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Introduction

The oppositeness graph of the Tits building of a finite group
G = G(q) of Lie type is a q-analog of the classical Kneser
graph.
In this talk we consider oppositeness from the point of view of
representation theory of G.
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Groups with BN-pairs

I G = G(q) group with a split BN-pair (B = UH,N),
characteristic p, rank `

I I = {1, . . . , `}
I W , Weyl group euclidean reflection group in a real vector

space V ,
I root system R, positive roots R+, simple roots

S = {αi | i ∈ I}
I wi reflection in hyperplane perpendicular to αi .
I W = 〈wi | i ∈ I〉 Coxeter group.
I `(w), is the length of the shortest expression for w as a

word in the generators wi .
I `(w) = the number of positive roots which w transforms to

negative roots.
I w0 unique longest element of W , sends all positive roots to

negative roots.
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Parabolic subgroups

I J ⊆ I
I WJ := 〈wi | i ∈ J〉 standard parabolic subgroup of W
I PJ = BWJB is a standard parabolic subgroup of G.
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Types and objects of the building

I A type and its cotype are simply a subset of I and its
complement.

I An object of cotype J is a right coset of PJ in G.
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Opposite types

Definition
Two types J and K are opposite if

{−w0(αi) | i ∈ J} = {αj | j ∈ K},

or, equivalently, if

{w0wiw0 | i ∈ J} = {wi | i ∈ K}.

α1 α2 α3t t ti
α1 α2 α3t t ty



A3, skew lines in PG(3,q)

α1 α2 α3t t ti
α1 α2 α3t t ty



D5, flags in oriflamme geometry
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Opposite objects

Let J and K be fixed opposite types.

Definition
An object PJg of cotype J is opposite an object PK h of cotype
K iff

PK hg−1PJ = PK w0PJ

(⇐⇒ PK h ⊆ PK w0PJg
⇐⇒ PJg ⊆ PJw0PK h).



The oppositeness matrix

I Let A = A(J,K ) be the oppositeness matrix for objects of
cotype J and K .

Theorem
(Brouwer, 2009) The square of every eigenvalue λ of A is a
power of q.

I We will show that the p-rank of A is the degree of an
irreducible representation of G.
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Permutation modules on flags

I Let k be a field of characteristic p. Let FJ denote the space
of functions from the set PJ\G of objects of cotype J to k .
Then FJ is a left kG-module by the rule

(xf )(PJg) = f (PJgx), f ∈ FJ , g, x ∈ G.

Let δPJ g denote the characteristic function of the object
PJg ∈ PJ\G. Then FJ is generated as a kG-module by
δPJ g



The oppositeness homomorphism

I The relation of oppositeness defines a kG-homomorphism
η : FJ → FK given by

η(f )(PK h) =
∑

PJ g⊆PJ w0PK h

f (PJg).

I We have
η(δPJ g) =

∑
PK h⊆PK w0PJg

δPK h.

so the characteristic function of an object of cotype J is
sent to the sum of the characteristic functions of all objects
opposite to it.
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Simplicity of oppositeness modules

Theorem
The image of η is a simple module, uniquely characterized by
the property that its one-dimensional U-invariant subspace has
full stablizer equal to PJ , which acts trivially on it.
This result is essentially a corollary of a more general result of
Carter and Lusztig (1976) on the Iwahori-Hecke Algebra
EndkG(F∅). We next describe their result.
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The Iwahori-Hecke Algebra

I F = F∅.
I For w ∈W define Tw ∈ Endk (F) by

Tw (f )(Bg) =
∑

Bg′⊆Bw−1Bg

f (Bg′).

I Then
Tw ∈ EndkG(F), for all w ∈W .

I One can show that

Tww ′ = TwTw ′ if `(ww ′) = `(w) + `(w ′).
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I Let w ∈W have reduced expression

wjn · · ·wj1 .

I We consider the partial products wj1 , wj2wj1 , . . . wjn · · ·wj1 .
I Each partial product sends exactly one more positive root

to a negative root than its predecessors, namely
wj1 · · ·wji−1(rji ).

I Let J be a subset of I.
I VJ := subspace of V spanned by SJ = {αi | i ∈ J}.
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I For any reduced expression

w0 = wjk · · ·wj1

define

Θji =

{
Twji

if wj1 · · ·wji−1(rji ) /∈ VJ

I + Twji
if wj1 · · ·wji−1(rji ) ∈ VJ

and set
ΘJ

w0
= Θjk Θjk−1 · · ·Θjk .

I The definition depends on the choice of reduced
expression but it can be seen that different expressions
give the same endomorphism up to a nonzero scalar
multiple.
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Theorem
(Carter,Lusztig) The image ΘJ

w0
(F) is a simple kG-module. The

full stablizer of the one-dimensional subspace of U-fixed points
in this module is PJ and the action of PJ on this
one-dimensional subspace is trivial.



Application of Carter-Lusztig to oppositeness

I We choose a particular expression for w0 to define ΘJ
w0

(F).
I RJ = R ∩ VJ is a root system in VJ with simple system SJ

and Weyl group WJ .
I wJ be the longest element in WJ .
I Let

wJ = wim · · ·wi2wi1

be a reduced expression for wJ . The above expression can
be extended to a reduced expresion

w0 = wik · · ·wim+1wim · · ·wi1

of w0. Then
w∗ = wik · · ·wim+1 .

is a reduced expression for w∗.
I Write ΘJ

w0
using the above expression for w0.
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I The expression w0 = w∗wJ is chosen so that for the first m
partial products the new positive root sent to a negative
root belongs to VJ , and the new positive roots for the
remaining partial products do not belong to VJ .

I

ΘJ
w0

= Tw∗(1 + Twim
) · · · (1 + Twi1

),

I Since `(w∗w) = `(w∗) + `(w) for all w ∈WJ , we see that
ΘJ

w0
is a sum of endomorphisms of the form Tw∗w , for

certain elements w ∈WJ , with exactly one term of this
sum equal to Tw∗ .
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The projections πJ and πK

I Let πJ : F → FJ be defined by

(πJ(f ))(PJg) =
∑

Bh⊆PJ g

f (Bh)

I πJ(δB) = δPJ , πJ is a surjective kG-module
homomorphisms

I πK defined similarly.
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A computation

Compare ηπJ with πK Tw∗w for w ∈WJ . For f ∈ F ,

[η(πJ(f ))] (PK g) =
∑

PJ h⊆PJ w∗−1PK g

∑
Bx⊆PJ h

f (Bx)

=
∑

Bx⊆PJ w∗−1PK g

f (Bx).

and

[πK (Tw∗w (f ))] (PK h) =
∑

Bg⊆PK h

(Tw∗w f )(Bg)

=
∑

Bg⊆PK h

∑
Bx⊆B(w∗w)−1Bg

f (Bx)

=
∑

Bg⊆PK h

∑
Bg⊆B(w∗w)Bx

f (Bx)

= q`(w)
∑

Bx⊆PJ w∗−1PK g

f (Bx).



I Thus, we have for each w ∈WJ a commutative diagram

FJ
q`(w)η // FK

F

πJ

OO

Tww∗ // F ,

πK

OO

I If w 6= 1 we have πK Tww∗ = 0.
I Hence πK ΘJ

w0
= πK Tw∗ = ηπJ .

I Finally, ΘJ
w0

(F) is simple and ηπJ(F) 6= 0, so
η(FJ) = ηπJ(F) ∼= ΘJ

w0
(F).
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Highest weights of oppositeness modules

I G = G(q) is a Chevalley group of universal type or a
twisted subgroup.

I Simple modules are restrictions of certain simple rational
modules L(λ) of the ambient algebraic group, so we want
to identify the highest weight λ of the oppositeness
modules.

I If G is an untwisted group, then the fundamental weights ωi
for the ambient algebraic group are indexed by I, and the
highest weight of the simple module in the theorem is∑

i∈I\J(q − 1)ωi .



Highest weights of oppositeness modules

I G = G(q) is a Chevalley group of universal type or a
twisted subgroup.

I Simple modules are restrictions of certain simple rational
modules L(λ) of the ambient algebraic group, so we want
to identify the highest weight λ of the oppositeness
modules.

I If G is an untwisted group, then the fundamental weights ωi
for the ambient algebraic group are indexed by I, and the
highest weight of the simple module in the theorem is∑

i∈I\J(q − 1)ωi .



Highest weights of oppositeness modules

I G = G(q) is a Chevalley group of universal type or a
twisted subgroup.

I Simple modules are restrictions of certain simple rational
modules L(λ) of the ambient algebraic group, so we want
to identify the highest weight λ of the oppositeness
modules.

I If G is an untwisted group, then the fundamental weights ωi
for the ambient algebraic group are indexed by I, and the
highest weight of the simple module in the theorem is∑

i∈I\J(q − 1)ωi .



I If G is a twisted group, inside untwisted G∗. There are two
cases.

I Suppose that all roots of G∗ have the same length (2A`,
2D`, 3D4, 2E6). Let I∗ = {1, . . . , `∗} index the fundamental
roots. Then G arises from a symmetry ρ of the Dynkin
diagram of G∗ and the index set I for G labels the ρ-orbits
on I∗. Let ωi , i ∈ I∗ be the fundamental weights of the
ambient algebraic group. For J ⊆ I, let J∗ ⊂ I∗ be the union
of the orbits in J. Then the highest weight of the
kG∗-module in the theorem is

∑
i∈I∗\J∗(q − 1)ωi .

I Suppose that there are roots of different lengths for G∗

(Suzuki and Ree groups). Then the set I for G indexes the
subset of fundamental weights of the ambient algebraic
group which are orthogonal to the long simple roots. and
for J ⊂ I, the simple module of the theorem has highest
weight

∑
i∈I\J(q − 1)ωi .
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Example

I G = E6(q), group of isometries of a certain 3-form on a
27-dimensional vector space V . Consider singular points
and singular hyperplanes.

α1 α2 α3 α5 α6

α4

t t t t t
t

yi



Point-hyperplane incidence for E6(q)

I rankpA = dim L((q − 1)ω1)) = dim L((p − 1)ω1))t , where
q = pt . (Steinberg’s tensor product theorem)

I In this case we can work out dim L((p − 1)ω1)) using
representation theory. (Weyl modules, Weyl Character
formula, Jantzen sum formula).
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Jantzen Sum Formula

The Weyl module V (λ) has a descending filtration, of
submodules V (λ)i , i > 0, such that

V (λ)1 = rad V (λ), so V (λ)/V (λ)1 ∼= L(λ).

and∑
i>0

Ch(V (λ)i) = −
∑
α>0

∑
{m:0<mp<〈λ+ρ,α∨〉}

vp(mp)χ(λ−mpα)



Using the sum formula, one can show that there is an exact
sequence

0→ V ((p − 11)ω1 + 2ω2)→ V ((p − 10)ω1 + ω2 + ω5)

→ V ((p − 9)ω1 + ω3 + ω6)→ V ((p − 8)ω1 + ω4 + 2ω6)

→ V ((p − 7)ω1 + 3ω6)→ V ((p − 1)ω1)→ L((p − 1)ω1)→ 0

The dimensions of the V (µ) are given by Weyl’s formula. Hence

dim L((p − 1)ω1) =
1

27.3.5.11
p(p + 1)(p + 3)

× (3p8 − 12p7 + 39p6 + 320p5

− 550p4 + 1240p3 + 2080p2 − 1920p + 1440)



2, 27
3, 351
5, 19305
7, 439439
11, 45822672
13, 274187550
17, 5030354043
19, 16937278357
23, 137112098409
29, 1744146121068
31, 3628038332724
37, 25349391871621
41, 78345931447980
43, 132256396016732
47, 351675426454470
53, 1317968719988571
59, 4286665842359706
61, 6185074367788952
67, 17356733399472663
71, 32843689463427543
73, 44580694495895104
79, 106281498207828698
83, 182978611275724173
89, 394284508288312914
97, 1016219651834875565



I Thank you for your attention!
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