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Overview

@ LDPC (low density parity check) codes have attracted
much attention recently, due to their good performance in
theory and practice.

@ A main division is into random and structured types.

@ One structured family, constructed using certain bipartite
graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa,
V. Pless, and S. Friedland (2004)

@ They conjectured the dimensions of the codes.
@ We'll describe the conjecture and its proof (with Q. Xiang).

@ The proof involves the geometry of generalized
quadrangles and the representation theory of Sp(4, q).
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@ g, any prime power
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The codes LU(3, q)
@ g, any prime power
@ P*, L* be two sets in bijection with F®
@ (a,b,c) € P*isincident with [x, y, z] € L* if and only if

y=ax+b and z=ay+ec. (1)
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The codes LU(3, q)
@ g, any prime power
@ P*, L* be two sets in bijection with F®
@ (a,b,c) € P*isincident with [x, y, z] € L* if and only if

y=ax+b and z=ay+ec. (1)

@ The binary incidence matrix Mo(P*, L*) and its transpose
can be taken as parity check matrices of two codes.
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The codes LU(3, q)
@ g, any prime power
@ P*, L* be two sets in bijection with F®
@ (a,b,c) € P*isincident with [x, y, z] € L* if and only if

y=ax+b and z=ay+ec. (1)

@ The binary incidence matrix Mo(P*, L*) and its transpose
can be taken as parity check matrices of two codes.

@ These codes are designated LU(3, q). We have:

dimLU(8, q) = ¢° — rankM,(P*, L*).

Peter Sin On the dimensions of some error-correcting codes



@ Conjecture: If q is odd, the dimension of LU(3, q) is
(¢° —2¢° +3g-2)/2.
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@ Conjecture: If q is odd, the dimension of LU(3, q) is
(@® —2¢° +3q —2)/2.

@ This number was known to be a lower bound when g is an
odd prime.

Peter Sin On the dimensions of some error-correcting codes



The symplectic generalized quadrangle
@ g, any prime power
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(€0, €3) = (€1,62) = 1
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The symplectic generalized quadrangle
@ g, any prime power

@ (V,(.,.)), a4-dimensional F4-vector space with a
nonsingular alternating bilinear form

@ ep,61, 62, €3, a symplectic basis such that
(€0, €3) = (€1,€2) =1
@ Xp, X1, X2, X3, coordinates for basis
@ P =P(V), the set of points of the projective space of V

@ L, the set of totally isotropic 2-dimensional subspaces of V,
considered as lines in P

@ (P, L) is called the symplectic generalized quadrangle.
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Quadrangle property
Given any line and any point not on the line, there is a unique
line which passes though the given point and meets the given

line.
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@ po = (eo) and o = (e, €1).
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@ po = (eo) and o = (e, €1).
@ p', the set of points on lines through the point p
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@ po = (eo) and o = (e, €1).
@ p', the set of points on lines through the point p
® Py =P\py
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@ po = (€p) and ¢y = (€o, &1)-

@ p', the set of points on lines through the point p
® Py =P\py

@ L4, the set of lines in L which do not meet ¢,
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@ po = (€p) and ¢y = (€o, &1)-

@ p', the set of points on lines through the point p

® Py =P\py

@ L4, the set of lines in L which do not meet ¢,

@ We have new incidence systems (P, Ly), (P, Ly), (P4, L).
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@ We will see below that (P;, L¢) is equivalent to the system
(P*,L*).
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@ We will see below that (P;, L¢) is equivalent to the system
(P*, L*).
@ So we want to prove:
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@ We will see below that (P;, L¢) is equivalent to the system
(P*,L*).

@ So we want to prove:

Assume q is odd. The rank of Mx(Py, Ly) equals
(@® +2¢° —3q+2)/2.
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@ We will see below that (P;, L¢) is equivalent to the system
(P*,L*).

@ So we want to prove:

Assume q is odd. The rank of Mx(Py, Ly) equals
(@® + 2% —3g +2)/2.

@ A known result is:
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@ We will see below that (P;, L¢) is equivalent to the system
(P*,L*).

@ So we want to prove:

Assume q is odd. The rank of Mx(Py, Ly) equals
(@® + 2% —3g +2)/2.

@ A known result is:

(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd
prime. Then the rank of Mx(P, L) is (q° +2g° + q + 2)/2.
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@ We will see below that (P;, L¢) is equivalent to the system
(P*,L*).

@ So we want to prove:

Assume q is odd. The rank of Mx(Py, Ly) equals
(@® + 2% —3g +2)/2.

@ A known result is:

(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd
prime. Then the rank of Mx(P, L) is (q° +2g° + q + 2)/2.

@ Note that the difference in ranks is 2q.
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Next, see (Py, L1) = (P*, L*), for g any prime power.
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Coordinates of P;
@ Xp, X1, X2, X3 be homogeneous coordinates of P
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Coordinates of P;
@ Xp, X1, X2, X3 be homogeneous coordinates of P

@ po = (&)
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Coordinates of P;
@ Xp, X1, X2, X3 be homogeneous coordinates of P
@ po = (&)
°
={(x0: X1 : X2 :x3) | X3 # 0}
{(a b:c:1)|,ab,cecFql =Fg
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Coordinates of lines in P(V)
@ e Nej,0<i<j<3, basis of the exterior square AZ(V)
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Coordinates of lines in P(V)
@ e Nej,0<i<j<3, basis of the exterior square AZ(V)

@ po1, Po2, Po3s P12, P13, P23, homogeneous coordinates for
P(r2(V))
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Coordinates of lines in P(V)
@ e Nej,0<i<j<3, basis of the exterior square AZ(V)
@ Po1, Po2, Po3s P12, P13, P23, homogeneous coordinates for
P(r2(V))
@ If W is a 2-dimensional subspace of V then
N2(W) € P(A2(V)).
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Coordinates of lines in P(V)

@ e Nej,0<i<j<3, basis of the exterior square AZ(V)

@ Po1, Po2, Pos, P12, P13, Po3, homogeneous coordinates for
P(A2(V))

@ If W is a 2-dimensional subspace of V then
N2(W) € P(A2(V)).

o lf W= {((ap:as:a:az),(by:bi:bo:bs))then AZ(W)
has coordinates p; = a;b; — ajb;, its Grassmann-Pliicker
coordinates.
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Coordinates of lines in P(V)

@ e Nej,0<i<j<3, basis of the exterior square AZ(V)

@ Po1, Po2, Pos, P12, P13, Po3, homogeneous coordinates for
P(A2(V))

@ If W is a 2-dimensional subspace of V then
N2(W) € P(A2(V)).

o lf W= {((ap:as:a:az),(by:bi:bo:bs))then AZ(W)
has coordinates p; = a;b; — ajb;, its Grassmann-Pliicker
coordinates.

@ The totality of points of P(A?(V)) obtained from all W

forms the set with equation pg1p23 — pPo2p13 + PosPi2 = 0,
called the Klein Quadric.
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Coordinates of L and L;

@ L corresponds to the subset of points of the Klein quadric
which satisfy the additional linear equation pyz = —p12.
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Coordinates of L and L;

@ L corresponds to the subset of points of the Klein quadric
which satisfy the additional linear equation pyz = —p12.

@ lp=(1:0:0:0),(0:1:0:0))
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Coordinates of L and L;

@ L corresponds to the subset of points of the Klein quadric
which satisfy the additional linear equation pyz = —p12.

@ lp=(1:0:0:0),(0:1:0:0))
@ L, is the subset of L given by po3 # 0.
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Coordinates of L and L;

@ L corresponds to the subset of points of the Klein quadric
which satisfy the additional linear equation pyz = —p12.

@ lp=(1:0:0:0),(0:1:0:0))
@ L, is the subset of L given by po3 # 0.
@ The quadratic relation yields

Ly=2{(Z2+xy:x:z:-z:y:1)| x,y,z € Fg}

=~ Fg3. )
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Incidence equations

@ Whenis(a:b:c:1) € Pyon
(224 xy:x:z:—z:y:1) € L4?
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Incidence equations

@ Whenis(a:b:c:1) € Pyon
(224 xy:x:z:—z:y:1) € L4?

@ If the line is spanned by points with homogeneous
coordinates (ap : a1 : ax : as) and (bg : by : bo : b3). The
given point and line are incident if and only if all 3 x 3
minors of the matrix

a b c 1
da a4 da» as (4)
by by b b3

are zero.
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@ The four equations which result reduce to the two
equations
zZ=-cy+b, X=cz-—a (5)
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@ The four equations which result reduce to the two
equations
zZ=-cy+b, X=cz-—a (5)

@ Hence (P1, Lq) and (P*, L*) are equivalent.
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Relative dimensions and a bound
g is any prime power.

@ F,[P], the vector space of all F>-valued functions on P
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g is any prime power.

@ F,[P], the vector space of all F>-valued functions on P

@ Abuse notation slightly, identify points and lines with their
characteristic functions in F»[P].
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Relative dimensions and a bound
g is any prime power.

@ F,[P], the vector space of all F>-valued functions on P

@ Abuse notation slightly, identify points and lines with their
characteristic functions in F»[P].

@ C(P,L), the subspace of F>[P] spanned by the ¢ € L.
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Relative dimensions and a bound
g is any prime power.

@ F,[P], the vector space of all F>-valued functions on P

@ Abuse notation slightly, identify points and lines with their
characteristic functions in F»[P].

@ C(P,L), the subspace of F>[P] spanned by the ¢ € L.
@ C(P,Ly), the subspace generated by lines in L;
@ 7p, : F2[P] — F»[P4], natural projection map
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Relative dimensions and a bound
g is any prime power.

@ F,[P], the vector space of all F>-valued functions on P

@ Abuse notation slightly, identify points and lines with their
characteristic functions in F»[P].

@ C(P,L), the subspace of F>[P] spanned by the ¢ € L.
@ C(P,Ly), the subspace generated by lines in L;

@ 7p, : F2[P] — F»[P4], natural projection map

® C(Py,L) =mp,(C(P,L)), C(Py,L1) = mp,(C(P, L1))
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@ Z C C(P,Ly), asetof lines in Ly which maps bijectively
under mp, to a basis of C(P;, L)

UL T
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@ Z C C(P,Ly), asetof lines in Ly which maps bijectively
under mp, to a basis of C(P;, L)
@ X, the set of the lines through pg and let Xo = X'\ {/o}

UL T
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@ Z C C(P,Ly), asetof lines in Ly which maps bijectively
under mp, to a basis of C(P;, L)

@ X, the set of the lines through pg and let Xo = X'\ {/o}

@ Y be any q lines which meet ¢, in the g distinct points
other than pg

UL T
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@ Z C C(P,Ly), asetof lines in Ly which maps bijectively
under mp, to a basis of C(P;, L)

@ X, the set of the lines through pg and let Xo = X'\ {/o}

@ Y be any q lines which meet ¢, in the g distinct points
other than pg

@ | Xp U Y|=2q (cf. Theorem 1).

T T
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Z U Xg U Y is linearly independent over F».
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Lemma

Z U Xg U Y is linearly independent over F».

v

Corollary

dimg, LU(3,q) > ¢° — dimg, C(P, L) + 2q. (6)

v
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Proof of Theorem 1
Assume that g is odd. By Corollary 4 the proof of Theorem 1

will be completed if we can show that ZU Xy U Y spans C(P, L)
as a vector space over Fo.
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Geometric arguments

Let ¢ € L. Then the sum of all lines which meet ¢ (excluding ¢
itself) is the constant function 1.
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Geometric arguments

Let ¢ € L. Then the sum of all lines which meet ¢ (excluding ¢
itself) is the constant function 1.

The function given by the sum takes the value g = 1 at any
point of £ and value 1 at any point off ¢, by the quadrangle
property. O
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Similarly:

Lemma

Let? = £y be a line which meets ¢y at a point p. Let &, be the
sum of all lines in Ly which meet ¢. Then

0, ifp'=p;
q. ifp el\{p}

d(p') = 0, ifpcph\z (7)
1, ifp' € P\ p*.
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Similarly:

Lemma

Let? = £y be a line which meets ¢y at a point p. Let &, be the
sum of all lines in Ly which meet ¢. Then

0, ifp=p;

q, ifp' e\ {p}
0, ifpept\¢
1, ifp' € P\ p*.

Letp € (y and let ¢, ¢' be two lines through p, neither equal to
ly. Then ¢ — e C(P, L1)
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Some representation theory

kermp, N C(P, L) has dimension q + 1, with basis X.

Proof:
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Some representation theory

kermp, N C(P, L) has dimension q + 1, with basis X.

Proof:
@ Let Gp, be the stabilizer in Sp(V) of po.
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Some representation theory

kermp, N C(P, L) has dimension q + 1, with basis X.

Proof:
@ Let Gp, be the stabilizer in Sp(V) of po.
°
kermp, = Fa[py] = Fa[{po}] @ Fa[po™ \ {po}]  (8)

as an F,Gp,-module. Clearly F»[{po}] is a one-dimensional
trivial Fo Gp,-module.
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@ We consider the following subgroups of Gp,.
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@ We consider the following subgroups of Gp,.

1ab ¢ 100c¢
o-{(8195 ) 1abccraf, 2@ ={(81%8) ccF,
000 1 0001 (9)

® Q < Gp,, Q/Z(Q) is elementary abelian of order g* and
Z(Q) acts trivially on py-.
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@ We consider the following subgroups of Gp,.

1ab c 100c¢
Q:{<859b3>]a,b,cqu}, Z(Q):{<88?8>|C€Fq
000 1 000 1 J
(9)

® Q < Gp,, Q/Z(Q) is elementary abelian of order g* and

Z(Q) acts trivially on py-.
@ Since Q has odd order, it acts semisimply on Fz[p&] and

we can compute the decomposition.
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@ Applying Clifford’s Theorem, we have a F, Gp,-module
decomposition
Falpo] =T W, (10)

where T is the g + 2-dimensional space of Q-fixed points
and W is simple of dimension g% — 1.
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@ Applying Clifford’s Theorem, we have a F, Gp,-module
decomposition
Falpo] =T W, (10)

where T is the g + 2-dimensional space of Q-fixed points
and W is simple of dimension g% — 1.

@ The intersection
kermp, N C(P,L) = Falpg ] N C(P, L), (11)

is an F,Gp,-submodule of F2[py].
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@ Applying Clifford’s Theorem, we have a F, Gp,-module
decomposition
Falpo] =T W, (10)

where T is the g + 2-dimensional space of Q-fixed points
and W is simple of dimension g% — 1.

@ The intersection
kermp, N C(P,L) = Falpg ] N C(P, L), (11)

is an F,Gp,-submodule of F2[py].

@ The g + 1 lines through py lie in the intersection,
accounting for g + 1 dimensions of T.
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@ Applying Clifford’s Theorem, we have a F, Gp,-module
decomposition
Falpg]l =T W, (10)
where T is the g + 2-dimensional space of Q-fixed points
and W is simple of dimension g% — 1.
@ The intersection

kerp, N C(P, L) = F2[py] N C(P, L), (11)

is an F,Gp,-submodule of F2[py].

@ The g + 1 lines through py lie in the intersection,
accounting for g + 1 dimensions of T.

@ We must argue that the intersection is no bigger than their
span. If it were, then by (10), F2[py] N C(P, L) must contain
either W or all the Q-fixed points on Fz[pg].
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@ Applying Clifford’s Theorem, we have a F, Gp,-module
decomposition
Falpo] =T W, (10)

where T is the g + 2-dimensional space of Q-fixed points
and W is simple of dimension g% — 1.
@ The intersection

kerp, N C(P, L) = F2[py] N C(P, L), (11)

is an F,Gp,-submodule of F2[py].

@ The g + 1 lines through py lie in the intersection,
accounting for g + 1 dimensions of T.

@ We must argue that the intersection is no bigger than their
span. If it were, then by (10), F2[py] N C(P, L) must contain
either W or all the Q-fixed points on Fz[pg].

@ Both possibilities lead immediately to contradictions.
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kermp, N C(P, Ly) has dimension q — 1, and basis the set of
functions ¢ — ', where { # (qy is an arbitrary but fixed line
through pg and ¢’ varies over the g — 1 lines through py different
from {y and /.
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ZU Xy U Y spans C(P, L) as a vector space over F,.

Proof:
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ZU Xy U Y spans C(P, L) as a vector space over F,.

Proof:

@ By Lemma 9, the span of Xy and Z is equal to the span of
Xo and Ly, since kerp, N C(P, L1) is contained in the span
of Xp.
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ZU XoU Y spans C(P, L) as a vector space over F».

Proof:

@ By Lemma 9, the span of Xy and Z is equal to the span of
Xo and Ly, since kerp, N C(P, L1) is contained in the span
of Xp.

@ We must show that the span of Xy U Ly U Y contains all
lines through ¢y, including 4.
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ZU XoU Y spans C(P, L) as a vector space over F».

Proof:

@ By Lemma 9, the span of Xy and Z is equal to the span of
Xo and Ly, since kerp, N C(P, L1) is contained in the span
of Xp.

@ We must show that the span of Xy U Ly U Y contains all
lines through ¢y, including 4.

@ First, consider a line £ # ¢, through £5. We can assume
that ¢/ meets ¢y at a point other than pg, since otherwise
£ € Xy. Therefore ¢ meets ¢; in the same point p as some
element ¢/ € Y. Then Corollary 7 shows that ¢ lies in the
span of Y and L;.
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@ The only line still missing is ¢p.
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@ The only line still missing is ¢p.

@ By Lemma 5 applied to ¢y, we see that the constant
function 1 is in the span.
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@ The only line still missing is ¢p.

@ By Lemma 5 applied to ¢y, we see that the constant
function 1 is in the span.

@ Finally, we see from Lemma 6 that

> dp=1-1, (12)

=

So we are done.
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Further research

@ Consider the binary code LU(3, q) when g = 2f, t > 1.

Nevertheless:
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Further research

@ Consider the binary code LU(3, q) when g = 2f, t > 1.
@ Corollary 4 provides a lower bound for the dimension.
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Further research

@ Consider the binary code LU(3, q) when g = 2f, t > 1.
@ Corollary 4 provides a lower bound for the dimension.
@ Note, however, that dimg, C(P, L) is quite different:

Nevertheless:
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@ Computer calculations of J.-L. Kim (up to g = 16)
suggested that the inequality (6) is equality for even g as
well.

@ Ogul Arslan has found a proof (2007).



