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Overview
LDPC (low density parity check) codes have attracted
much attention recently, due to their good performance in
theory and practice.
A main division is into random and structured types.
One structured family, constructed using certain bipartite
graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa,
V. Pless, and S. Friedland (2004)
They conjectured the dimensions of the codes.
We’ll describe the conjecture and its proof (with Q. Xiang).
The proof involves the geometry of generalized
quadrangles and the representation theory of Sp(4, q).
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The codes LU(3, q)

q, any prime power
P∗, L∗ be two sets in bijection with Fq

3

(a, b, c) ∈ P∗ is incident with [x , y , z] ∈ L∗ if and only if

y = ax + b and z = ay + c. (1)

The binary incidence matrix M2(P∗, L∗) and its transpose
can be taken as parity check matrices of two codes.
These codes are designated LU(3, q). We have:

dim LU(3, q) = q3 − rankM2(P∗, L∗).
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Conjecture: If q is odd, the dimension of LU(3, q) is
(q3 − 2q2 + 3q − 2)/2.
This number was known to be a lower bound when q is an
odd prime.
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The symplectic generalized quadrangle
q, any prime power
(V , (., .)), a 4-dimensional Fq-vector space with a
nonsingular alternating bilinear form
e0,e1, e2, e3, a symplectic basis such that
(e0, e3) = (e1, e2) = 1
x0, x1, x2, x3, coordinates for basis
P = P(V ), the set of points of the projective space of V
L, the set of totally isotropic 2-dimensional subspaces of V ,
considered as lines in P
(P, L) is called the symplectic generalized quadrangle.
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Quadrangle property
Given any line and any point not on the line, there is a unique
line which passes though the given point and meets the given
line.
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p0 = 〈e0〉 and `0 = 〈e0, e1〉.
p⊥, the set of points on lines through the point p
P1 = P \ p⊥0
L1, the set of lines in L which do not meet `0

We have new incidence systems (P1, L1), (P, L1), (P1, L).
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We will see below that (P1, L1) is equivalent to the system
(P∗, L∗).
So we want to prove:

Theorem
Assume q is odd. The rank of M2(P1, L1) equals
(q3 + 2q2 − 3q + 2)/2.

A known result is:

Theorem
(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd
prime. Then the rank of M2(P, L) is (q3 + 2q2 + q + 2)/2.

Note that the difference in ranks is 2q.
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Next, see (P1, L1) ∼= (P∗, L∗), for q any prime power.
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Coordinates of P1

x0, x1, x2, x3 be homogeneous coordinates of P
p0 = 〈e0〉

P1 = {(x0 : x1 : x2 : x3) | x3 6= 0}
= {(a : b : c : 1) |, a, b, c ∈ Fq} ∼= Fq

3.
(2)
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Coordinates of lines in P(V )

ei ∧ ej , 0 ≤ i < j ≤ 3, basis of the exterior square ∧2(V )

p01, p02, p03, p12, p13, p23, homogeneous coordinates for
P(∧2(V ))

If W is a 2-dimensional subspace of V then
∧2(W ) ∈ P(∧2(V )).
If W = 〈(a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3)〉 then ∧2(W )
has coordinates pij = aibj − ajbi , its Grassmann-Plücker
coordinates.
The totality of points of P(∧2(V )) obtained from all W
forms the set with equation p01p23 − p02p13 + p03p12 = 0,
called the Klein Quadric.
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Coordinates of L and L1

L corresponds to the subset of points of the Klein quadric
which satisfy the additional linear equation p03 = −p12.
`0 = 〈(1 : 0 : 0 : 0), (0 : 1 : 0 : 0)〉
L1 is the subset of L given by p23 6= 0.
The quadratic relation yields

L1
∼= {(z2 + xy : x : z : −z : y : 1) | x , y , z ∈ Fq}
∼= Fq

3.
(3)
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Incidence equations

When is (a : b : c : 1) ∈ P1 on
(z2 + xy : x : z : −z : y : 1) ∈ L1?
If the line is spanned by points with homogeneous
coordinates (a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3). The
given point and line are incident if and only if all 3× 3
minors of the matrix a b c 1

a0 a1 a2 a3
b0 b1 b2 b3

 (4)

are zero.

Peter Sin On the dimensions of some error-correcting codes



Incidence equations

When is (a : b : c : 1) ∈ P1 on
(z2 + xy : x : z : −z : y : 1) ∈ L1?
If the line is spanned by points with homogeneous
coordinates (a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3). The
given point and line are incident if and only if all 3× 3
minors of the matrix a b c 1

a0 a1 a2 a3
b0 b1 b2 b3

 (4)

are zero.

Peter Sin On the dimensions of some error-correcting codes



The four equations which result reduce to the two
equations

z = −cy + b, x = cz − a. (5)

Hence (P1, L1) and (P∗, L∗) are equivalent.
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Relative dimensions and a bound
q is any prime power.

F2[P], the vector space of all F2-valued functions on P
Abuse notation slightly, identify points and lines with their
characteristic functions in F2[P].
C(P, L), the subspace of F2[P] spanned by the ` ∈ L.
C(P, L1), the subspace generated by lines in L1

πP1 : F2[P] → F2[P1], natural projection map
C(P1, L) = πP1(C(P, L)), C(P1, L1) = πP1(C(P, L1))
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Abuse notation slightly, identify points and lines with their
characteristic functions in F2[P].
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Z ⊂ C(P, L1), a set of lines in L1 which maps bijectively
under πP1 to a basis of C(P1, L1)
X , the set of the lines through p0 and let X0 = X \ {`0}
Y be any q lines which meet `0 in the q distinct points
other than p0
|X0 ∪ Y | = 2q (cf. Theorem 1).
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Lemma

Z ∪ X0 ∪ Y is linearly independent over F2.

Corollary

dimF2 LU(3, q) ≥ q3 − dimF2 C(P, L) + 2q. (6)
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Proof of Theorem 1
Assume that q is odd. By Corollary 4 the proof of Theorem 1
will be completed if we can show that Z ∪ X0 ∪ Y spans C(P, L)
as a vector space over F2.
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Geometric arguments

Lemma

Let ` ∈ L. Then the sum of all lines which meet ` (excluding `
itself) is the constant function 1.

Proof.
The function given by the sum takes the value q ≡ 1 at any
point of ` and value 1 at any point off `, by the quadrangle
property.
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Similarly:

Lemma

Let ` 6= `0 be a line which meets `0 at a point p. Let Φ` be the
sum of all lines in L1 which meet `. Then

Φ`(p′) =


0, if p′ = p;

q, if p′ ∈ ` \ {p};
0, if p′ ∈ p⊥ \ `;

1, if p′ ∈ P \ p⊥.

(7)

Corollary

Let p ∈ `0 and let `, `′ be two lines through p, neither equal to
`0. Then `− `′ ∈ C(P, L1).
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Some representation theory

Lemma

ker πP1 ∩ C(P, L) has dimension q + 1, with basis X.

Proof:
Let Gp0 be the stabilizer in Sp(V ) of p0.

ker πP1 = F2[p⊥0 ] = F2[{p0}]⊕ F2[p0
⊥ \ {p0}] (8)

as an F2Gp0-module. Clearly F2[{p0}] is a one-dimensional
trivial F2Gp0-module.
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We consider the following subgroups of Gp0 .

Q =

{( 1 a b c
0 1 0 b
0 0 1 −a
0 0 0 1

)
| a, b, c ∈ Fq

}
, Z (Q) =

{( 1 0 0 c
0 1 0 0
0 0 1 0
0 0 0 1

)
| c ∈ Fq

}
.

(9)
Q C Gp0 , Q/Z (Q) is elementary abelian of order q2 and
Z (Q) acts trivially on p⊥0 .
Since Q has odd order, it acts semisimply on F2[p⊥0 ] and
we can compute the decomposition.
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Applying Clifford’s Theorem, we have a F2Gp0-module
decomposition

F2[p⊥0 ] = T ⊕W , (10)

where T is the q + 2-dimensional space of Q-fixed points
and W is simple of dimension q2 − 1.
The intersection

ker πP1 ∩ C(P, L) = F2[p⊥0 ] ∩ C(P, L), (11)

is an F2Gp0-submodule of F2[p⊥0 ].
The q + 1 lines through p0 lie in the intersection,
accounting for q + 1 dimensions of T .
We must argue that the intersection is no bigger than their
span. If it were, then by (10), F2[p⊥0 ]∩C(P, L) must contain
either W or all the Q-fixed points on F2[p⊥0 ].
Both possibilities lead immediately to contradictions.
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Lemma

ker πP1 ∩ C(P, L1) has dimension q − 1, and basis the set of
functions `− `′, where ` 6= `0 is an arbitrary but fixed line
through p0 and `′ varies over the q − 1 lines through p0 different
from `0 and `.
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Lemma

Z ∪ X0 ∪ Y spans C(P, L) as a vector space over F2.

Proof:
By Lemma 9, the span of X0 and Z is equal to the span of
X0 and L1, since ker πP1 ∩C(P, L1) is contained in the span
of X0.
We must show that the span of X0 ∪ L1 ∪ Y contains all
lines through `0, including `0.
First, consider a line ` 6= `0 through `0. We can assume
that ` meets `0 at a point other than p0, since otherwise
` ∈ X0. Therefore ` meets `0 in the same point p as some
element `′ ∈ Y . Then Corollary 7 shows that ` lies in the
span of Y and L1.
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The only line still missing is `0.
By Lemma 5 applied to `0, we see that the constant
function 1 is in the span.
Finally, we see from Lemma 6 that∑

`∈X0

Φ` = 1− `0, (12)

so we are done.
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Further research

Consider the binary code LU(3, q) when q = 2t , t ≥ 1.
Corollary 4 provides a lower bound for the dimension.
Note, however, that dimF2 C(P, L) is quite different:

Theorem

(Sastry-Sin) Assume q = 2t . Then then the rank of M2(P, L) is

1 +

(
1 +

√
17

2

)2t

+

(
1−

√
17

2

)2t

. (13)

Nevertheless:
Computer calculations of J.-L. Kim (up to q = 16)
suggested that the inequality (6) is equality for even q as
well.
Ogul Arslan has found a proof (2007).
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