Some Weyl Modules for Clasical Groups

Peter Sin

University of Florida

Southwestern Group Theory Day November 7th, 2009 University of Arizona

Outline

Introduction

Statement of results

Jantzen Sum Formula

Applications

Further Research

Conclusion

Joint work with Ogul Arslan.

- ▶ Let G be a semisimple algebraic group in characteristic p > 0.
- ▶ An important class of modules are the Weyl modules $V(\lambda)$.
- ► The characters of Weyl modules are given by Weyl's Character Formula.
- But their precise submodule structure is not fully understood.
- This talk is about a uniform description of the submodule structure of some infinite families of Weyl modules for classical groups.

- ▶ Let G be a semisimple algebraic group in characteristic p > 0.
- ▶ An important class of modules are the Weyl modules $V(\lambda)$.
- ► The characters of Weyl modules are given by Weyl's Character Formula.
- But their precise submodule structure is not fully understood.
- This talk is about a uniform description of the submodule structure of some infinite families of Weyl modules for classical groups.

- ▶ Let G be a semisimple algebraic group in characteristic p > 0.
- ▶ An important class of modules are the Weyl modules $V(\lambda)$.
- The characters of Weyl modules are given by Weyl's Character Formula.
- But their precise submodule structure is not fully understood.
- This talk is about a uniform description of the submodule structure of some infinite families of Weyl modules for classical groups.

- Let G be a semisimple algebraic group in characteristic p > 0.
- ▶ An important class of modules are the Weyl modules $V(\lambda)$.
- The characters of Weyl modules are given by Weyl's Character Formula.
- But their precise submodule structure is not fully understood.
- This talk is about a uniform description of the submodule structure of some infinite families of Weyl modules for classical groups.

- Let G be a semisimple algebraic group in characteristic p > 0.
- ▶ An important class of modules are the Weyl modules $V(\lambda)$.
- The characters of Weyl modules are given by Weyl's Character Formula.
- But their precise submodule structure is not fully understood.
- This talk is about a uniform description of the submodule structure of some infinite families of Weyl modules for classical groups.

Outline

Introduction

Statement of results

Jantzen Sum Formula

Applications

Further Research

Conclusion

Groups and weights considered

- (B) *G* of type B_{ℓ} , $(\ell \geq 2)$ $\lambda = r(\omega_1)$, $0 \leq r \leq p-1$;
- (D) *G* of type D_{ℓ} , $(\ell \geq 3)$ $\lambda = r(\omega_1)$, $0 \leq r \leq p-1$;
- (A) G of type A_{ℓ} , $(\ell \geq 3)$ $\lambda = r(\omega_1 + \omega_{\ell})$, $0 \leq r \leq p-1$;
- (A') G of type A_{ℓ} , $(\ell \geq 4)$ $\lambda = (\omega_2 + \omega_{\ell-1})$; and
- (A") G of type A_4 , $\lambda = (p-2)(\omega_2 + \omega_{\ell-1})$ or $(p-1)(\omega_2 + \omega_{\ell-1})$.

For each of the weights considered we obtain:

- ▶ The character of the simple module $L(\lambda)$
- ▶ The characters (and multiplicities) of the simple composition factors of $V(\lambda)$
- ▶ The submodule lattice of $V(\lambda)$

Let G be of type B_ℓ , $\ell \geq 2$. Let ω_1 be the highest weight of the standard orthogonal module of dimension $2\ell+1$. Assume $0 \leq r \leq p-1$. Then the following hold.

(a) $H^0(r\omega_1)$ is simple unless (i) p=2 and r=1 or (ii) p>2 and there exists a positive odd integer m such that

$$r + 2\ell - 1 \le mp \le 2r + 2\ell - 2$$
.

- (b) If (i) holds then the quotient $H^0(\omega_1)/L(\omega_1)$ is the one-dimensional trivial module.
- (c) If (ii) holds then m is unique and

$$H^0(r\omega_1)/L(r\omega_1)\cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 1 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

Let G be of type D_{ℓ} , $\ell \geq 3$. Let ω_1 be the highest weight of the standard orthogonal module of dimension 2ℓ . Assume $0 \leq r \leq p-1$. Then the following hold.

(a) Suppose that there exists a positive even integer m such that

$$r + 2\ell - 2 \le mp \le 2r + 2\ell - 3.$$

Then m is unique and

$$H^0(r\omega_1)/L(r\omega_1)\cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 2 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

(b) Otherwise, $H^0(r\omega_1)$ is simple.

Let G be of type A_{ℓ} , $\ell \geq 3$. Assume $0 \leq r \leq p-1$. Then the following hold.

(a) Suppose that here exists a positive integer m such that

$$r+\ell \leq mp \leq 2r+\ell-1$$
.

Then m is unique and

$$H^0(r(\omega_1 + \omega_\ell))/L(r(\omega_1 + \omega_\ell)) \cong H^0(r_1(\omega_1 + \omega_\ell)),$$

where $r_1 = mp - \ell - r$. Furthermore the module $H^0(r_1(\omega_1 + \omega_\ell))$ is simple.

(b) Otherwise, $H^0(r(\omega_1 + \omega_\ell))$ is simple.

Let G be of type A_{ℓ} , $\ell \geq 4$. If p > 2 then the following hold.

- (a) If $\ell \equiv 0 \pmod{p}$ then $H^0(\omega_2 + \omega_{\ell-1})/L(\omega_2 + \omega_{\ell-1}) \cong k$.
- (b) If $\ell \equiv 1 \pmod{p}$ then

$$H^0(\omega_2 + \omega_{\ell-1})/L(\omega_2 + \omega_{\ell-1}) \cong H^0(\omega_1 + \omega_{\ell})$$

and this module is simple.

(c) In all other cases $H^0(\omega_2 + \omega_{\ell-1})$ is simple.

If p = 2 then the following hold.

(d) If $\ell \equiv 0 \pmod{4}$ then

$$H^0(\omega_2 + \omega_{\ell-1})/L(\omega_2 + \omega_{\ell-1}) \cong k.$$

(e) If $\ell \equiv 1 \pmod{4}$ then

$$H^0(\omega_2 + \omega_{\ell-1})/L(\omega_2 + \omega_{\ell-1}) \cong V(\omega_1 + \omega_{\ell}).$$

- (f) If $\ell \equiv 2 \pmod{4}$ then $H^0(\omega_2 + \omega_{\ell-1})$ is simple.
- (g) If $\ell \equiv 3 \pmod{4}$ then

$$H^0(\omega_2 + \omega_{\ell-1})/L(\omega_2 + \omega_{\ell-1}) \cong L(\omega_1 + \omega_{\ell}).$$

Let G be of type A₄.

- (a) If p = 2, then $H^0((p-1)(\omega_2 + \omega_3))/L((p-1)(\omega_2 + \omega_3)) \cong k$. If p > 2, then the following hold.
- (b) $H^0((p-1)(\omega_2+\omega_3))/L((p-1)(\omega_2+\omega_3)) \cong L((p-2)(\omega_2+\omega_3)).$
- (c) $H^0((p-2)(\omega_2+\omega_3))/L((p-2)(\omega_2+\omega_3))\cong H^0((p-2)(\omega_1+\omega_4))$, which is simple.

Outline

Introduction

Statement of results

Jantzen Sum Formula

Applications

Further Research

Conclusion

 $V(\lambda)$ has a descending filtration, of submodules $V(\lambda)^i$, i > 0, such that

$$V(\lambda)^1 = \operatorname{rad} V(\lambda), \quad \text{so} \quad V(\lambda)/V(\lambda)^1 \cong L(\lambda).$$

and

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^{i}) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_{p}(mp) \chi(\lambda - mp\alpha)$$

The RHS of the Sum Formula can be computed by the following algorithm: For each positive root α ,

- (i) Compute $\langle \lambda + \rho, \alpha^{\vee} \rangle$
- (ii) Compute $\lambda + \rho mp\alpha$ for $0 < m < \langle \lambda + \rho, \alpha^{\vee} \rangle$
- (iii) Find the Weyl group conjugate $w(\lambda + \rho mp\alpha)$ in X_+ and note the sign of a Weyl group element w.
- (iv) Compute $w(\lambda + \rho mp\alpha) \rho$.
- (v) The contribution to the sum is $-\operatorname{sign}(w)v_p(mp)\chi(w(\lambda+\rho-mp\alpha)-\rho).$

Keeping control

The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ .

Lemma

- (a) If R is of type B_{ℓ} or D_{ℓ} and $\lambda + \rho mp\alpha$ has two coordinates with the same absolute value then the pair (α, m) contributes nothing to the final sum.
- (b) If R is of type A_{ℓ} and $\lambda + \rho mp\alpha$ has two equal coordinates, then the pair (α, m) contributes nothing to the final sum.

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$.
- ► Example. Type D_{ℓ} .
- ▶ $S^r(V^*)$ has a *good filtration* (Andersen-Jantzen). with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_G(V(r_1\omega_1),V(r\omega_1)) &= \dim \operatorname{Hom}_G(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_G(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_G(V(r_1\omega_1),S^r(V^*)) \\ &= \operatorname{multiplicity} \ \text{of} \ S^r(V^*)) \\ &= \operatorname{multiplicity} \ \text{of} \ H^0(r_1\omega_1) \\ &= \operatorname{multiplicity} \ \text{of} \ S^r(V^*) \\ &< 1 \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$.
- ▶ Example. Type D_{ℓ} .
- ▶ $S^r(V^*)$ has a *good filtration* (Andersen-Jantzen). with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_G(V(r_1\omega_1),V(r\omega_1)) &= \dim \operatorname{Hom}_G(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_G(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_G(V(r_1\omega_1),S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } H^0(r_1\omega_1) \\ &= \operatorname{multiplicity} \text{ of } S^r(V^*) \\ &\leq 1 \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$.
- ▶ Example. Type D_{ℓ} .
- ▶ $S^r(V^*)$ has a *good filtration* (Andersen-Jantzen). with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}), V(r\omega_{1})) = \dim \operatorname{Hom}_{G}(H^{0}(r\omega_{1}), H^{0}(r_{1}\omega_{1}))
\leq \dim \operatorname{Hom}_{G}(S^{r}(V^{*}), H^{0}(r_{1}\omega_{1}))
= \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}), S^{r}(V^{*}))
(\text{by self-duality of } S^{r}(V^{*}))
= \operatorname{multiplicity of } H^{0}(r_{1}\omega_{1})
in a good filtration of S^{r}(V^{*})
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$.
- ▶ Example. Type D_{ℓ} .
- ▶ $S^r(V^*)$ has a *good filtration* (Andersen-Jantzen). with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),V(r\omega_{1})) &= \dim \operatorname{Hom}_{G}(H^{0}(r\omega_{1}),H^{0}(r_{1}\omega_{1})) \\ &\leq \dim \operatorname{Hom}_{G}(S^{r}(V^{*}),H^{0}(r_{1}\omega_{1})) \\ &= \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } H^{0}(r_{1}\omega_{1}) \\ &\text{ in a } \operatorname{good } \operatorname{filtration} \text{ of } S^{r}(V^{*}) \\ &\leq 1. \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$.
- ▶ Example. Type D_{ℓ} .
- ▶ $S^r(V^*)$ has a *good filtration* (Andersen-Jantzen). with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_G(V(r_1\omega_1),V(r\omega_1)) &= \dim \operatorname{Hom}_G(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_G(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_G(V(r_1\omega_1),S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } H^0(r_1\omega_1) \\ &= \operatorname{multiplicity} \text{ of } H^0(r_1\omega_1) \\ &= \operatorname{multiplicity} \text{ of } S^r(V^*) \\ &\leq 1. \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$.
- ▶ Example. Type D_{ℓ} .
- ▶ $S^r(V^*)$ has a *good filtration* (Andersen-Jantzen). with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),V(r\omega_{1})) &= \dim \operatorname{Hom}_{G}(H^{0}(r\omega_{1}),H^{0}(r_{1}\omega_{1})) \\ &\leq \dim \operatorname{Hom}_{G}(S^{r}(V^{*}),H^{0}(r_{1}\omega_{1})) \\ &= \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } H^{0}(r_{1}\omega_{1}) \\ &\text{ in a } \operatorname{good } \operatorname{filtration} \text{ of } S^{r}(V^{*}) \\ &\leq 1. \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$.
- ▶ Example. Type D_{ℓ} .
- ▶ $S^r(V^*)$ has a *good filtration* (Andersen-Jantzen). with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_G(V(r_1\omega_1),V(r\omega_1)) &= \dim \operatorname{Hom}_G(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_G(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_G(V(r_1\omega_1),S^r(V^*)) \\ &(\text{by self-duality of } S^r(V^*)) \\ &= \operatorname{multiplicity of } H^0(r_1\omega_1) \\ &\text{in a } \operatorname{good filtration of } S^r(V^*) \\ &< 1. \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$.
- ▶ Example. Type D_{ℓ} .
- ▶ $S^r(V^*)$ has a *good filtration* (Andersen-Jantzen). with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{split} \dim \operatorname{Hom}_G(V(r_1\omega_1),\,V(r\omega_1)) &= \dim \operatorname{Hom}_G(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_G(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_G(V(r_1\omega_1),S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } H^0(r_1\omega_1) \\ &\text{ in a } \operatorname{good} \operatorname{filtration} \text{ of } S^r(V^*) \\ &\leq 1. \end{split}
```

Outline

Introduction

Statement of results

Jantzen Sum Formula

Applications

Further Research

Conclusion

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- ▶ $\hat{P} = \{$ all 1-dimensional subspaces of $V\}$
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ b may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ V vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- ▶ $\hat{P} = \{ \text{all 1-dimensional subspaces of } V \}$ $\supseteq P = \{ \text{singular 1-dimensional subspaces} \},$
- $ightharpoonup \widehat{P}^* = \{ \text{hyperplanes of } V \}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ► $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- ▶ $\widehat{P} = \{ \text{all 1-dimensional subspaces of } V \}$ $\supseteq P = \{ \text{singular 1-dimensional subspaces} \},$
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

Incidence of points and polar hyperplanes

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ► $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

Incidence of points and polar hyperplanes

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

Incidence of points and polar hyperplanes

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-, -).
- ▶ *b* may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

p-ranks

- We consider the *p*-ranks, where $q = p^t$.
- ► The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A₁ was found by Blokhuis and Moorhouse.
- ▶ Moorhouse (Linz, 2006): What is the p-rank of A_{11} ?

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

p-ranks

- ▶ We consider the *p*-ranks, where $q = p^t$.
- ► The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A₁ was found by Blokhuis and Moorhouse.
- ▶ Moorhouse (Linz, 2006): What is the p-rank of A_{11} ?

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

p-ranks

- ▶ We consider the *p*-ranks, where $q = p^t$.
- ► The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A₁ was found by Blokhuis and Moorhouse.
- Moorhouse (Linz, 2006): What is the p-rank of A₁₁?

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

- ▶ (a) G(q) acts on P with permutation rank 3
- ▶ (b) $k[P] \cong k.1 \oplus Y$,
- ▶ (c) head(Y) \cong soc(Y).
- ▶ (a),(b),(c) \implies head(Y) is a simple kG(q)-module. Call it L.
- ▶ P and P* are isomorphic G(q)-sets, so the incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

▶ Outcome: $\operatorname{rank}_p A_{11} = 1 + \dim L$.

- ▶ (a) G(q) acts on P with permutation rank 3 \iff dim $\operatorname{End}_{kG(q)}(k[P]) = 3$
- ▶ (b) $k[P] \cong k.1 \oplus Y$,
- ightharpoonup (c) head(Y) \cong soc(Y).
- ▶ (a),(b),(c) \implies head(Y) is a simple kG(q)-module. Call it L.
- ▶ P and P* are isomorphic G(q)-sets, so the incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

▶ Outcome: $rank_D A_{11} = 1 + dim L$.

- ▶ (a) G(q) acts on P with permutation rank 3 \iff dim $\operatorname{End}_{kG(q)}(k[P]) = 3$
- ▶ (b) $k[P] \cong k.1 \oplus Y$,
- ightharpoonup (c) head(Y) \cong soc(Y).
- ▶ (a),(b),(c) \implies head(Y) is a simple kG(q)-module. Call it L.
- ▶ P and P* are isomorphic G(q)-sets, so the incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

▶ Outcome: $rank_p A_{11} = 1 + dim L$.

- ▶ (a) G(q) acts on P with permutation rank 3 \iff dim $\operatorname{End}_{kG(q)}(k[P]) = 3$
- ▶ (b) $k[P] \cong k.1 \oplus Y$,
- ▶ (c) head(Y) \cong soc(Y).
- ▶ (a),(b),(c) \implies head(Y) is a simple kG(q)-module. Call it L.
- ▶ P and P* are isomorphic G(q)-sets, so the incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

▶ Outcome: $rank_p A_{11} = 1 + dim L$.

- ▶ (a) G(q) acts on P with permutation rank 3 \iff dim $\operatorname{End}_{kG(q)}(k[P]) = 3$
- ▶ (b) $k[P] \cong k.1 \oplus Y$,
- ▶ (c) head(Y) \cong soc(Y).
- ▶ (a),(b),(c) \implies head(Y) is a simple kG(q)-module. Call it L.
- ▶ P and P* are isomorphic G(q)-sets, so the incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

▶ Outcome: rank_p $A_{11} = 1 + \dim L$.

- ▶ (a) G(q) acts on P with permutation rank 3 \iff dim $\operatorname{End}_{kG(q)}(k[P]) = 3$
- ▶ (b) $k[P] \cong k.1 \oplus Y$,
- ▶ (c) head(Y) \cong soc(Y).
- ▶ (a),(b),(c) \implies head(Y) is a simple kG(q)-module. Call it L.
- ▶ P and P* are isomorphic G(q)-sets, so the incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

▶ Outcome: rank_p $A_{11} = 1 + \dim L$.

- ▶ (a) G(q) acts on P with permutation rank 3 \iff dim $\operatorname{End}_{kG(q)}(k[P]) = 3$
- ▶ (b) $k[P] \cong k.1 \oplus Y$,
- ▶ (c) head(Y) \cong soc(Y).
- ▶ (a),(b),(c) \implies head(Y) is a simple kG(q)-module. Call it L.
- ▶ P and P* are isomorphic G(q)-sets, so the incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

•

$$\operatorname{Im} \phi = k.\mathbf{1} \oplus L.$$

▶ Outcome: $rank_D A_{11} = 1 + dim L$.

- ▶ (a) G(q) acts on P with permutation rank 3 \iff dim $\operatorname{End}_{kG(q)}(k[P]) = 3$
- ▶ (b) $k[P] \cong k.1 \oplus Y$,
- ▶ (c) head(Y) \cong soc(Y).
- ▶ (a),(b),(c) \implies head(Y) is a simple kG(q)-module. Call it L.
- ▶ P and P* are isomorphic G(q)-sets, so the incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

Þ

$$\operatorname{Im} \phi = k.\mathbf{1} \oplus L.$$

▶ Outcome: $\operatorname{rank}_{\rho} A_{11} = 1 + \dim L$.

- ▶ $k[P] = \operatorname{ind}_{G(q)_x}^{G(q)}(k)$, $x \in P$, so Frobenius Reciprocity implies that $G(q)_x$ has a fixed point on L.
- ▶ The fixed point condition characterizes *L*:

$$L\cong L((q-1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

▶ By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

► Conclusion: rank_p $A_{11} = 1 + (\dim L((p-1)\omega))^t$.

- ▶ $k[P] = \operatorname{ind}_{G(q)_x}^{G(q)}(k)$, $x \in P$, so Frobenius Reciprocity implies that $G(q)_x$ has a fixed point on L.
- ▶ The fixed point condition characterizes *L*:

$$L\cong L((q-1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

▶ By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

► Conclusion: rank_p $A_{11} = 1 + (\dim L((p-1)\omega))^t$.

- ▶ $k[P] = \operatorname{ind}_{G(q)_x}^{G(q)}(k)$, $x \in P$, so Frobenius Reciprocity implies that $G(q)_x$ has a fixed point on L.
- ▶ The fixed point condition characterizes *L*:

$$L\cong L((q-1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

▶ By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

▶ Conclusion: $\operatorname{rank}_p A_{11} = 1 + (\dim L((p-1)\omega))^t$.

- ▶ $k[P] = \operatorname{ind}_{G(q)_x}^{G(q)}(k)$, $x \in P$, so Frobenius Reciprocity implies that $G(q)_x$ has a fixed point on L.
- ▶ The fixed point condition characterizes *L*:

$$L\cong L((q-1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

▶ By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

► Conclusion: rank_p $A_{11} = 1 + (\dim L((p-1)\omega))^t$.

Outline

Introduction

Statement of results

Jantzen Sum Formula

Applications

Further Research

Conclusion

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_I a^{-1} hP_I = P_I w_0 P_I$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) \to \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- ► Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.
- ▶ Oppositeness picks out a certain class of weights for further investigation. In the nontwisted case, the essential weights are those of the form $(p-1)\sum_{i\in J}\omega_i$, $J\subset S$.
- Work is in progress.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume I and J are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_I a^{-1} hP_I = P_I w_0 P_I$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k) \to \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- ► Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.
- ▶ Oppositeness picks out a certain class of weights for further investigation. In the nontwisted case, the essential weights are those of the form $(p-1)\sum_{i \in I} \omega_i$, $J \subset S$.
- Work is in progress.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) \to \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.
- ▶ Oppositeness picks out a certain class of weights for further investigation. In the nontwisted case, the essential weights are those of the form $(p-1)\sum_{i\in J}\omega_i$, $J\subset S$.
- Work is in progress.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k)
ightarrow \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.
- ▶ Oppositeness picks out a certain class of weights for further investigation. In the nontwisted case, the essential weights are those of the form $(p-1)\sum_{i\in J}\omega_i$, $J\subset S$.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k)
ightarrow \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- ▶ Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.
- ▶ Oppositeness picks out a certain class of weights for further investigation. In the nontwisted case, the essential weights are those of the form $(p-1)\sum_{i\in J}\omega_i$, $J\subset S$.
- Work is in progress.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k)
ightarrow \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.
- ▶ Oppositeness picks out a certain class of weights for further investigation. In the nontwisted case, the essential weights are those of the form $(p-1)\sum_{i\in J}\omega_i$, $J\subset S$.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.
- ▶ Oppositeness picks out a certain class of weights for further investigation. In the nontwisted case, the essential weights are those of the form $(p-1)\sum_{i\in J}\omega_i$, $J\subset S$.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume I and J are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff P_Ig⁻¹hP_J = P_Iw₀P_J.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.
- ▶ Oppositeness picks out a certain class of weights for further investigation. In the nontwisted case, the essential weights are those of the form $(p-1)\sum_{i\in J}\omega_i$, $J\subset S$.
- Work is in progress.

Outline

Introduction

Statement of results

Jantzen Sum Formula

Applications

Further Research

Conclusion

► Thank you for your attention!