On the dimensions of some error-correcting codes

Peter Sin

Gainesville, September 13, 2007.

Peter Sin On the dimensions of some error-correcting codes

ъ

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into *random* and *structured* types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of Sp(4, q).

ヘロン ヘアン ヘビン ヘビン

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of Sp(4, q).

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into *random* and *structured* types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of Sp(4, *q*).

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into *random* and *structured* types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of Sp(4, *q*).

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into *random* and *structured* types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of Sp(4, *q*).

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into *random* and *structured* types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of Sp(4, *q*).

- q, any prime power
- P^* , L^* be two sets in bijection with \mathbf{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if

$$y = ax + b$$
 and $z = ay + c.$ (1)

- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated LU(3, q). We have:

$$\dim \mathrm{LU}(3,q) = q^3 - \mathrm{rank} M_2(P^*,L^*).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- q, any prime power
- P^* , L^* be two sets in bijection with \mathbf{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if

$$y = ax + b$$
 and $z = ay + c.$ (1)

- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated LU(3, q). We have:

$$\dim \mathrm{LU}(3,q) = q^3 - \mathrm{rank} M_2(P^*,L^*).$$

▲御♪ ▲ヨ♪ ▲ヨ♪ 二旦

- q, any prime power
- P^* , L^* be two sets in bijection with \mathbf{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if

$$y = ax + b$$
 and $z = ay + c$. (1)

- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated LU(3, q). We have:

$$\dim \mathrm{LU}(3,q) = q^3 - \mathrm{rank} M_2(P^*,L^*).$$

▲御▶ ▲理▶ ▲理▶ 二連

- q, any prime power
- P^* , L^* be two sets in bijection with \mathbf{F}_q^3
- (*a*, *b*, *c*) ∈ *P*^{*} is incident with [*x*, *y*, *z*] ∈ *L*^{*} if and only if

$$y = ax + b$$
 and $z = ay + c$. (1)

 The binary incidence matrix M₂(P*, L*) and its transpose can be taken as parity check matrices of two codes.

• These codes are designated LU(3, q). We have:

$$\dim LU(3,q) = q^3 - \operatorname{rank} M_2(P^*, L^*).$$

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

- q, any prime power
- P^* , L^* be two sets in bijection with \mathbf{F}_q^3
- (*a*, *b*, *c*) ∈ *P*^{*} is incident with [*x*, *y*, *z*] ∈ *L*^{*} if and only if

$$y = ax + b$$
 and $z = ay + c$. (1)

- The binary incidence matrix M₂(P*, L*) and its transpose can be taken as parity check matrices of two codes.
- These codes are designated LU(3, q). We have:

$$\dim \mathrm{LU}(3,q) = q^3 - \mathrm{rank} M_2(P^*,L^*).$$

(同) (日) (日) 三日

• Conjecture: If q is odd, the dimension of LU(3, q) is $(q^3 - 2q^2 + 3q - 2)/2$.

• This number was known to be a lower bound when *q* is an odd prime.

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

- Conjecture: If q is odd, the dimension of LU(3, q) is $(q^3 2q^2 + 3q 2)/2$.
- This number was known to be a lower bound when *q* is an odd prime.

▲□ → ▲ □ → ▲ □ → ▲ □ → ④ Q ()

- q, any prime power
- (*V*, (., .)), a 4-dimensional **F**_q-vector space with a nonsingular alternating bilinear form
- *e*₀,*e*₁, *e*₂, *e*₃, a symplectic basis such that
 (*e*₀, *e*₃) = (*e*₁, *e*₂) = 1
- x₀, x₁, x₂, x₃, coordinates for basis
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- *L*, the set of totally isotropic 2-dimensional subspaces of *V*, considered as lines in *P*
- (*P*, *L*) is called the *symplectic generalized quadrangle*.

- q, any prime power
- (V, (.,.)), a 4-dimensional F_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3 , a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x₀, x₁, x₂, x₃, coordinates for basis
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- *L*, the set of totally isotropic 2-dimensional subspaces of *V*, considered as lines in *P*
- (*P*, *L*) is called the *symplectic generalized quadrangle*.

- q, any prime power
- (V, (.,.)), a 4-dimensional F_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3 , a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x₀, x₁, x₂, x₃, coordinates for basis
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- *L*, the set of totally isotropic 2-dimensional subspaces of *V*, considered as lines in *P*
- (*P*, *L*) is called the *symplectic generalized quadrangle*.

- q, any prime power
- (V, (.,.)), a 4-dimensional F_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3 , a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x₀, x₁, x₂, x₃, coordinates for basis
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- *L*, the set of totally isotropic 2-dimensional subspaces of *V*, considered as lines in *P*
- (*P*, *L*) is called the *symplectic generalized quadrangle*.

- q, any prime power
- (V, (.,.)), a 4-dimensional F_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3 , a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x₀, x₁, x₂, x₃, coordinates for basis
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- *L*, the set of totally isotropic 2-dimensional subspaces of *V*, considered as lines in *P*
- (*P*, *L*) is called the *symplectic generalized quadrangle*.

イロン 不得 とくほ とくほう 一座

- q, any prime power
- (V, (.,.)), a 4-dimensional F_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3 , a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x₀, x₁, x₂, x₃, coordinates for basis
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- *L*, the set of totally isotropic 2-dimensional subspaces of *V*, considered as lines in *P*
- (*P*, *L*) is called the *symplectic generalized quadrangle*.

イロト イポト イヨト イヨト 一座

- q, any prime power
- (V, (.,.)), a 4-dimensional F_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3 , a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x₀, x₁, x₂, x₃, coordinates for basis
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- *L*, the set of totally isotropic 2-dimensional subspaces of *V*, considered as lines in *P*
- (*P*, *L*) is called the *symplectic generalized quadrangle*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Quadrangle property

Given any line and any point not on the line, there is a unique line which passes though the given point and meets the given line.

• $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.

- p^{\perp} , the set of points on lines through the point p
- $P_1 = P \setminus p_0^{\perp}$
- L_1 , the set of lines in L which do not meet ℓ_0
- We have new incidence systems $(P_1, L_1), (P, L_1), (P_1, L)$.

イロト イポト イヨト イヨト 一座

- $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.
- p^{\perp} , the set of points on lines through the point p
- $P_1 = P \setminus p_0^{\perp}$
- L_1 , the set of lines in L which do not meet ℓ_0
- We have new incidence systems $(P_1, L_1), (P, L_1), (P_1, L)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.
- p^{\perp} , the set of points on lines through the point p
- $P_1 = P \setminus p_0^{\perp}$
- L_1 , the set of lines in L which do not meet ℓ_0
- We have new incidence systems $(P_1, L_1), (P, L_1), (P_1, L)$.

イロト イポト イヨト イヨト 一座

- $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.
- p^{\perp} , the set of points on lines through the point p
- $P_1 = P \setminus p_0^{\perp}$
- L_1 , the set of lines in L which do not meet ℓ_0
- We have new incidence systems $(P_1, L_1), (P, L_1), (P_1, L)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.
- p^{\perp} , the set of points on lines through the point p
- $P_1 = P \setminus p_0^{\perp}$
- L₁, the set of lines in L which do not meet ℓ_0
- We have new incidence systems $(P_1, L_1), (P, L_1), (P_1, L)$.

(四)((日)(日)(日)(日)

• We will see below that (*P*₁, *L*₁) is equivalent to the system (*P*^{*}, *L*^{*}).

So we want to prove:

Theorem

Assume q is odd. The rank of $M_2(P_1, L_1)$ equals $(q^3 + 2q^2 - 3q + 2)/2$.

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd prime. Then the rank of $M_2(P, L)$ is $(q^3 + 2q^2 + q + 2)/2$.

• Note that the difference in ranks is 2q.

ヘロト 人間 ト ヘヨト ヘヨト

- We will see below that (*P*₁, *L*₁) is equivalent to the system (*P*^{*}, *L*^{*}).
- So we want to prove:

Assume q is odd. The rank of $M_2(P_1, L_1)$ equals $(q^3 + 2q^2 - 3q + 2)/2$.

• A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd prime. Then the rank of $M_2(P, L)$ is $(q^3 + 2q^2 + q + 2)/2$.

• Note that the difference in ranks is 2q.

- We will see below that (*P*₁, *L*₁) is equivalent to the system (*P*^{*}, *L*^{*}).
- So we want to prove:

Assume q is odd. The rank of $M_2(P_1, L_1)$ equals $(q^3 + 2q^2 - 3q + 2)/2$.

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd prime. Then the rank of $M_2(P, L)$ is $(q^3 + 2q^2 + q + 2)/2$.

• Note that the difference in ranks is 2q.

- We will see below that (*P*₁, *L*₁) is equivalent to the system (*P*^{*}, *L*^{*}).
- So we want to prove:

Assume q is odd. The rank of $M_2(P_1, L_1)$ equals $(q^3 + 2q^2 - 3q + 2)/2$.

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd prime. Then the rank of $M_2(P,L)$ is $(q^3 + 2q^2 + q + 2)/2$.

• Note that the difference in ranks is 2q.

- We will see below that (*P*₁, *L*₁) is equivalent to the system (*P*^{*}, *L*^{*}).
- So we want to prove:

Assume q is odd. The rank of $M_2(P_1, L_1)$ equals $(q^3 + 2q^2 - 3q + 2)/2$.

• A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd prime. Then the rank of $M_2(P, L)$ is $(q^3 + 2q^2 + q + 2)/2$.

• Note that the difference in ranks is 2q.

- We will see below that (*P*₁, *L*₁) is equivalent to the system (*P*^{*}, *L*^{*}).
- So we want to prove:

Assume q is odd. The rank of $M_2(P_1, L_1)$ equals $(q^3 + 2q^2 - 3q + 2)/2$.

• A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd prime. Then the rank of $M_2(P, L)$ is $(q^3 + 2q^2 + q + 2)/2$.

• Note that the difference in ranks is 2q.

Next, see $(P_1, L_1) \cong (P^*, L^*)$, for *q* any prime power.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Coordinates of P1

x₀, x₁, x₂, x₃ be homogeneous coordinates of *P* p₀ = ⟨e₀⟩ P₁ = {(x₀ : x₁ : x₂ : x₃) | x₃ ≠ 0} = {(a : b : c : 1) |, a, b, c ∈ F_q} ≅ F_q³.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Coordinates of P1

 x₀, x₁, x₂, x₃ be homogeneous coordinates of *P* p₀ = ⟨e₀⟩
 P₁ = {(x₀ : x₁ : x₂ : x₃) | x₃ ≠ 0} = {(a : b : c : 1) |, a, b, c ∈ F_q} ≅ F_q³.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで
Coordinates of P1

• x_0, x_1, x_2, x_3 be homogeneous coordinates of *P* • $p_0 = \langle e_0 \rangle$ • $P_1 = \{ (x_0 : x_1 : x_2 : x_3) \mid x_3 \neq 0 \}$ $= \{ (a : b : c : 1) \mid a, b, c \in \mathbf{F}_a \} \cong \mathbf{F}_a^3.$

(2)

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

- $e_i \wedge e_j$, $0 \le i < j \le 3$, basis of the exterior square $\wedge^2(V)$
- *p*₀₁, *p*₀₂, *p*₀₃, *p*₁₂, *p*₁₃, *p*₂₃, homogeneous coordinates for P(∧²(V))
- If *W* is a 2-dimensional subspace of *V* then $\wedge^2(W) \in \mathbf{P}(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j a_j b_i$, its *Grassmann-Plücker* coordinates.
- The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} p_{02}p_{13} + p_{03}p_{12} = 0$, called the *Klein Quadric*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $e_i \wedge e_j$, $0 \le i < j \le 3$, basis of the exterior square $\wedge^2(V)$
- *p*₀₁, *p*₀₂, *p*₀₃, *p*₁₂, *p*₁₃, *p*₂₃, homogeneous coordinates for P(∧²(V))
- If *W* is a 2-dimensional subspace of *V* then $\wedge^2(W) \in \mathbf{P}(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j a_j b_i$, its *Grassmann-Plücker* coordinates.
- The totality of points of P(∧²(V)) obtained from all W forms the set with equation p₀₁p₂₃ − p₀₂p₁₃ + p₀₃p₁₂ = 0, called the *Klein Quadric*.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- $e_i \wedge e_j$, $0 \le i < j \le 3$, basis of the exterior square $\wedge^2(V)$
- *p*₀₁, *p*₀₂, *p*₀₃, *p*₁₂, *p*₁₃, *p*₂₃, homogeneous coordinates for P(∧²(V))
- If *W* is a 2-dimensional subspace of *V* then $\wedge^2(W) \in \mathbf{P}(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j a_j b_i$, its *Grassmann-Plücker* coordinates.
- The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} p_{02}p_{13} + p_{03}p_{12} = 0$, called the *Klein Quadric*.

(日本)(日本)(日本)(日本)

- $e_i \wedge e_j$, $0 \le i < j \le 3$, basis of the exterior square $\wedge^2(V)$
- *p*₀₁, *p*₀₂, *p*₀₃, *p*₁₂, *p*₁₃, *p*₂₃, homogeneous coordinates for P(∧²(V))
- If *W* is a 2-dimensional subspace of *V* then $\wedge^2(W) \in \mathbf{P}(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j a_j b_i$, its *Grassmann-Plücker* coordinates.
- The totality of points of P(∧²(V)) obtained from all W forms the set with equation p₀₁p₂₃ p₀₂p₁₃ + p₀₃p₁₂ = 0, called the *Klein Quadric*.

(日本)(日本)(日本)(日本)

- $e_i \wedge e_j$, $0 \le i < j \le 3$, basis of the exterior square $\wedge^2(V)$
- *p*₀₁, *p*₀₂, *p*₀₃, *p*₁₂, *p*₁₃, *p*₂₃, homogeneous coordinates for P(∧²(V))
- If *W* is a 2-dimensional subspace of *V* then $\wedge^2(W) \in \mathbf{P}(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j a_j b_i$, its *Grassmann-Plücker* coordinates.
- The totality of points of P(∧²(V)) obtained from all W forms the set with equation p₀₁p₂₃ − p₀₂p₁₃ + p₀₃p₁₂ = 0, called the *Klein Quadric*.

▲御♪ ▲ヨ♪ ▲ヨ♪ 二旦

- *L* corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1:0:0:0), (0:1:0:0) \rangle$
- L_1 is the subset of *L* given by $p_{23} \neq 0$.

• The quadratic relation yields

$$L_{1} \cong \{ (z^{2} + xy : x : z : -z : y : 1) \mid x, y, z \in \mathbf{F}_{q} \}$$

$$\cong \mathbf{F}_{q}^{3}.$$
(3)

イロト イポト イヨト イヨト 一座

- *L* corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1:0:0:0), (0:1:0:0) \rangle$
- L_1 is the subset of *L* given by $p_{23} \neq 0$.

• The quadratic relation yields

$$L_{1} \cong \{ (z^{2} + xy : x : z : -z : y : 1) \mid x, y, z \in \mathbf{F}_{q} \}$$

$$\cong \mathbf{F}_{q}^{3}.$$
(3)

- *L* corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1:0:0:0), (0:1:0:0) \rangle$
- L_1 is the subset of L given by $p_{23} \neq 0$.

• The quadratic relation yields

$$L_{1} \cong \{ (z^{2} + xy : x : z : -z : y : 1) \mid x, y, z \in \mathbf{F}_{q} \}$$

$$\cong \mathbf{F}_{q}^{3}.$$
(3)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- *L* corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1:0:0:0), (0:1:0:0) \rangle$
- L_1 is the subset of L given by $p_{23} \neq 0$.
- The quadratic relation yields

$$L_1 \cong \{ (z^2 + xy : x : z : -z : y : 1) \mid x, y, z \in \mathbf{F}_q \}$$

$$\cong \mathbf{F}_q^3.$$
(3)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Incidence equations

- When is (a: b: c: 1) ∈ P₁ on (z² + xy : x : z : -z : y : 1) ∈ L₁?
- If the line is spanned by points with homogeneous coordinates (a₀ : a₁ : a₂ : a₃) and (b₀ : b₁ : b₂ : b₃). The given point and line are incident if and only if all 3 × 3 minors of the matrix

$$\begin{pmatrix} a & b & c & 1 \\ a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \end{pmatrix}$$

are zero.

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

Incidence equations

- When is (a : b : c : 1) ∈ P₁ on (z² + xy : x : z : -z : y : 1) ∈ L₁?
- If the line is spanned by points with homogeneous coordinates (a₀ : a₁ : a₂ : a₃) and (b₀ : b₁ : b₂ : b₃). The given point and line are incident if and only if all 3 × 3 minors of the matrix

$$\begin{pmatrix} a & b & c & 1 \\ a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \end{pmatrix}$$
(4)

are zero.

★ 문 ► ★ 문 ►

The four equations which result reduce to the two equations

$$z = -cy + b,$$
 $x = cz - a.$ (5)

• Hence (P_1, L_1) and (P^*, L^*) are equivalent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

The four equations which result reduce to the two equations

$$z = -cy + b,$$
 $x = cz - a.$ (5)

• Hence (P_1, L_1) and (P^*, L^*) are equivalent.

同 ト イヨ ト イヨ ト ヨ うくぐ

- F₂[P], the vector space of all F₂-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in **F**₂[*P*].
- C(P, L), the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- π_{P_1} : $\mathbf{F}_2[P] \rightarrow \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L)), C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$

- F₂[P], the vector space of all F₂-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in F₂[P].
- C(P, L), the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1}: \mathbf{F}_2[P] \rightarrow \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L)), C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$

- F₂[P], the vector space of all F₂-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in F₂[P].
- C(P, L), the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1}: \mathbf{F}_2[P] \rightarrow \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L)), C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$

- F₂[P], the vector space of all F₂-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in F₂[P].
- C(P, L), the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1}: \mathbf{F}_2[P] \to \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L)), C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$

- F₂[P], the vector space of all F₂-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in F₂[P].
- C(P, L), the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1}: \mathbf{F}_2[P] \to \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L)), C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$

- F₂[P], the vector space of all F₂-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in F₂[P].
- C(P, L), the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1}: \mathbf{F}_2[P] \rightarrow \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L)), C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$

Z ⊂ C(P, L₁), a set of lines in L₁ which maps bijectively under π_{P1} to a basis of C(P₁, L₁)

- *X*, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$
- Y be any q lines which meet l₀ in the q distinct points other than p₀

•
$$|X_0 \cup Y| = 2q$$
 (cf. Theorem 1).

- Z ⊂ C(P, L₁), a set of lines in L₁ which maps bijectively under π_{P1} to a basis of C(P₁, L₁)
- *X*, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$
- Y be any q lines which meet l₀ in the q distinct points other than p₀
- $|X_0 \cup Y| = 2q$ (cf. Theorem 1).

- Z ⊂ C(P, L₁), a set of lines in L₁ which maps bijectively under π_{P1} to a basis of C(P₁, L₁)
- *X*, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$
- Y be any q lines which meet ℓ₀ in the q distinct points other than p₀

• $|X_0 \cup Y| = 2q$ (cf. Theorem 1).

- Z ⊂ C(P, L₁), a set of lines in L₁ which maps bijectively under π_{P1} to a basis of C(P₁, L₁)
- *X*, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$
- Y be any q lines which meet l₀ in the q distinct points other than p₀

•
$$|X_0 \cup Y| = 2q$$
 (cf. Theorem 1).

Lemma

 $Z \cup X_0 \cup Y$ is linearly independent over \mathbf{F}_2 .

Corollary

$\dim_{\mathsf{F}_2}\mathrm{LU}(3,q)\geq q^3-\dim_{\mathsf{F}_2}C(P,L)+2q. \tag{(4)}$

Peter Sin On the dimensions of some error-correcting codes

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Lemma

 $Z \cup X_0 \cup Y$ is linearly independent over \mathbf{F}_2 .

Corollary

$$\dim_{\mathbf{F}_2} \mathrm{LU}(3,q) \ge q^3 - \dim_{\mathbf{F}_2} C(P,L) + 2q. \tag{6}$$

Peter Sin On the dimensions of some error-correcting codes

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof of Theorem 1

Assume that *q* is odd. By Corollary 4 the proof of Theorem 1 will be completed if we can show that $Z \cup X_0 \cup Y$ spans C(P, L) as a vector space over \mathbf{F}_2 .

Geometric arguments

Lemma

Let $\ell \in L$. Then the sum of all lines which meet ℓ (excluding ℓ itself) is the constant function 1.

Proof.

The function given by the sum takes the value $q \equiv 1$ at any point of ℓ and value 1 at any point off ℓ , by the quadrangle property.

ヘロト ヘアト ヘビト ヘビト

Geometric arguments

Lemma

Let $\ell \in L$. Then the sum of all lines which meet ℓ (excluding ℓ itself) is the constant function 1.

Proof.

The function given by the sum takes the value $q \equiv 1$ at any point of ℓ and value 1 at any point off ℓ , by the quadrangle property.

イロト イポト イヨト イヨト

Similarly:

Lemma

Let $\ell \neq \ell_0$ be a line which meets ℓ_0 at a point p. Let Φ_ℓ be the sum of all lines in L_1 which meet ℓ . Then

$$\Phi_{\ell}(p') = \begin{cases} 0, & \text{if } p' = p; \\ q, & \text{if } p' \in \ell \setminus \{p\}; \\ 0, & \text{if } p' \in p^{\perp} \setminus \ell; \\ 1, & \text{if } p' \in P \setminus p^{\perp}. \end{cases}$$
(7)

Corollary

Let $p \in \ell_0$ and let ℓ , ℓ' be two lines through p, neither equal to ℓ_0 . Then $\ell - \ell' \in C(P, L_1)$.

イロト 不得 トイヨト イヨト 三臣

Similarly:

Lemma

Let $\ell \neq \ell_0$ be a line which meets ℓ_0 at a point p. Let Φ_ℓ be the sum of all lines in L_1 which meet ℓ . Then

$$\Phi_{\ell}(\boldsymbol{p}') = \begin{cases} 0, & \text{if } \boldsymbol{p}' = \boldsymbol{p}; \\ \boldsymbol{q}, & \text{if } \boldsymbol{p}' \in \ell \setminus \{\boldsymbol{p}\}; \\ 0, & \text{if } \boldsymbol{p}' \in \boldsymbol{p}^{\perp} \setminus \ell; \\ 1, & \text{if } \boldsymbol{p}' \in \boldsymbol{P} \setminus \boldsymbol{p}^{\perp}. \end{cases}$$
(7)

Corollary

Let $p \in \ell_0$ and let ℓ , ℓ' be two lines through p, neither equal to ℓ_0 . Then $\ell - \ell' \in C(P, L_1)$.

<ロ> <問> <問> < 同> < 同> < 同> < 同> < 同

Some representation theory

Lemma

ker $\pi_{P_1} \cap C(P, L)$ has dimension q + 1, with basis X.

Proof:

Let G_{p0} be the stabilizer in Sp(V) of p0.

ker $\pi_{P_1} = \mathbf{F}_2[p_0^{\perp}] = \mathbf{F}_2[\{p_0\}] \oplus \mathbf{F}_2[p_0^{\perp} \setminus \{p_0\}]$ (8)

as an $\mathbf{F}_2 G_{p_0}$ -module. Clearly $\mathbf{F}_2[\{p_0\}]$ is a one-dimensional trivial $\mathbf{F}_2 G_{p_0}$ -module.

・ロト ・ 同ト ・ ヨト ・ ヨト

Some representation theory

Lemma

ker $\pi_{P_1} \cap C(P, L)$ has dimension q + 1, with basis X.

Proof:

• Let G_{p_0} be the stabilizer in Sp(V) of p_0 .

0

ker $\pi_{P_1} = \mathbf{F}_2[p_0^{\perp}] = \mathbf{F}_2[\{p_0\}] \oplus \mathbf{F}_2[p_0^{\perp} \setminus \{p_0\}]$ (8)

as an $\mathbf{F}_2 G_{p_0}$ -module. Clearly $\mathbf{F}_2[\{p_0\}]$ is a one-dimensional trivial $\mathbf{F}_2 G_{p_0}$ -module.

Some representation theory

Lemma

ker $\pi_{P_1} \cap C(P, L)$ has dimension q + 1, with basis X.

Proof:

• Let G_{p_0} be the stabilizer in Sp(V) of p_0 .

۲

ker
$$\pi_{P_1} = \mathbf{F}_2[p_0^{\perp}] = \mathbf{F}_2[\{p_0\}] \oplus \mathbf{F}_2[p_0^{\perp} \setminus \{p_0\}]$$
 (8)

as an $F_2G_{p_0}$ -module. Clearly $F_2[\{p_0\}]$ is a one-dimensional trivial $F_2G_{p_0}$ -module.

We consider the following subgroups of G_{ρ₀}.

$$Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbf{F}_q \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid c \in \mathbf{F}_q \right\}$$
(9)

- Q ⊲ G_{p0}, Q/Z(Q) is elementary abelian of order q² and Z(Q) acts trivially on p[⊥]₀.
- Since *Q* has odd order, it acts semisimply on F₂[*p*[⊥]₀] and we can compute the decomposition.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

We consider the following subgroups of G_{ρ₀}.

$$Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbf{F}_q \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid c \in \mathbf{F}_q \right\}$$
(9)

- $Q \lhd G_{p_0}$, Q/Z(Q) is elementary abelian of order q^2 and Z(Q) acts trivially on p_0^{\perp} .
- Since Q has odd order, it acts semisimply on F₂[p₀[⊥]] and we can compute the decomposition.

個人 くほん くほん しほ
We consider the following subgroups of G_{ρ₀}.

$$Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbf{F}_q \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid c \in \mathbf{F}_q \right\}$$
(9)

- $Q \triangleleft G_{p_0}$, Q/Z(Q) is elementary abelian of order q^2 and Z(Q) acts trivially on p_0^{\perp} .
- Since Q has odd order, it acts semisimply on F₂[p[⊥]₀] and we can compute the decomposition.

- モン・モン・ 早

$$\mathbf{F}_{2}[\boldsymbol{\rho}_{0}^{\perp}] = T \oplus \boldsymbol{W}, \tag{10}$$

where *T* is the q + 2-dimensional space of *Q*-fixed points and *W* is simple of dimension $q^2 - 1$.

The intersection

$$\ker \pi_{P_1} \cap C(P, L) = \mathbf{F}_2[p_0^{\perp}] \cap C(P, L), \tag{11}$$

is an $\mathbf{F}_2 G_{p_0}$ -submodule of $\mathbf{F}_2[p_0^{\perp}]$.

- The q + 1 lines through p_0 lie in the intersection, accounting for q + 1 dimensions of *T*.
- We must argue that the intersection is no bigger than their span. If it were, then by (10), F₂[p₀[⊥]] ∩ C(P, L) must contain either W or all the Q-fixed points on F₂[p₀[⊥]].
- Both possibilities lead immediately to contradictions.

ヘロア ヘビア ヘビア・

$$\mathbf{F}_2[\boldsymbol{p}_0^{\perp}] = T \oplus \boldsymbol{W}, \tag{10}$$

where *T* is the q + 2-dimensional space of *Q*-fixed points and *W* is simple of dimension $q^2 - 1$.

The intersection

ker
$$\pi_{P_1} \cap C(P, L) = \mathbf{F}_2[p_0^{\perp}] \cap C(P, L),$$
 (11)

is an $\mathbf{F}_2 G_{p_0}$ -submodule of $\mathbf{F}_2[p_0^{\perp}]$.

- The *q* + 1 lines through *p*₀ lie in the intersection, accounting for *q* + 1 dimensions of *T*.
- We must argue that the intersection is no bigger than their span. If it were, then by (10), F₂[p₀[⊥]] ∩ C(P, L) must contain either W or all the Q-fixed points on F₂[p₀[⊥]].
- Both possibilities lead immediately to contradictions.

・ロン ・ 一 マン・ 日 マー・

$$\mathbf{F}_2[\boldsymbol{p}_0^{\perp}] = T \oplus \boldsymbol{W}, \tag{10}$$

where *T* is the q + 2-dimensional space of *Q*-fixed points and *W* is simple of dimension $q^2 - 1$.

The intersection

ker
$$\pi_{P_1} \cap C(P, L) = \mathbf{F}_2[p_0^{\perp}] \cap C(P, L),$$
 (11)

is an $\mathbf{F}_2 G_{p_0}$ -submodule of $\mathbf{F}_2[p_0^{\perp}]$.

- The q + 1 lines through p₀ lie in the intersection, accounting for q + 1 dimensions of T.
- We must argue that the intersection is no bigger than their span. If it were, then by (10), F₂[p₀[⊥]] ∩ C(P, L) must contain either W or all the Q-fixed points on F₂[p₀[⊥]].
- Both possibilities lead immediately to contradictions.

(日本) (日本) (日本)

$$\mathbf{F}_2[\boldsymbol{p}_0^{\perp}] = T \oplus \boldsymbol{W}, \tag{10}$$

where *T* is the q + 2-dimensional space of *Q*-fixed points and *W* is simple of dimension $q^2 - 1$.

The intersection

ker
$$\pi_{P_1} \cap C(P, L) = \mathbf{F}_2[p_0^{\perp}] \cap C(P, L),$$
 (11)

is an $\mathbf{F}_2 G_{p_0}$ -submodule of $\mathbf{F}_2[p_0^{\perp}]$.

- The q + 1 lines through p₀ lie in the intersection, accounting for q + 1 dimensions of T.
- We must argue that the intersection is no bigger than their span. If it were, then by (10), F₂[p₀[⊥]] ∩ C(P, L) must contain either W or all the Q-fixed points on F₂[p₀[⊥]].

• Both possibilities lead immediately to contradictions.

伺 とくき とくきとう

$$\mathbf{F}_{2}[\boldsymbol{p}_{0}^{\perp}] = T \oplus \boldsymbol{W}, \qquad (10)$$

where *T* is the q + 2-dimensional space of *Q*-fixed points and *W* is simple of dimension $q^2 - 1$.

The intersection

ker
$$\pi_{P_1} \cap C(P, L) = \mathbf{F}_2[p_0^{\perp}] \cap C(P, L),$$
 (11)

is an $\mathbf{F}_2 G_{p_0}$ -submodule of $\mathbf{F}_2[p_0^{\perp}]$.

- The q + 1 lines through p_0 lie in the intersection, accounting for q + 1 dimensions of *T*.
- We must argue that the intersection is no bigger than their span. If it were, then by (10), F₂[p₀[⊥]] ∩ C(P, L) must contain either W or all the Q-fixed points on F₂[p₀[⊥]].
- Both possibilities lead immediately to contradictions.

▲ 臣 ▶ ▲ 臣 ▶ 二 臣

ker $\pi_{P_1} \cap C(P, L_1)$ has dimension q - 1, and basis the set of functions $\ell - \ell'$, where $\ell \neq \ell_0$ is an arbitrary but fixed line through p_0 and ℓ' varies over the q - 1 lines through p_0 different from ℓ_0 and ℓ .

$Z \cup X_0 \cup Y$ spans C(P, L) as a vector space over \mathbf{F}_2 .

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1 , since ker $\pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0 .
- We must show that the span of X₀ ∪ L₁ ∪ Y contains all lines through ℓ₀, including ℓ₀.
- First, consider a line $\ell \neq \ell_0$ through ℓ_0 . We can assume that ℓ meets ℓ_0 at a point other than p_0 , since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1 .

ヘロト ヘ回ト ヘヨト ヘヨト

 $Z \cup X_0 \cup Y$ spans C(P, L) as a vector space over \mathbf{F}_2 .

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1 , since ker $\pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0 .
- We must show that the span of X₀ ∪ L₁ ∪ Y contains all lines through ℓ₀, including ℓ₀.
- First, consider a line $\ell \neq \ell_0$ through ℓ_0 . We can assume that ℓ meets ℓ_0 at a point other than p_0 , since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1 .

・ロン ・ 一 マン・ 日 マー・

 $Z \cup X_0 \cup Y$ spans C(P, L) as a vector space over \mathbf{F}_2 .

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1 , since ker $\pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0 .
- We must show that the span of X₀ ∪ L₁ ∪ Y contains all lines through ℓ₀, including ℓ₀.
- First, consider a line $\ell \neq \ell_0$ through ℓ_0 . We can assume that ℓ meets ℓ_0 at a point other than p_0 , since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1 .

ヘロア ヘビア ヘビア・

 $Z \cup X_0 \cup Y$ spans C(P, L) as a vector space over \mathbf{F}_2 .

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1 , since ker $\pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0 .
- We must show that the span of X₀ ∪ L₁ ∪ Y contains all lines through ℓ₀, including ℓ₀.
- First, consider a line l ≠ l₀ through l₀. We can assume that l meets l₀ at a point other than p₀, since otherwise l ∈ X₀. Therefore l meets l₀ in the same point p as some element l' ∈ Y. Then Corollary 7 shows that l lies in the span of Y and L₁.

• The only line still missing is ℓ_0 .

- By Lemma 5 applied to ℓ_0 , we see that the constant function 1 is in the span.
- Finally, we see from Lemma 6 that

$$\sum_{\ell \in X_0} \Phi_\ell = 1 - \ell_0, \tag{12}$$

so we are done.

・ロト ・ 一下・ ・ ヨト ・ ヨト

- The only line still missing is ℓ_0 .
- By Lemma 5 applied to l₀, we see that the constant function 1 is in the span.
- Finally, we see from Lemma 6 that

$$\sum_{\ell \in X_0} \Phi_\ell = 1 - \ell_0, \tag{12}$$

so we are done.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

- The only line still missing is ℓ_0 .
- By Lemma 5 applied to l₀, we see that the constant function 1 is in the span.
- Finally, we see from Lemma 6 that

$$\sum_{\ell \in X_0} \Phi_\ell = 1 - \ell_0, \tag{12}$$

so we are done.

通 とう ほうとう ほうとう

• Consider the binary code LU(3, q) when $q = 2^t$, $t \ge 1$.

- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbf{F}_2} C(\mathbf{P}, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then then the rank of $M_2(P, L)$ is

$$+\left(rac{1+\sqrt{17}}{2}
ight)^{2t}+\left(rac{1-\sqrt{17}}{2}
ight)^{2t}.$$

Nevertheless:

- Computer calculations of J.-L. Kim (up to q = 16) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).

イロト イポト イヨト イヨト

- Consider the binary code LU(3, q) when $q = 2^t$, $t \ge 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbf{F}_2} C(\mathbf{P}, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then then the rank of $M_2(P, L)$ is

$$+\left(\frac{1+\sqrt{17}}{2}\right)^{2t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2t}.$$

Nevertheless:

- Computer calculations of J.-L. Kim (up to q = 16) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).

ヘロト ヘ回ト ヘヨト ヘヨト

- Consider the binary code LU(3, q) when $q = 2^t$, $t \ge 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbf{F}_2} C(\mathbf{P}, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$
 (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to q = 16) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).

ヘロア ヘビア ヘビア・

- Consider the binary code LU(3, q) when $q = 2^t$, $t \ge 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbf{F}_2} C(\mathbf{P}, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$
 (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to *q* = 16) suggested that the inequality (6) is equality for even *q* as well.
- Ogul Arslan has found a proof (2007).

- Consider the binary code LU(3, q) when $q = 2^t$, $t \ge 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbf{F}_2} C(\mathbf{P}, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$
 (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to q = 16) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).

- Consider the binary code LU(3, q) when $q = 2^t$, $t \ge 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbf{F}_2} C(P, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$
 (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to q = 16) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).