On the dimensions of some error-correcting codes

Peter Sin

Gainesville, September 13, 2007.
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.

- A main division is into random and structured types.

- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)

- They conjectured the dimensions of the codes.

- We’ll describe the conjecture and its proof (with Q. Xiang).

- The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.

Peter Sin

On the dimensions of some error-correcting codes
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into *random* and *structured* types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We’ll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
 - They conjectured the dimensions of the codes.
 - We’ll describe the conjecture and its proof (with Q. Xiang).
 - The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We’ll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.

On the dimensions of some error-correcting codes
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We’ll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of Sp(4, q).
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We’ll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.

Peter Sin
On the dimensions of some error-correcting codes
The codes $LU(3, q)$

- q, any prime power
- P^*, L^* be two sets in bijection with \mathbb{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[y = ax + b \quad \text{and} \quad z = ay + c. \] (1)

- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:
 \[\dim LU(3, q) = q^3 - \text{rank}M_2(P^*, L^*). \]
The codes $LU(3, q)$

- q, any prime power
- P^*, L^* be two sets in bijection with \mathbb{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[
 y = ax + b \quad \text{and} \quad z = ay + c. \tag{1}
 \]
- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:
 \[
 \dim LU(3, q) = q^3 - \text{rank}M_2(P^*, L^*).\]
The codes \(LU(3, q) \)

- \(q \), any prime power
- \(P^*, L^* \) be two sets in bijection with \(\mathbb{F}_q^3 \)
- \((a, b, c) \in P^* \) is incident with \([x, y, z] \in L^* \) if and only if
 \[
y = ax + b \quad \text{and} \quad z = ay + c. \quad (1)
 \]

- The binary incidence matrix \(M_2(P^*, L^*) \) and its transpose can be taken as parity check matrices of two codes.
- These codes are designated \(LU(3, q) \). We have:
 \[
 \dim LU(3, q) = q^3 - \text{rank}M_2(P^*, L^*).
 \]
The codes $LU(3, q)$
- q, any prime power
- P^*, L^* be two sets in bijection with \mathbb{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[y = ax + b \quad \text{and} \quad z = ay + c. \]
 \[(1) \]
- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose
can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:
 \[\dim LU(3, q) = q^3 - \text{rank} M_2(P^*, L^*). \]
The codes $LU(3, q)$

- q, any prime power
- P^*, L^* be two sets in bijection with \mathbb{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[y = ax + b \quad \text{and} \quad z = ay + c. \]

- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:

\[
\dim LU(3, q) = q^3 - \text{rank} M_2(P^*, L^*).
\]
Conjecture: If q is odd, the dimension of $\text{LU}(3, q)$ is $(q^3 - 2q^2 + 3q - 2)/2$.

This number was known to be a lower bound when q is an odd prime.
Conjecture: If q is odd, the dimension of $\text{LU}(3, q)$ is $(q^3 - 2q^2 + 3q - 2)/2$.

This number was known to be a lower bound when q is an odd prime.
The symplectic generalized quadrangle

- \(q \), any prime power
- \((V, (.,.))\), a 4-dimensional \(\mathbb{F}_q \)-vector space with a nonsingular alternating bilinear form
- \(e_0, e_1, e_2, e_3 \), a symplectic basis such that
 \((e_0, e_3) = (e_1, e_2) = 1 \)
- \(x_0, x_1, x_2, x_3 \), coordinates for basis
- \(P = \mathbb{P}(V) \), the set of points of the projective space of \(V \)
- \(L \), the set of totally isotropic 2-dimensional subspaces of \(V \), considered as lines in \(P \)
- \((P, L) \) is called the *symplectic generalized quadrangle*.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (., .))$, a 4-dimensional F_q-vector space with a nonsingular alternating bilinear form

- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = P(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the symplectic generalized quadrangle.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (., .))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = \mathcal{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the symplectic generalized quadrangle.
The symplectic generalized quadrangle

- \(q \), any prime power
- \((V, (.,.))\), a 4-dimensional \(\mathbb{F}_q \)-vector space with a nonsingular alternating bilinear form
- \(e_0, e_1, e_2, e_3 \), a symplectic basis such that \((e_0, e_3) = (e_1, e_2) = 1\)
- \(x_0, x_1, x_2, x_3 \), coordinates for basis
- \(P = P(V) \), the set of points of the projective space of \(V \)
- \(L \), the set of totally isotropic 2-dimensional subspaces of \(V \), considered as lines in \(P \)
- \((P, L)\) is called the symplectic generalized quadrangle.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (., .))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the **symplectic generalized quadrangle**.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (., .))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = P(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the symplectic generalized quadrangle.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (., .))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = \mathcal{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the *symplectic generalized quadrangle.*
Quadrangle property
Given any line and any point not on the line, there is a unique line which passes though the given point and meets the given line.
- $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.
- p^\perp, the set of points on lines through the point p
- $P_1 = P \setminus p_0^\perp$
- L_1, the set of lines in L which do not meet ℓ_0
- We have new incidence systems (P_1, L_1), (P, L_1), (P_1, L).
• $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.
• p^\perp, the set of points on lines through the point p
• $P_1 = P \setminus p_0^\perp$
• L_1, the set of lines in L which do not meet ℓ_0
• We have new incidence systems (P_1, L_1), (P, L_1), (P_1, L).
• $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.
• p_\perp, the set of points on lines through the point p
• $P_1 = P \setminus p_\perp$
• L_1, the set of lines in L which do not meet ℓ_0
• We have new incidence systems (P_1, L_1), (P, L_1), (P_1, L).
\(p_0 = \langle e_0 \rangle \) and \(\ell_0 = \langle e_0, e_1 \rangle \).

\(p_\perp \), the set of points on lines through the point \(p \)

\(P_1 = P \setminus p_\perp \)

\(L_1 \), the set of lines in \(L \) which do not meet \(\ell_0 \)

We have new incidence systems \((P_1, L_1) \), \((P, L_1) \), \((P_1, L) \).
• \(p_0 = \langle e_0 \rangle \) and \(\ell_0 = \langle e_0, e_1 \rangle \).
• \(p^\perp \), the set of points on lines through the point \(p \)
• \(P_1 = P \setminus p_0^\perp \)
• \(L_1 \), the set of lines in \(L \) which do not meet \(\ell_0 \)
• We have new incidence systems \((P_1, L_1), (P, L_1), (P_1, L)\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem
Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals
\[
\frac{q^3 + 2q^2 - 3q + 2}{2}.
\]

A known result is:

Theorem
\(\text{(Bagchi-Brouwer-Wilbrink)}\) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is
\[
\frac{q^3 + 2q^2 + q + 2}{2}.
\]

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

\[\text{Theorem}\]
Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals \(\frac{q^3 + 2q^2 - 3q + 2}{2}\).

A known result is:

\[\text{Theorem}\]
\((\text{Bagchi-Brouwer-Wilbrink})\) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is \(\frac{q^3 + 2q^2 + q + 2}{2}\).

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system
\((P^*, L^*)\).

So we want to prove:

Theorem

Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals
\((q^3 + 2q^2 - 3q + 2)/2\).

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd
prime. Then the rank of \(M_2(P, L)\) is \((q^3 + 2q^2 + q + 2)/2\).

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem

Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals \((q^3 + 2q^2 - 3q + 2)/2)\.

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is \((q^3 + 2q^2 + q + 2)/2)\.

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem

Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals
\[
\frac{q^3 + 2q^2 - 3q + 2}{2}.
\]

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is
\[
\frac{q^3 + 2q^2 + q + 2}{2}.
\]

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem

Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals \((q^3 + 2q^2 - 3q + 2)/2\).

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is \((q^3 + 2q^2 + q + 2)/2\).

Note that the difference in ranks is \(2q\).
Next, see $(P_1, L_1) \cong (P^*, L^*)$, for q any prime power.
Coordinates of P_1

- x_0, x_1, x_2, x_3 be homogeneous coordinates of P
- $p_0 = \langle e_0 \rangle$
- $P_1 = \{(x_0 : x_1 : x_2 : x_3) \mid x_3 \neq 0\}$

 $= \{(a : b : c : 1) \mid a, b, c \in F_q\} \cong F_q^3$.

(2)
Coordinates of P_1

- x_0, x_1, x_2, x_3 be homogeneous coordinates of P
- $p_0 = \langle e_0 \rangle$

\[
P_1 = \{ (x_0 : x_1 : x_2 : x_3) \mid x_3 \neq 0 \}
= \{ (a : b : c : 1) \mid a, b, c \in F_q \} \cong F_q^3.
\]
Coordinates of P_1

- x_0, x_1, x_2, x_3 be homogeneous coordinates of P
- $p_0 = \langle e_0 \rangle$

\[P_1 = \{(x_0 : x_1 : x_2 : x_3) \mid x_3 \neq 0\} \]

\[= \{(a : b : c : 1) \mid a, b, c \in \mathbf{F}_q\} \cong \mathbf{F}_q^3. \]

(2)
Coordinates of lines in $P(V)$

- $e_i \wedge e_j$, $0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $P(\wedge^2(V))$

If W is a 2-dimensional subspace of V then $\wedge^2(W) \in P(\wedge^2(V))$.

If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j - a_j b_i$, its Grassmann-Plücker coordinates.

The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$, called the Klein Quadric.
Coordinates of lines in $P(V)$

- $e_i \wedge e_j$, $0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $P(\wedge^2(V))$

If W is a 2-dimensional subspace of V then $\wedge^2(W) \in P(\wedge^2(V))$.

If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j - a_j b_i$, its Grassmann-Plücker coordinates.

The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01} p_{23} - p_{02} p_{13} + p_{03} p_{12} = 0$, called the *Klein Quadric*.
Coordinates of lines in $P(V)$

- $e_i \wedge e_j$, $0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $P(\wedge^2(V))$

If W is a 2-dimensional subspace of V then $\wedge^2(W) \in P(\wedge^2(V))$.

- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_ib_j - a_jb_i$, its Grassmann-Plücker coordinates.
- The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$, called the Klein Quadric.
Coordinates of lines in $\mathbb{P}(V)$

- $e_i \wedge e_j$, $0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $\mathbb{P}(\wedge^2(V))$
- If W is a 2-dimensional subspace of V then $\wedge^2(W) \in \mathbb{P}(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j - a_j b_i$, its Grassmann-Plücker coordinates.

The totality of points of $\mathbb{P}(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$, called the *Klein Quadric*.
Coordinates of lines in $P(V)$

- $e_i \wedge e_j$, $0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $P(\wedge^2(V))$

If W is a 2-dimensional subspace of V then $\wedge^2(W) \in P(\wedge^2(V))$.

If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j - a_j b_i$, its Grassmann-Plücker coordinates.

The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$, called the Klein Quadric.
Coordinates of L and L_1

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1 : 0 : 0 : 0), (0 : 1 : 0 : 0) \rangle$
- L_1 is the subset of L given by $p_{23} \neq 0$.
- The quadratic relation yields $L_1 \cong \{ (z^2 + xy : x : z : -z : y : 1) \mid x, y, z \in \mathbb{F}_q \}$ (3)

$\cong \mathbb{F}_q^3$.

Peter Sin

On the dimensions of some error-correcting codes
Coordinates of L and L_1

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1 : 0 : 0 : 0), (0 : 1 : 0 : 0) \rangle$
- L_1 is the subset of L given by $p_{23} \neq 0$.
- The quadratic relation yields

$$L_1 \cong \{(z^2 + xy : x : z : -z : y : 1) \mid x, y, z \in F_q\}$$

$$\cong F_q^3$$.

(3)
Coordinates of L and L_1

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $\rho_{03} = -\rho_{12}$.
- $\ell_0 = \langle (1 : 0 : 0 : 0), (0 : 1 : 0 : 0) \rangle$
- L_1 is the subset of L given by $\rho_{23} \neq 0$.
- The quadratic relation yields

$$L_1 \cong \{(z^2 + xy : x : z : -z : y : 1) \mid x, y, z \in F_q\} \cong F_q^3.$$ \hspace{1cm} (3)
Coordinates of L and L_1

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1 : 0 : 0 : 0), (0 : 1 : 0 : 0) \rangle$
- L_1 is the subset of L given by $p_{23} \neq 0$.
- The quadratic relation yields

\[
L_1 \cong \{(z^2 + xy : x : z : -z : y : 1) | x, y, z \in \mathbb{F}_q\}
\cong \mathbb{F}_q^3.
\] (3)
Incidence equations

- When is \((a : b : c : 1) \in P_1\) on \((z^2 + xy : x : z : -z : y : 1) \in L_1\)?

- If the line is spanned by points with homogeneous coordinates \((a_0 : a_1 : a_2 : a_3)\) and \((b_0 : b_1 : b_2 : b_3)\). The given point and line are incident if and only if all 3 \(\times\) 3 minors of the matrix

\[
\begin{pmatrix}
a & b & c & 1 \\
a_0 & a_1 & a_2 & a_3 \\
b_0 & b_1 & b_2 & b_3
\end{pmatrix}
\] (4)

are zero.
Incidence equations

- When is \((a : b : c : 1) \in P_1\) on \((z^2 + xy : x : z : -z : y : 1) \in L_1\)?

- If the line is spanned by points with homogeneous coordinates \((a_0 : a_1 : a_2 : a_3)\) and \((b_0 : b_1 : b_2 : b_3)\). The given point and line are incident if and only if all \(3 \times 3\) minors of the matrix

\[
\begin{pmatrix}
 a & b & c & 1 \\
 a_0 & a_1 & a_2 & a_3 \\
 b_0 & b_1 & b_2 & b_3
\end{pmatrix}
\]

are zero.
The four equations which result reduce to the two equations

\[z = -cy + b, \quad x = cz - a. \]

Hence \((P_1, L_1)\) and \((P^*, L^*)\) are equivalent.
The four equations which result reduce to the two equations
\[z = -cy + b, \quad x = cz - a. \] (5)

Hence \((P_1, L_1)\) and \((P^*, L^*)\) are equivalent.
Relative dimensions and a bound q is any prime power.

- $\mathbf{F}_2[P]$, the vector space of all \mathbf{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbf{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbf{F}_2[P] \to \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L)), C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
Relative dimensions and a bound q is any prime power.

- $\mathbb{F}_2[P]$, the vector space of all \mathbb{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbb{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbb{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbb{F}_2[P] \to \mathbb{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L)), C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
Relative dimensions and a bound

q is any prime power.

- $\mathbf{F}_2[P]$, the vector space of all \mathbf{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbf{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbf{F}_2[P] \to \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
Relative dimensions and a bound q is any prime power.

- $\mathbf{F}_2[P]$, the vector space of all \mathbf{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbf{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbf{F}_2[P] \to \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
Relative dimensions and a bound
q is any prime power.

- $\mathbb{F}_2[P]$, the vector space of all \mathbb{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbb{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbb{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbb{F}_2[P] \to \mathbb{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
Relative dimensions and a bound

q is any prime power.

- $\mathbf{F}_2[P]$, the vector space of all \mathbf{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbf{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbf{F}_2[P] \to \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
$Z \subset C(P, L_1)$, a set of lines in L_1 which maps bijectively under π_{P_1} to a basis of $C(P_1, L_1)$.

* X, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$
* Y be any q lines which meet ℓ_0 in the q distinct points other than p_0
* $|X_0 \cup Y| = 2q$ (cf. Theorem 1).
$Z \subset C(P, L_1)$, a set of lines in L_1 which maps bijectively under π_{P_1} to a basis of $C(P_1, L_1)$

X, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$

Y be any q lines which meet ℓ_0 in the q distinct points other than p_0

$|X_0 \cup Y| = 2q$ (cf. Theorem 1).
• $Z \subset C(P, L_1)$, a set of lines in L_1 which maps bijectively under π_{P_1} to a basis of $C(P_1, L_1)$

• X, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$

• Y be any q lines which meet ℓ_0 in the q distinct points other than p_0

• $|X_0 \cup Y| = 2q$ (cf. Theorem 1).
\[Z \subset C(P, L_1), \] a set of lines in \(L_1 \) which maps bijectively under \(\pi_{P_1} \) to a basis of \(C(P_1, L_1) \).

\(X \), the set of the lines through \(p_0 \) and let \(X_0 = X \setminus \{ \ell_0 \} \).

\(Y \) be any \(q \) lines which meet \(\ell_0 \) in the \(q \) distinct points other than \(p_0 \).

\(|X_0 \cup Y| = 2q \) (cf. Theorem 1).
Lemma

\(Z \cup X_0 \cup Y \) is linearly independent over \(F_2 \).

Corollary

\[
\dim_{F_2} LU(3, q) \geq q^3 - \dim_{F_2} C(P, L) + 2q.
\] (6)
Lemma

\[Z \cup X_0 \cup Y \text{ is linearly independent over } F_2. \]

Corollary

\[\dim_{F_2} LU(3, q) \geq q^3 - \dim_{F_2} C(P, L) + 2q. \] (6)
Proof of Theorem 1
Assume that q is odd. By Corollary 4 the proof of Theorem 1 will be completed if we can show that $Z \cup X_0 \cup Y$ spans $C(P, L)$ as a vector space over F_2.

Peter Sin
On the dimensions of some error-correcting codes
Geometric arguments

Lemma

Let $\ell \in L$. Then the sum of all lines which meet ℓ (excluding ℓ itself) is the constant function 1.

Proof.

The function given by the sum takes the value $q \equiv 1$ at any point of ℓ and value 1 at any point off ℓ, by the quadrangle property.
Geometric arguments

Lemma

Let $\ell \in L$. Then the sum of all lines which meet ℓ (excluding ℓ itself) is the constant function 1.

Proof.

The function given by the sum takes the value $q \equiv 1$ at any point of ℓ and value 1 at any point off ℓ, by the quadrangle property.
Similarly:

Lemma

Let \(\ell \neq \ell_0 \) be a line which meets \(\ell_0 \) at a point \(p \). Let \(\Phi_\ell \) be the sum of all lines in \(L_1 \) which meet \(\ell \). Then

\[
\Phi_\ell(p') = \begin{cases}
0, & \text{if } p' = p; \\
q, & \text{if } p' \in \ell \setminus \{p\}; \\
0, & \text{if } p' \in p^\perp \setminus \ell; \\
1, & \text{if } p' \in P \setminus p^\perp.
\end{cases}
\] (7)

Corollary

Let \(p \in \ell_0 \) and let \(\ell, \ell' \) be two lines through \(p \), neither equal to \(\ell_0 \). Then \(\ell - \ell' \in C(P, L_1) \).
Similarly:

Lemma

Let $\ell \neq \ell_0$ be a line which meets ℓ_0 at a point p. Let Φ_ℓ be the sum of all lines in L_1 which meet ℓ. Then

$$\Phi_\ell(p') = \begin{cases}
0, & \text{if } p' = p; \\
q, & \text{if } p' \in \ell \setminus \{p\}; \\
0, & \text{if } p' \in p^\perp \setminus \ell; \\
1, & \text{if } p' \in P \setminus p^\perp.
\end{cases} \quad (7)$$

Corollary

Let $p \in \ell_0$ and let ℓ, ℓ' be two lines through p, neither equal to ℓ_0. Then $\ell - \ell' \in C(P, L_1)$.
Some representation theory

Lemma

\(\ker \pi_{P_1} \cap C(P, L)\) has dimension \(q + 1\), with basis \(X\).

Proof:

- Let \(G_{p_0}\) be the stabilizer in \(Sp(V)\) of \(p_0\).
- \(\ker \pi_{P_1} = F_2[p_0^\perp] = F_2[\{p_0\}] \oplus F_2[p_0^\perp \setminus \{p_0\}]\) (8) as an \(F_2 G_{p_0}\)-module. Clearly \(F_2[\{p_0\}]\) is a one-dimensional trivial \(F_2 G_{p_0}\)-module.
Some representation theory

Lemma

\[\ker \pi_{P_1} \cap C(P, L) \text{ has dimension } q + 1, \text{ with basis } X. \]

Proof:

- Let \(G_{p_0} \) be the stabilizer in \(S_p(V) \) of \(p_0 \).

 \[\ker \pi_{P_1} = F_2[p_0^\perp] = F_2[{p_0}] \oplus F_2[p_0^\perp \setminus \{p_0\}] \quad (8) \]

 as an \(F_2 G_{p_0} \)-module. Clearly \(F_2[{p_0}] \) is a one-dimensional trivial \(F_2 G_{p_0} \)-module.
Some representation theory

Lemma

ker \pi_{P_1} \cap C(P, L) has dimension q + 1, with basis X.

Proof:

- Let \(G_{\rho_0} \) be the stabilizer in \(Sp(V) \) of \(\rho_0 \).

\[
\ker \pi_{P_1} = F_2[\rho_0^\perp] = F_2[\{\rho_0\}] \oplus F_2[\rho_0^\perp \setminus \{\rho_0\}] \quad (8)
\]

as an \(F_2 G_{\rho_0} \)-module. Clearly \(F_2[\{\rho_0\}] \) is a one-dimensional trivial \(F_2 G_{\rho_0} \)-module.
We consider the following subgroups of G_{p_0}.

\[Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \left| a, b, c \in F_q \right. \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \left| c \in F_q \right. \right\} \]

(9)

$Q \triangleleft G_{p_0}$, $Q/Z(Q)$ is elementary abelian of order q^2 and $Z(Q)$ acts trivially on p_{0}^\perp.

Since Q has odd order, it acts semisimply on $F_2[p_{0}^\perp]$ and we can compute the decomposition.
We consider the following subgroups of G_{p_0}.

$$Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in F_q \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid c \in F_q \right\}$$ (9)

$Q \triangleleft G_{p_0}$, $Q/Z(Q)$ is elementary abelian of order q^2 and $Z(Q)$ acts trivially on p_0^\perp.

Since Q has odd order, it acts semisimply on $F_2[p_0^\perp]$ and we can compute the decomposition.
We consider the following subgroups of G_{p_0}.

$$Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{F}_q \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid c \in \mathbb{F}_q \right\}$$

(9)

$Q \triangleleft G_{p_0},$ $Q/Z(Q)$ is elementary abelian of order q^2 and $Z(Q)$ acts trivially on p_{0}^\perp.

Since Q has odd order, it acts semisimply on $\mathbb{F}_2[p_{0}^\perp]$ and we can compute the decomposition.
Applying Clifford’s Theorem, we have a \(\mathbb{F}_2 G_{\rho_0} \)-module decomposition

\[
\mathbb{F}_2[\rho_0^\perp] = T \oplus W,
\]

where \(T \) is the \(q + 2 \)-dimensional space of \(Q \)-fixed points and \(W \) is simple of dimension \(q^2 - 1 \).

The intersection

\[
\ker \pi_{P_1} \cap C(P, L) = \mathbb{F}_2[\rho_0^\perp] \cap C(P, L),
\]

is an \(\mathbb{F}_2 G_{\rho_0} \)-submodule of \(\mathbb{F}_2[\rho_0^\perp] \).

The \(q + 1 \) lines through \(\rho_0 \) lie in the intersection, accounting for \(q + 1 \) dimensions of \(T \).

We must argue that the intersection is no bigger than their span. If it were, then by (10), \(\mathbb{F}_2[\rho_0^\perp] \cap C(P, L) \) must contain either \(W \) or all the \(Q \)-fixed points on \(\mathbb{F}_2[\rho_0^\perp] \).

Both possibilities lead immediately to contradictions.
Applying Clifford’s Theorem, we have a $F_2G_{P_0}$-module decomposition

$$F_2[p_0^\perp] = T \oplus W,$$

where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection

$$\ker \pi_{P_1} \cap C(P, L) = F_2[p_0^\perp] \cap C(P, L),$$

is an $F_2G_{P_0}$-submodule of $F_2[p_0^\perp]$.

The $q + 1$ lines through p_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $F_2[p_0^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $F_2[p_0^\perp]$.

Both possibilities lead immediately to contradictions.
Applying Clifford’s Theorem, we have a $\mathbb{F}_2 G_{p_0}$-module decomposition

$$\mathbb{F}_2[p_0^\perp] = T \oplus W,$$

where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection

$$\ker \pi_{P_1} \cap C(P, L) = \mathbb{F}_2[p_0^\perp] \cap C(P, L),$$

is an $\mathbb{F}_2 G_{p_0}$-submodule of $\mathbb{F}_2[p_0^\perp]$. The $q + 1$ lines through p_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathbb{F}_2[p_0^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $\mathbb{F}_2[p_0^\perp]$.

Both possibilities lead immediately to contradictions.
Applying Clifford’s Theorem, we have a $\mathbb{F}_2 G_{p_0}$-module decomposition
\[\mathbb{F}_2[p_0^\perp] = T \oplus W, \]
where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection
\[\ker \pi_{P_1} \cap C(P, L) = \mathbb{F}_2[p_0^\perp] \cap C(P, L), \]
is an $\mathbb{F}_2 G_{p_0}$-submodule of $\mathbb{F}_2[p_0^\perp]$.

The $q + 1$ lines through p_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathbb{F}_2[p_0^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $\mathbb{F}_2[p_0^\perp]$.

Both possibilities lead immediately to contradictions.
Applying Clifford’s Theorem, we have a $\mathbb{F}_2 G_{\rho_0}$-module decomposition

$$\mathbb{F}_2[\rho_0^\perp] = T \oplus W, \quad (10)$$

where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection

$$\ker \pi_{P_1} \cap C(P, L) = \mathbb{F}_2[\rho_0^\perp] \cap C(P, L), \quad (11)$$

is an $\mathbb{F}_2 G_{\rho_0}$-submodule of $\mathbb{F}_2[\rho_0^\perp]$.

The $q + 1$ lines through ρ_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathbb{F}_2[\rho_0^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $\mathbb{F}_2[\rho_0^\perp]$.

Both possibilities lead immediately to contradictions.
Lemma

\(\ker \pi_{P_1} \cap C(P, L_1) \) has dimension \(q - 1 \), and basis the set of functions \(\ell - \ell' \), where \(\ell \neq \ell_0 \) is an arbitrary but fixed line through \(p_0 \) and \(\ell' \) varies over the \(q - 1 \) lines through \(p_0 \) different from \(\ell_0 \) and \(\ell \).
Lemma

$Z \cup X_0 \cup Y$ spans $C(P, L)$ as a vector space over F_2.

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1, since $\ker \pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0.

- We must show that the span of $X_0 \cup L_1 \cup Y$ contains all lines through ℓ_0, including ℓ_0.

- First, consider a line $\ell \neq \ell_0$ through ℓ_0. We can assume that ℓ meets ℓ_0 at a point other than p_0, since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1.
Lemma

$Z \cup X_0 \cup Y$ spans $C(P, L)$ as a vector space over \mathbb{F}_2.

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1, since $\ker \pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0.
- We must show that the span of $X_0 \cup L_1 \cup Y$ contains all lines through ℓ_0, including ℓ_0.
- First, consider a line $\ell \neq \ell_0$ through ℓ_0. We can assume that ℓ meets ℓ_0 at a point other than p_0, since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1.
Lemma

$Z \cup X_0 \cup Y$ spans $C(P, L)$ as a vector space over \mathbb{F}_2.

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1, since $\ker \pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0.

- We must show that the span of $X_0 \cup L_1 \cup Y$ contains all lines through ℓ_0, including ℓ_0.

- First, consider a line $\ell \neq \ell_0$ through ℓ_0. We can assume that ℓ meets ℓ_0 at a point other than p_0, since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1.

Peter Sin

On the dimensions of some error-correcting codes
Lemma

\[Z \cup X_0 \cup Y \text{ spans } C(P, L) \text{ as a vector space over } \mathbf{F}_2. \]

Proof:

- By Lemma 9, the span of \(X_0 \) and \(Z \) is equal to the span of \(X_0 \) and \(L_1 \), since \(\ker \pi_{P_1} \cap C(P, L_1) \) is contained in the span of \(X_0 \).

- We must show that the span of \(X_0 \cup L_1 \cup Y \) contains all lines through \(\ell_0 \), including \(\ell_0 \).

- First, consider a line \(\ell \neq \ell_0 \) through \(\ell_0 \). We can assume that \(\ell \) meets \(\ell_0 \) at a point other than \(p_0 \), since otherwise \(\ell \in X_0 \). Therefore \(\ell \) meets \(\ell_0 \) in the same point \(p \) as some element \(\ell' \in Y \). Then Corollary 7 shows that \(\ell \) lies in the span of \(Y \) and \(L_1 \).
The only line still missing is ℓ_0.

By Lemma 5 applied to ℓ_0, we see that the constant function 1 is in the span.

Finally, we see from Lemma 6 that

$$\sum_{\ell \in \mathcal{X}_0} \Phi_\ell = 1 - \ell_0,$$

so we are done.
The only line still missing is ℓ_0.

By Lemma 5 applied to ℓ_0, we see that the constant function 1 is in the span.

Finally, we see from Lemma 6 that

$$\sum_{\ell \in X_0} \Phi_\ell = 1 - \ell_0,$$

so we are done.
The only line still missing is ℓ_0.

By Lemma 5 applied to ℓ_0, we see that the constant function 1 is in the span.

Finally, we see from Lemma 6 that

$$\sum_{\ell \in X_0} \Phi_\ell = 1 - \ell_0,$$

so we are done.
Further research

- Consider the binary code $\text{LU}(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{F_2} C(P, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

\[1 + \left(\frac{1 + \sqrt{17}}{2} \right)^{2t} + \left(\frac{1 - \sqrt{17}}{2} \right)^{2t}. \]

(13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code $LU(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{F_2} C(P, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then then the rank of $M_2(P, L)$ is

\[
1 + \left(\frac{1 + \sqrt{17}}{2} \right)^{2t} + \left(\frac{1 - \sqrt{17}}{2} \right)^{2t}. \quad (13)
\]

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code \(LU(3, q) \) when \(q = 2^t, \ t \geq 1 \).
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that \(\dim_{F_2} C(P, L) \) is quite different:

Theorem

(Sastry-Sin) Assume \(q = 2^t \). Then the rank of \(M_2(P, L) \) is

\[
1 + \left(\frac{1 + \sqrt{17}}{2} \right)^{2t} + \left(\frac{1 - \sqrt{17}}{2} \right)^{2t}.
\] \hspace{1cm} (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to \(q = 16 \)) suggested that the inequality (6) is equality for even \(q \) as well.
- Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code \(LU(3, q) \) when \(q = 2^t, \ t \geq 1 \).
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that \(\dim_{\mathbb{F}_2} C(P, L) \) is quite different:

Theorem

(Sastry-Sin) Assume \(q = 2^t \). Then the rank of \(M_2(P, L) \) is

\[
1 + \left(\frac{1 + \sqrt{17}}{2} \right)^{2t} + \left(\frac{1 - \sqrt{17}}{2} \right)^{2t}.
\]

(13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to \(q = 16 \)) suggested that the inequality (6) is equality for even \(q \) as well.
- Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code $LU(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbb{F}_2} C(P, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}. \quad (13)$$

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code $LU(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbb{F}_2} C(P, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$ \hspace{1cm} (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).