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I Let G be a semisimple algebraic group in characteristic
p > 0.

I An important class of modules are the Weyl modules V (λ).
I The characters of Weyl modules are given by Weyl’s

Character Formula.
I But their precise submodule structure is not fully

understood.
I This talk is about a uniform description of the submodule

structure of some infinite families of Weyl modules for
classical groups.
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Groups and weights considered

(B) G of type B`, (` ≥ 2) λ = r(ω1), 0 ≤ r ≤ p − 1;
(D) G of type D`, (` ≥ 3) λ = r(ω1), 0 ≤ r ≤ p − 1;
(A) G of type A`, (` ≥ 3) λ = r(ω1 + ω`), 0 ≤ r ≤ p − 1;
(A′) G of type A`, (` ≥ 4) λ = (ω2 + ω`−1); and
(A′′) G of type A4, λ = (p − 2)(ω2 + ω`−1) or (p − 1)(ω2 + ω`−1).



For each of the weights considered we obtain:
I The character of the simple module L(λ)

I The characters (and multiplicities) of the simple
composition factors of V (λ)

I The submodule lattice of V (λ)



Theorem
Let G be of type B`, ` ≥ 2. Let ω1 be the highest weight of the
standard orthogonal module of dimension 2`+ 1. Assume
0 ≤ r ≤ p − 1. Then the following hold.
(a) H0(rω1) is simple unless (i) p = 2 and r = 1 or (ii) p > 2

and there exists a positive odd integer m such that

r + 2`− 1 ≤ mp ≤ 2r + 2`− 2.

(b) If (i) holds then the quotient H0(ω1)/L(ω1) is the
one-dimensional trivial module.

(c) If (ii) holds then m is unique and

H0(rω1)/L(rω1) ∼= H0(r1ω1),

where r1 = mp − 2`+ 1− r . Furthermore the module
H0(r1ω1) is simple.



Theorem
Let G be of type D`, ` ≥ 3. Let ω1 be the highest weight of the
standard orthogonal module of dimension 2`. Assume
0 ≤ r ≤ p − 1. Then the following hold.
(a) Suppose that there exists a positive even integer m such

that
r + 2`− 2 ≤ mp ≤ 2r + 2`− 3.

Then m is unique and

H0(rω1)/L(rω1) ∼= H0(r1ω1),

where r1 = mp − 2`+ 2− r . Furthermore the module
H0(r1ω1) is simple.

(b) Otherwise, H0(rω1) is simple.



Theorem
Let G be of type A`, ` ≥ 3. Assume 0 ≤ r ≤ p − 1. Then the
following hold.
(a) Suppose that here exists a positive integer m such that

r + ` ≤ mp ≤ 2r + `− 1.

Then m is unique and

H0(r(ω1 + ω`))/L(r(ω1 + ω`)) ∼= H0(r1(ω1 + ω`)),

where r1 = mp − `− r . Furthermore the module
H0(r1(ω1 + ω`)) is simple.

(b) Otherwise, H0(r(ω1 + ω`)) is simple.



Theorem
Let G be of type A`, ` ≥ 4. If p > 2 then the following hold.
(a) If ` ≡ 0 (mod p) then H0(ω2 + ω`−1)/L(ω2 + ω`−1) ∼= k.
(b) If ` ≡ 1 (mod p) then

H0(ω2 + ω`−1)/L(ω2 + ω`−1) ∼= H0(ω1 + ω`)

and this module is simple.
(c) In all other cases H0(ω2 + ω`−1) is simple.



If p = 2 then the following hold.
(d) If ` ≡ 0 (mod 4) then

H0(ω2 + ω`−1)/L(ω2 + ω`−1) ∼= k .

(e) If ` ≡ 1 (mod 4) then

H0(ω2 + ω`−1)/L(ω2 + ω`−1) ∼= V (ω1 + ω`).

(f) If ` ≡ 2 (mod 4) then H0(ω2 + ω`−1) is simple.
(g) If ` ≡ 3 (mod 4) then

H0(ω2 + ω`−1)/L(ω2 + ω`−1) ∼= L(ω1 + ω`).



Theorem
Let G be of type A4.
(a) If p = 2, then H0((p−1)(ω2 +ω3))/L((p−1)(ω2 +ω3)) ∼= k.

If p > 2, then the following hold.
(b) H0((p−1)(ω2+ω3))/L((p−1)(ω2+ω3)) ∼= L((p−2)(ω2+ω3)).
(c) H0((p − 2)(ω2 + ω3))/L((p − 2)(ω2 + ω3)) ∼=

H0((p − 2)(ω1 + ω4)), which is simple.
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V (λ) has a descending filtration, of submodules V (λ)i , i > 0,
such that

V (λ)1 = rad V (λ), so V (λ)/V (λ)1 ∼= L(λ).

and∑
i>0

Ch(V (λ)i) = −
∑
α>0

∑
{m:0<mp<〈λ+ρ,α∨〉}

vp(mp)χ(λ−mpα)



The RHS of the Sum Formula can be computed by the
following algorithm: For each positive root α,

(i) Compute 〈λ+ ρ, α∨〉
(ii) Compute λ+ ρ−mpα for 0 < m < 〈λ+ ρ, α∨〉
(iii) Find the Weyl group conjugate w(λ+ ρ−mpα) in X+ and

note the sign of a Weyl group element w .
(iv) Compute w(λ+ ρ−mpα)− ρ.
(v) The contribution to the sum is
− sign(w)vp(mp)χ(w(λ+ ρ−mpα)− ρ).



Keeping control

The main challenge lies in trying to do infinitely many Sum
Formula computations at once. For fixed type the parameters of
the problem are p, r and the rank `.

Lemma

(a) If R is of type B` or D` and λ+ ρ−mpα has two
coordinates with the same absolute value then the pair
(α,m) contributes nothing to the final sum.

(b) If R is of type A` and λ+ ρ−mpα has two equal
coordinates, then the pair (α,m) contributes nothing to the
final sum.



Eliminating multiplicities

I The Sum Formula overestimates the character of rad V (λ).
I Example. Type D`.
I Sr (V ∗) has a good filtration (Andersen-Jantzen). with

subquotients of the form H0(sω1), s < r .
I Then for r1 < r ,

dim HomG(V (r1ω1),V (rω1)) = dim HomG(H0(rω1),H0(r1ω1))

≤ dim HomG(Sr (V ∗),H0(r1ω1))

= dim HomG(V (r1ω1),Sr (V ∗))

(by self-duality of Sr (V ∗))

= multiplicity of H0(r1ω1)

in a good filtration of Sr (V ∗)
≤ 1.
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Incidence of points and polar hyperplanes

I V vector space over Fq with nonsingular form b(−,−).
I b may be alternating or symmetric or hermitian.
I P̂ = {all 1-dimensional subspaces of V}
⊇ P = {singular 1-dimensional subspaces},

I P̂∗ = {hyperplanes of V} ⊇ P∗ = {p⊥ | p ∈ P}, polar
hyperplanes.

I G(q) = group of linear transformations preserving b(−,−).
I A = incidence matrix of (P̂∗, P̂)

A =

[
A1
A2

]
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p-ranks

I We consider the p-ranks, where q = pt .
I The p-rank of A is well known (Goethals-Delsarte,

MacWilliams-Mann, Smith), and the p-rank of A1 was
found by Blokhuis and Moorhouse.

I Moorhouse (Linz, 2006): What is the p-rank of A11?

A =

[
A1
A2

]
=

[
A11 A12
A21 A22
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Permutation module structure

I (a) G(q) acts on P with permutation rank 3
I (b) k [P] ∼= k .1⊕ Y ,
I (c) head(Y ) ∼= soc(Y ).
I (a),(b),(c) =⇒ head(Y ) is a simple kG(q)-module. Call it L.
I P and P∗ are isomorphic G(q)-sets, so the incidence map

induces

φ ∈ EndkG(q)(k [P]), φ(p) =
∑

p′∈p⊥
p′.

I

Imφ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.
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Identifying the simple module L

I k [P] = indG(q)
G(q)x

(k), x ∈ P, so Frobenius Reciprocity implies
that G(q)x has a fixed point on L.

I The fixed point condition characterizes L:

L ∼= L((q − 1)ω),

where ω = ω1 in the orthogonal and symplectic cases, and
ω1 + ω` in the unitary case.

I By Steinberg’s Tensor Product Theorem,

L((q−1)ω) = L((p−1)ω)⊗L((p−1)ω)(p) · · ·⊗L((p−1)ω)(pt−1)

I Conclusion: rankp A11 = 1 + (dim L((p − 1)ω))t .
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I Conclusion: rankp A11 = 1 + (dim L((p − 1)ω))t .
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Oppositeness

I Let (∆(q),S) be the spherical Tits building of a finite group
of Lie type.

I Two types I, J ⊆ S are opposite if Iw0 = J.
I Assume I and J are opposite types. We say the cosets gPI

and hPJ of the parabolic subgroups are opposite iff
PIg−1hPJ = PIw0PJ .

I Oppositeness map:

η : indG(q)
PI

(k)→ indG(q)
PJ

(k), gPI 7→
∑

hPJ⊆gPIw0PJ

hPJ

I Im η is a simple module (follows from Carter and Lusztig
(1976, PLMS))

I The incidences we looked at above can be described in
terms of oppositeness.

I Oppositeness picks out a certain class of weights for
further investigation. In the nontwisted case, the essential
weights are those of the form (p − 1)

∑
i∈J ωi , J ⊂ S.

I Work is in progress.
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I Thank you for your attention!
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