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Continuous-time quantum walks on normal Cayley
graphs

I G, a group,
I S, an inverse-closed, union of conjugacy classes, not

containing 1.
I Cay(G,S) normal Cayley graph, adjacency matrix A.

I Eigenvalues of Cay(G,S) are θχ = χ(S)
χ(1) , for χ ∈ Irr(G).

I Consider continuous-time quantum walk on Cay(G,S)
defined by the family of unitary operators

U(t) = e−itA, t ∈ R,

acting on CG.
I Perfect state transfer (PST): Cay(G,S) has PST from g to

h at time τ iff |U(τ)h,g | = 1.
I Other phenomena of interest include pretty good state

transfer, fractional revival, uniform mixing.
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I Aim is to study phenomena by relating them to
eigenvalues. It is natural to start with groups for which the
irreducible characters are not too difficult to work with.

I There has been a lot of work on cyclic, abelian, dihedral
groups and on 2-groups of nilpotency class 2 (e.g.
extraspecial, Heisenberg, Suzuki 2-groups). See
References.

I Today, I will focus on the other end of the spectrum,
nonsolvable groups.
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PST in normal Cayley graphs is covered by PST
characterization for association schemes (Coutinho et.al).
If Cay(G,S) has PST from g to h then h = gz for some central
involution z.

Theorem
Let z be central involution in G. In Cay(G,S) we have PST
between vertices g and h = gz at some time if and only if the
following hold.
(a) The eigenvalues are integers.
(b) Let Φ+ = {θχ|χ(z) > 0} and Φ− = {θχ|χ(z) < 0}. There is

an integer N such that
(i) for all θχ ∈ Φ−, v2(θχ − θ1) = N; and
(ii) for all θχ ∈ Φ+, v2(θχ − θ1) > N.
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What is different about the nonsolvable case?

I Character theory is much more complicated.

I In many cases, G is generated by a single conjugacy class.
I If C is a conjugacy class and x ∈ C then

χ(C)− 1G(C) =
|C|χ(x)

χ(1)
− |C|.

and θχ − θ1 is the sum over C ⊆ S of such terms.
I Conjugacy class sizes and character degrees can be

divisible by large powers of 2
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Infinite families GL(2,q)

I Characters were worked out by Frobenius and Schur in
early 20th century. Irreducible characters are divided into
four series with uniform properties.

I In joint work with with Raghu Pantangi we found normal
Cayley graphs in GL(2,q), SL(2,q), GU(2,q), with uniform
descriptions with respect to q.

I As an example, for the groups SL(2,q), q = pa, a possible
connection set consists of all elements of order p and 2p,
together with central involution −I.

I Generalization to higher dimensions may be difficult, as the
irreducible characters fall into families, whose number
grows fast with respect to dimension.



Infinite families GL(2,q)

I Characters were worked out by Frobenius and Schur in
early 20th century. Irreducible characters are divided into
four series with uniform properties.

I In joint work with with Raghu Pantangi we found normal
Cayley graphs in GL(2,q), SL(2,q), GU(2,q), with uniform
descriptions with respect to q.

I As an example, for the groups SL(2,q), q = pa, a possible
connection set consists of all elements of order p and 2p,
together with central involution −I.

I Generalization to higher dimensions may be difficult, as the
irreducible characters fall into families, whose number
grows fast with respect to dimension.



Infinite families GL(2,q)

I Characters were worked out by Frobenius and Schur in
early 20th century. Irreducible characters are divided into
four series with uniform properties.

I In joint work with with Raghu Pantangi we found normal
Cayley graphs in GL(2,q), SL(2,q), GU(2,q), with uniform
descriptions with respect to q.

I As an example, for the groups SL(2,q), q = pa, a possible
connection set consists of all elements of order p and 2p,
together with central involution −I.

I Generalization to higher dimensions may be difficult, as the
irreducible characters fall into families, whose number
grows fast with respect to dimension.



Infinite families GL(2,q)

I Characters were worked out by Frobenius and Schur in
early 20th century. Irreducible characters are divided into
four series with uniform properties.

I In joint work with with Raghu Pantangi we found normal
Cayley graphs in GL(2,q), SL(2,q), GU(2,q), with uniform
descriptions with respect to q.

I As an example, for the groups SL(2,q), q = pa, a possible
connection set consists of all elements of order p and 2p,
together with central involution −I.

I Generalization to higher dimensions may be difficult, as the
irreducible characters fall into families, whose number
grows fast with respect to dimension.



Quasisimple groups

Let G be a quasisimple group (a perfect central extension of a
simple group) with a central involution. G is generated by any
noncentral conjugacy class C, so if C is real (closed under
inverses), then Cay(G,C) is a connected normal Cayley graph.



Lemma
Let C be a real conjugacy class of G and x ∈ C. Suppose, for
all χ ∈ Irr(G), that χ(x) is an integer and |C|χ(x)χ(1) − |C| ≡ 0
(mod 4) . Then we have PST at t = π

2 in Cay(G,S), where
S = C ∪ {z}

Proof.

θχ − θ1 = (
|C|(χ(x)

χ(1)
+
χ(z)

χ(1)
)− (|C|+ 1)

= (
|C|(χ(x))

χ(1)
− |C|) + (

χ(z)

χ(1)
− 1).

Thus

θχ − θ1
∼=

{
2 (mod 4), if χ(z) = −1;
0 (mod 4), if χ(z) = 1.



Sporadic groups

I By examining the ATLAS character tables (built into GAP),
we can find many examples of groups G and classes C
that satisfy the hypotheses of the lemma.

I For example let G = 2.B, the double cover of the Baby
Monster, and let C be the unique conjugacy class of
elements of order 110.

I If we don’t restrict to single classes, we can search all
possible connection sets and find lots of examples.
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Multiple state transfer in oriented normal Cayley
graphs

I We have begun to apply similar ideas to look for multiple
state transfer MST in oriented Cayley graphs of
quasisimple groups.

I For example, we can find Cayley graphs for 3.A7
generated by a single class (of order 15) and a central
element that exhibits MST of order 3.

I We can search for other connection sets and find more
examples, eg. in 3.M22 and 3.J3.
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I Other infinite families like 2.An. Can we understand the
characters well enough ?

I Other phenomena, PGST, IUM, FR, MST for nonabelian
groups? What groups are most promising for providing
examples?

I MST on set of size 6?
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