give the same endomorphism up to a nonzero scalar multiple.
For any reduced expression

\[w_0 = w_{j_k} \cdots w_{j_1} \]

define

\[\Theta_{j_i} = \begin{cases} T_{w_{j_i}} & \text{if } w_{j_1} \cdots w_{j_{i-1}}(r_{j_i}) \notin V_J \\ I + T_{w_{j_i}} & \text{if } w_{j_1} \cdots w_{j_{i-1}}(r_{j_i}) \in V_J \end{cases} \]

and set

\[\Theta^J_{w_0} = \Theta_{j_k} \Theta_{j_{k-1}} \cdots \Theta_{j_1}. \]

The definition depends on the choice of reduced expression but it can be seen that different expressions give the same endomorphism up to a nonzero scalar multiple.
Theorem
(Carter,Lusztig) The image $\Theta^J_{w_0}(F)$ is a simple kG-module. The full stabilizer of the one-dimensional subspace of U-fixed points in this module is P_J and the action of P_J on this one-dimensional subspace is trivial.
We choose a particular expression for w_0 to define $\Theta^J_{w_0}(\mathcal{F})$.

$R_J = R \cap V_J$ is a root system in V_J with simple system S_J and Weyl group W_J.

Let w_J be the longest element in W_J.

Let

$$w_J = w_{i_m} \cdots w_{i_2} w_{i_1}$$

be a reduced expression for w_J. The above expression can be extended to a reduced expression

$$w_0 = w_{i_k} \cdots w_{i_{m+1}} w_{i_m} \cdots w_{i_1}$$

of w_0. Then

$$w^* = w_{i_k} \cdots w_{i_{m+1}}$$

is a reduced expression for w^*.

Write $\Theta^J_{w_0}$ using the above expression for w_0.

Application of Carter-Lusztig to oppositeness

- We choose a particular expression for w_0 to define $\Theta^J_{w_0}(\mathcal{F})$.
- $R_J = R \cap V_J$ is a root system in V_J with simple system S_J and Weyl group W_J.
- w_J be the longest element in W_J.
- Let

 $$w_J = w_{i_m} \cdots w_{i_2} w_{i_1}$$

 be a reduced expression for w_J. The above expression can be extended to a reduced expression

 $$w_0 = w_{i_k} \cdots w_{i_{m+1}} w_{i_m} \cdots w_{i_1}$$

 of w_0. Then

 $$w^* = w_{i_k} \cdots w_{i_{m+1}}$$

 is a reduced expression for w^*.
- Write $\Theta^J_{w_0}$ using the above expression for w_0.
We choose a particular expression for w_0 to define $\Theta^J_{w_0}(\mathcal{F})$.

$R_J = R \cap V_J$ is a root system in V_J with simple system S_J and Weyl group W_J.

Let w_J be the longest element in W_J.

Let

$$w_J = w_{i_m} \cdots w_{i_2} w_{i_1}$$

be a reduced expression for w_J. The above expression can be extended to a reduced expression

$$w_0 = w_{i_k} \cdots w_{i_{m+1}} w_{i_m} \cdots w_{i_1}$$

of w_0. Then

$$w^* = w_{i_k} \cdots w_{i_{m+1}}$$

is a reduced expression for w^*.

Write $\Theta^J_{w_0}$ using the above expression for w_0.

We choose a particular expression for w_0 to define $\Theta^J_{w_0}(F)$.

$R_J = R \cap V_J$ is a root system in V_J with simple system S_J and Weyl group W_J.

w_J be the longest element in W_J.

Let

$$w_J = w_{i_m} \cdots w_{i_2} w_{i_1}$$

be a reduced expression for w_J. The above expression can be extended to a reduced expression

$$w_0 = w_{i_k} \cdots w_{i_{m+1}} w_{i_m} \cdots w_{i_1}$$

of w_0. Then

$$w^* = w_{i_k} \cdots w_{i_{m+1}}.$$

is a reduced expression for w^*.

Write $\Theta^J_{w_0}$ using the above expression for w_0.
We choose a particular expression for \(w_0 \) to define \(\Theta^J_{w_0}(\mathcal{F}) \).

\(R_J = R \cap V_J \) is a root system in \(V_J \) with simple system \(S_J \) and Weyl group \(W_J \).

\(w_J \) be the longest element in \(W_J \).

Let

\[
w_J = w_{i_m} \cdots w_{i_2} w_{i_1}
\]

be a reduced expression for \(w_J \). The above expression can be extended to a reduced expression

\[
w_0 = w_{i_k} \cdots w_{i_{m+1}} w_{i_m} \cdots w_{i_1}
\]

of \(w_0 \). Then

\[
w^* = w_{i_k} \cdots w_{i_{m+1}}.
\]

is a reduced expression for \(w^* \).

Write \(\Theta^J_{w_0} \) using the above expression for \(w_0 \).
The expression $w_0 = w^* w_J$ is chosen so that for the first m partial products the new positive root sent to a negative root belongs to V_J, and the new positive roots for the remaining partial products do not belong to V_J.

$$\Theta^J_{w_0} = T_{w^*}(1 + T_{w_{i_m}}) \cdots (1 + T_{w_{i_1}}),$$

Since $\ell(w^* w) = \ell(w^*) + \ell(w)$ for all $w \in W_J$, we see that $\Theta^J_{w_0}$ is a sum of endomorphisms of the form $T_{w^* w}$, for certain elements $w \in W_J$, with exactly one term of this sum equal to T_{w^*}.
The expression $w_0 = w^* w_J$ is chosen so that for the first m partial products the new positive root sent to a negative root belongs to V_J, and the new positive roots for the remaining partial products do not belong to V_J.

\[\Theta^J_{w_0} = T_{w^*}(1 + T_{w_{im}}) \cdots (1 + T_{w_{i_1}}), \]

Since $\ell(w^* w) = \ell(w^*) + \ell(w)$ for all $w \in W_J$, we see that $\Theta^J_{w_0}$ is a sum of endomorphisms of the form $T_{w^* w}$, for certain elements $w \in W_J$, with exactly one term of this sum equal to T_{w^*}.
The expression $w_0 = w^* w_J$ is chosen so that for the first m partial products the new positive root sent to a negative root belongs to V_J, and the new positive roots for the remaining partial products do not belong to V_J.

\[
\Theta^J_{w_0} = T_{w^*}(1 + T_{w_{i_m}}) \cdots (1 + T_{w_{i_1}}),
\]

Since $\ell(w^* w) = \ell(w^*) + \ell(w)$ for all $w \in W_J$, we see that $\Theta^J_{w_0}$ is a sum of endomorphisms of the form $T_{w^* w}$, for certain elements $w \in W_J$, with exactly one term of this sum equal to T_{w^*}.
The projections π_J and π_K

Let $\pi_J : \mathcal{F} \to \mathcal{F}_J$ be defined by

$$(\pi_J(f))(P_J g) = \sum_{Bh \subseteq P_J g} f(Bh)$$

$\pi_J(\delta_B) = \delta_{P_J}$, π_J is a surjective kG-module homomorphisms

π_K defined similarly.
The projections π_J and π_K

Let $\pi_J : \mathcal{F} \to \mathcal{F}_J$ be defined by

$$(\pi_J(f))(P_Jg) = \sum_{Bh \subseteq P_Jg} f(Bh)$$

$\pi_J(\delta_B) = \delta_{P_J}, \pi_J$ is a surjective kG-module homomorphisms

π_K defined similarly.
The projections π_J and π_K

Let $\pi_J : \mathcal{F} \to \mathcal{F}_J$ be defined by

$$(\pi_J(f))(P_J g) = \sum_{Bh \subseteq P_J g} f(Bh)$$

$\pi_J(\delta_B) = \delta_{P_J}$, π_J is a surjective kG-module homomorphisms

π_K defined similarly.
A computation

Compare $\eta \pi_J$ with $\pi_K T_{w^* w}$ for $w \in W_J$. For $f \in \mathcal{F}$,

$$[\eta(\pi_J(f))] (P_K g) = \sum_{P_J h \subseteq P_J w^*} \sum_{Bx \subseteq P_J h} f(Bx)$$

and

$$[\pi_K(T_{w^* w}(f))] (P_K h) = \sum_{Bx \subseteq P_K h} (T_{w^* w} f)(Bg)$$

for $w \in W_J$. For $f \in \mathcal{F}$,
Thus, we have for each $w \in \mathcal{W}_J$ a commutative diagram

$\begin{array}{c}
\mathcal{F}_J \\
\downarrow \pi_J \\
\mathcal{F}
\end{array} \xrightarrow{T_{ww^*}} \begin{array}{c}
\mathcal{F}_K \\
\downarrow \pi_K \\
\mathcal{F}
\end{array}$

If $w \neq 1$ we have $\pi_K T_{ww^*} = 0$.

Hence $\pi_K \Theta^J_{w_0} = \pi_K T_{w^*} = \eta \pi_J$.

Finally, $\Theta^J_{w_0}(\mathcal{F})$ is simple and $\eta \pi_J(\mathcal{F}) \neq 0$, so $\eta(\mathcal{F}_J) = \eta \pi_J(\mathcal{F}) \cong \Theta^J_{w_0}(\mathcal{F})$.

\square
Thus, we have for each $w \in \mathcal{W}_J$ a commutative diagram

\[
\begin{array}{ccc}
\mathcal{F}_J & \xrightarrow{q^\ell(w)\eta} & \mathcal{F}_K \\
\pi_J & & \pi_K \\
\mathcal{F} & \xrightarrow{T_{ww^*}} & \mathcal{F},
\end{array}
\]

1. If $w \neq 1$ we have $\pi_K T_{ww^*} = 0$.
2. Hence $\pi_K \Theta^J_{w_0} = \pi_K T_{w^*} = \eta \pi_J$.
3. Finally, $\Theta^J_{w_0}(\mathcal{F})$ is simple and $\eta \pi_J(\mathcal{F}) \neq 0$, so $\eta(\mathcal{F}_J) = \eta \pi_J(\mathcal{F}) \cong \Theta^J_{w_0}(\mathcal{F})$.

□
Thus, we have for each $w \in \mathcal{W}_J$ a commutative diagram

$$
\begin{array}{ccc}
\mathcal{F}_J & \xrightarrow{q^\ell(w)\eta} & \mathcal{F}_K \\
\pi_J \uparrow & & \pi_K \uparrow \\
\mathcal{F} & \xrightarrow{T_{ww^*}} & \mathcal{F},
\end{array}
$$

If $w \neq 1$ we have $\pi_K T_{ww^*} = 0$.

Hence $\pi_K \Theta^J_{w_0} = \pi_K T_{w^*} = \eta \pi_J$.

Finally, $\Theta^J_{w_0}(\mathcal{F})$ is simple and $\eta \pi_J(\mathcal{F}) \neq 0$, so $\eta(\mathcal{F}_J) = \eta \pi_J(\mathcal{F}) \cong \Theta^J_{w_0}(\mathcal{F})$.

\blacksquare
Thus, we have for each $w \in \mathcal{W}_J$ a commutative diagram

\[
\begin{array}{ccc}
\mathcal{F}_J & \xrightarrow{q^\ell(w)\eta} & \mathcal{F}_K \\
\pi_J \downarrow & & \pi_K \downarrow \\
\mathcal{F} & \xrightarrow{T_{ww^*}} & \mathcal{F},
\end{array}
\]

If $w \neq 1$ we have $\pi_K T_{ww^*} = 0$.

Hence $\pi_K \Theta^J_{w_0} = \pi_K T_{w^*} = \eta \pi_J$.

Finally, $\Theta^J_{w_0} (\mathcal{F})$ is simple and $\eta \pi_J (\mathcal{F}) \neq 0$, so $\eta (\mathcal{F}_J) = \eta \pi_J (\mathcal{F}) \cong \Theta^J_{w_0} (\mathcal{F})$.
Outline

Introduction

Notation and terminology

Oppositeness

Permutation modules

Carter-Lusztig Theorem

Relation to representations of algebraic groups

An E_6 Example
$G = G(q)$ is a Chevalley group of universal type or a twisted subgroup.

Simple modules are restrictions of certain simple rational modules $L(\lambda)$ of the ambient algebraic group, so we want to identify the highest weight λ of the oppositeness modules.

If G is an untwisted group, then the fundamental weights ω_i for the ambient algebraic group are indexed by I, and the highest weight of the simple module in the theorem is $\sum_{i \in I \setminus J} (q - 1) \omega_i$.
Highest weights of oppositeness modules

- $G = G(q)$ is a Chevalley group of universal type or a twisted subgroup.

- Simple modules are restrictions of certain simple rational modules $L(\lambda)$ of the ambient algebraic group, so we want to identify the highest weight λ of the oppositeness modules.

- If G is an untwisted group, then the fundamental weights ω_i for the ambient algebraic group are indexed by I, and the highest weight of the simple module in the theorem is $\sum_{i \in I \setminus J} (q - 1) \omega_i$.
Highest weights of oppositeness modules

- $G = G(q)$ is a Chevalley group of universal type or a twisted subgroup.
- Simple modules are restrictions of certain simple rational modules $L(\lambda)$ of the ambient algebraic group, so we want to identify the highest weight λ of the oppositeness modules.
- If G is an untwisted group, then the fundamental weights ω_i for the ambient algebraic group are indexed by I, and the highest weight of the simple module in the theorem is $\sum_{i \in I \setminus J} (q - 1)\omega_i$.
If G is a twisted group, inside untwisted G^*. There are two cases.

Suppose that all roots of G^* have the same length ($2A_\ell$, $2D_\ell$, $3D_4$, $2E_6$). Let $I^* = \{1, \ldots, \ell^*\}$ index the fundamental roots. Then G arises from a symmetry ρ of the Dynkin diagram of G^* and the index set I for G labels the ρ-orbits on I^*. Let $\omega_i, i \in I^*$ be the fundamental weights of the ambient algebraic group. For $J \subseteq I$, let $J^* \subset I^*$ be the union of the orbits in J. Then the highest weight of the kG^*-module in the theorem is $\sum_{i \in I^* \setminus J^*} (q - 1)\omega_i$.

Suppose that there are roots of different lengths for G^* (Suzuki and Ree groups). Then the set I for G indexes the subset of fundamental weights of the ambient algebraic group which are orthogonal to the long simple roots. and for $J \subset I$, the simple module of the theorem has highest weight $\sum_{i \in I \setminus J} (q - 1)\omega_i$.
If G is a twisted group, inside untwisted G^*. There are two cases.

Suppose that all roots of G^* have the same length ($2A_\ell$, $2D_\ell$, $3D_4$, $2E_6$). Let $I^* = \{1, \ldots, \ell^*\}$ index the fundamental roots. Then G arises from a symmetry ρ of the Dynkin diagram of G^* and the index set I for G labels the ρ-orbits on I^*. Let $\omega_i, i \in I^*$ be the fundamental weights of the ambient algebraic group. For $J \subseteq I$, let $J^* \subset I^*$ be the union of the orbits in J. Then the highest weight of the kG^*-module in the theorem is $\sum_{i \in I^* \setminus J^*} (q - 1) \omega_i$.

Suppose that there are roots of different lengths for G^* (Suzuki and Ree groups). Then the set I for G indexes the subset of fundamental weights of the ambient algebraic group which are orthogonal to the long simple roots. and for $J \subset I$, the simple module of the theorem has highest weight $\sum_{i \in I \setminus J} (q - 1) \omega_i$.
If G is a twisted group, inside untwisted G^*. There are two cases.

Suppose that all roots of G^* have the same length ($^2A_\ell$, $^2D_\ell, ^3D_4, ^2E_6$). Let $I^* = \{1, \ldots, \ell^*\}$ index the fundamental roots. Then G arises from a symmetry ρ of the Dynkin diagram of G^* and the index set I for G labels the ρ-orbits on I^*. Let $\omega_i, i \in I^*$ be the fundamental weights of the ambient algebraic group. For $J \subseteq I$, let $J^* \subset I^*$ be the union of the orbits in J. Then the highest weight of the kG^*-module in the theorem is $\sum_{i \in I^* \setminus J^*}(q - 1)\omega_i$.

Suppose that there are roots of different lengths for G^* (Suzuki and Ree groups). Then the set I for G indexes the subset of fundamental weights of the ambient algebraic group which are orthogonal to the long simple roots. and for $J \subset I$, the simple module of the theorem has highest weight $\sum_{i \in I \setminus J}(q - 1)\omega_i$.
Outline

Introduction

Notation and terminology

Oppositeness

Permutation modules

Carter-Lusztig Theorem

Relation to representations of algebraic groups

An E_6 Example
Example

- $G = E_6(q)$, group of isometries of a certain 3-form on a 27-dimensional vector space V. Consider singular points and singular hyperplanes.
Point-hyperplane incidence for $E_6(q)$

- $\text{rank}_p A = \dim L((q - 1)\omega_1)) = \dim L((p - 1)\omega_1))^t$, where $q = p^t$. (Steinberg’s tensor product theorem)

- In this case we can work out $\dim L((p - 1)\omega_1))$ using representation theory. (Weyl modules, Weyl Character formula, Jantzen sum formula).
Point-hyperplane incidence for $E_6(q)$

- $\text{rank}_p A = \dim L((q - 1)\omega_1)) = \dim L((p - 1)\omega_1))^t$, where $q = p^t$. (Steinberg's tensor product theorem)

- In this case we can work out $\dim L((p - 1)\omega_1))$ using representation theory. (Weyl modules, Weyl Character formula, Jantzen sum formula).
The Weyl module $V(\lambda)$ has a descending filtration, of submodules $V(\lambda)^i$, $i > 0$, such that

$$V(\lambda)^1 = \text{rad } V(\lambda), \quad \text{so} \quad V(\lambda)/V(\lambda)^1 \cong L(\lambda).$$

and

$$\sum_{i>0} \text{Ch}(V(\lambda)^i) = - \sum_{\alpha>0} \sum_{\{m: 0 < m\rho < \langle \lambda+\rho, \alpha \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$
Using the sum formula, one can show that there is an exact sequence

\[
0 \to V((p - 11)\omega_1 + 2\omega_2) \to V((p - 10)\omega_1 + \omega_2 + \omega_5) \\
\quad \to V((p - 9)\omega_1 + \omega_3 + \omega_6) \to V((p - 8)\omega_1 + \omega_4 + 2\omega_6) \\
\quad \to V((p - 7)\omega_1 + 3\omega_6) \to V((p - 1)\omega_1) \to L((p - 1)\omega_1) \to 0
\]

The dimensions of the \(V(\mu) \) are given by Weyl’s formula. Hence

\[
\dim L((p - 1)\omega_1) = \frac{1}{2^7 \cdot 3 \cdot 5 \cdot 11} p(p + 1)(p + 3) \\
\times (3p^8 - 12p^7 + 39p^6 + 320p^5 \\
- 550p^4 + 1240p^3 + 2080p^2 - 1920p + 1440)
\]
<table>
<thead>
<tr>
<th>Number</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>351</td>
</tr>
<tr>
<td>5</td>
<td>19305</td>
</tr>
<tr>
<td>7</td>
<td>439439</td>
</tr>
<tr>
<td>11</td>
<td>45822672</td>
</tr>
<tr>
<td>13</td>
<td>274187550</td>
</tr>
<tr>
<td>17</td>
<td>5030354043</td>
</tr>
<tr>
<td>19</td>
<td>16937278357</td>
</tr>
<tr>
<td>23</td>
<td>137112098409</td>
</tr>
<tr>
<td>29</td>
<td>1744146121068</td>
</tr>
<tr>
<td>31</td>
<td>362803832724</td>
</tr>
<tr>
<td>37</td>
<td>25349391871621</td>
</tr>
<tr>
<td>41</td>
<td>78345931447980</td>
</tr>
<tr>
<td>43</td>
<td>132256396016732</td>
</tr>
<tr>
<td>47</td>
<td>351675426454470</td>
</tr>
<tr>
<td>53</td>
<td>1317968719988571</td>
</tr>
<tr>
<td>59</td>
<td>4286665842359706</td>
</tr>
<tr>
<td>61</td>
<td>6185074367788952</td>
</tr>
<tr>
<td>67</td>
<td>17356733399472663</td>
</tr>
<tr>
<td>71</td>
<td>32843689463427543</td>
</tr>
<tr>
<td>73</td>
<td>44580694495895104</td>
</tr>
<tr>
<td>79</td>
<td>106281498207828698</td>
</tr>
<tr>
<td>83</td>
<td>182978611275724173</td>
</tr>
<tr>
<td>89</td>
<td>394284508288312914</td>
</tr>
<tr>
<td>97</td>
<td>1016219651834875565</td>
</tr>
</tbody>
</table>
Thank you for your attention!