Critical Groups of Rank 3 graphs

Peter Sin, U. of Florida

Finite Geometry and Extremal Combinatorics,
U. Delaware August 2019
Contents

Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples
The coauthors for various parts of this talk are: Andries Brouwer, David Chandler, Josh Ducey, Ian Hill, Venkata Raghu Tej Pantangi and Qing Xiang.
Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples
Let A be an $m \times n$ matrix with integer entries.
Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \text{Col}(A)$.
Let A be an $m \times n$ matrix with integer entries.

A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \text{Col}(A)$

The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A: There exist unimodular P, Q such that $D = PAQ$ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1}.
Let A be an $m \times n$ matrix with integer entries. A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \text{Col}(A)$

The cyclic decomposition of $S(A)$ is given by the **Smith Normal Form** of A: There exist unimodular P, Q such that $D = PAQ$ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1}.

Other diagonal forms also describe $S(A)$. Generalizes from \mathbb{Z} to principal ideal domains. For each prime p, can find $S(A)_p$ by working over a p-local ring. Then the d_i are powers of p called the p-elementary divisors.
Let A be an $m \times n$ matrix with integer entries.

A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \text{Col}(A)$

The cyclic decomposition of $S(A)$ is given by the **Smith Normal Form** of A: There exist unimodular P, Q such that $D = PAQ$ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1}.

Other diagonal forms also describe $S(A)$.

Generalizes from \mathbb{Z} to principal ideal domains.
Let A be an $m \times n$ matrix with integer entries. A can be regarded as the relation matrix of an abelian group $S(A) = \mathbb{Z}^m / \text{Col}(A)$.

The cyclic decomposition of $S(A)$ is given by the **Smith Normal Form** of A: There exist unimodular P, Q such that $D = PAQ$ has nonzero entries d_1, \ldots, d_r only on the leading diagonal, and d_i divides d_{i+1}.

Other diagonal forms also describe $S(A)$.

Generalizes from \mathbb{Z} to principal ideal domains.

For each prime p, can find $S(A)_p$ by working over a p-local ring. Then the d_i are powers of p called the p-elementary divisors.
Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples
Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph $\Gamma = (V, E)$.

$L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.

$K(\Gamma) = \text{Tor}(S(L(\Gamma)))$ is called the critical group of Γ.

$|K(\Gamma)| =$ number of spanning trees (Kirchhoff's Matrix-tree Theorem).

Origins and early work on $K(\Gamma)$ include: Sandpile model (Dhar 1990), Chip-firing game (Biggs), Cycle Matroids (Vince 1991), arithmetic graphs (Lorenzini, 1991).
Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph $\Gamma = (V, E)$.

$L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.
Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph $\Gamma = (V, E)$.
$L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.
$K(\Gamma) = \text{Tor}(S(L(\Gamma)))$ is called the critical group of Γ.

Origins and early work on $K(\Gamma)$ include: Sandpile model (Dhar 1990), Chip-firing game (Biggs), Cycle Matroids (Vince 1991), arithmetic graphs (Lorenzini, 1991).
A(Γ), an adjacency matrix of a (connected) graph
Γ = (V, E).

L(Γ) = D(Γ) − A(Γ), Laplacian matrix.

K(Γ) = Tor(S(L(Γ))) is called the **critical group** of Γ.

|K(Γ)| = number of spanning trees (Kirchhoff’s Matrix-tree Theorem).
Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph $\Gamma = (V, E)$.

$L(\Gamma) = D(\Gamma) - A(\Gamma)$, Laplacian matrix.

$K(\Gamma) = \text{Tor}(S(L(\Gamma)))$ is called the **critical group** of Γ.

$|K(\Gamma)|$ = number of spanning trees (Kirchhoff’s Matrix-tree Theorem).

Origins and early work on $K(\Gamma)$ include: Sandpile model (Dhar 1990), Chip-firing game (Biggs), Cycle Matroids (Vince 1991), arithmetic graphs (Lorenzini, 1991).
General problem

Compute the critical group for some graphs (families of graphs).
General problem

Compute the critical group for some graphs (families of graphs).
Perhaps graphs with lots of automorphisms can be approached using group theory, representation theory.
Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples
Rank 3 group actions

Definition

The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits. Equivalently, G has 3 orbits on $X \times X$.

S_n acts on $\{1,\ldots,n\} := \{1,\ldots,n\}$ ($n \geq 4$). The induced action on unordered pairs has rank 3.

$\text{PGL}(n+1,q)$ acts on projective space $\text{PG}(n,q)$ ($n \geq 3$). Consider the induced action on lines.

$S_n \rtimes \mathbb{Z}_2$ acting on $\{1,\ldots,n\} \times \{1,\ldots,n\}$.

Definition
The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits. Equivalently, G has 3 orbits on $X \times X$.
Definition

The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits. Equivalently, G has 3 orbits on $X \times X$.

- S_n acts on $[n] := \{1, \ldots n\}$ ($n \geq 4$). The induced action on unordered pairs has rank 3.
Definition
The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits. Equivalently, G has 3 orbits on $X \times X$.

- S_n acts on $[n] := \{1, \ldots n\}$ ($n \geq 4$). The induced action on unordered pairs has rank 3.
- $PGL(n+1, q)$ acts on projective space $PG(n, q)$ ($n \geq 3$). Consider the induced action on lines.
Definition
The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits. Equivalently, G has 3 orbits on $X \times X$.

- S_n acts on $[n] := \{1, \ldots, n\}$ ($n \geq 4$). The induced action on unordered pairs has rank 3.
- $PGL(n + 1, q)$ acts on projective space $PG(n, q)$ ($n \geq 3$). Consider the induced action on lines.
- $S = F_q^{\times 2}$ (q odd), $G = F_q \rtimes S$, acting on F_q.
Definition
The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits. Equivalently, G has 3 orbits on $X \times X$.

- S_n acts on $[n] := \{1, \ldots, n\}$ ($n \geq 4$). The induced action on unordered pairs has rank 3.
- $PGL(n+1, q)$ acts on projective space $PG(n, q)$ ($n \geq 3$). Consider the induced action on lines.
- $S = \mathbb{F}_q^\times$ (q odd), $G = \mathbb{F}_q \rtimes S$, acting on \mathbb{F}_q.
- $S_n \wr \mathbb{Z}_2$ acting on $[n] \times [n]$
Definition

The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits. Equivalently, G has 3 orbits on $X \times X$.

- S_n acts on $[n] := \{1, \ldots, n\}$ ($n \geq 4$). The induced action on unordered pairs has rank 3.
- $PGL(n+1, q)$ acts on projective space $PG(n, q)$ ($n \geq 3$). Consider the induced action on lines.
- $S = \mathbb{F}_q^\times$ (q odd), $G = \mathbb{F}_q \rtimes S$, acting on \mathbb{F}_q.
- $S_n \rtimes \mathbb{Z}_2$ acting on $[n] \times [n]$

(G, X) rank 3 group of even order, orbits Δ, Φ, ψ on \(X \times X \). The graphs \((X, \Phi)\) and \((X, \Psi)\) are the associated rank 3 graphs.
Rank 3 graphs

\((G, X)\) rank 3 group of even order, orbits \(\Delta, \Phi, \Psi\) on \(X \times X\). The graphs \((X, \Phi)\) and \((X, \Psi)\) are the associated rank 3 graphs.
They are strongly regular graphs.
Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples
$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
Grassmann and skewness graphs of lines in $\text{PG}(n-1, q)$
(Brouwer-Ducey-S,(2012); Ducey-S, (2017))
$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
Grassmann and skewness graphs of lines in $\text{PG}(n-1, q)$
(Brouwer-Ducey-S,(2012); Ducey-S, (2017))
Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
Grassmann and skewness graphs of lines in $\text{PG}(n - 1, q)$
(Brouwer-Ducey-S,(2012); Ducey-S, (2017))
Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
Classical polar graphs (Pantangi-S, (2017))
$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
Grassmann and skewness graphs of lines in $\text{PG}(n - 1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
Classical polar graphs (Pantangi-S, (2017))
Van Lint-Schrijver cyclotomic SRGs (Pantangi, 2018)
Some open cases to consider

There are many families of rank 3 graphs where $K(\Gamma)$ is not yet known, e.g. associated with primitive actions of the groups: $E_6(q)$, $O_{10}^+(q)$ (action on one orbit of t.i. 5-spaces); $U_5(q)$ (action on t.i. lines); $O_{2m}^\pm(p)$, $p = 2$ or 3 and $O_{2m+1}(3)$ (action on nonisotropic points); wreathed cases.
Some open cases to consider

▶ There are many families of rank 3 graphs where $K(\Gamma)$ is not yet known, e.g. associated with primitive actions of the groups: $E_6(q)$, $O^+_{10}(q)$ (action on one orbit of t.i. 5-spaces); $U_5(q)$ (action on t.i. lines); $O^\pm_{2m}(p)$, $p = 2$ or 3 and $O_{2m+1}(3)$ (action on nonisotropic points); wreathed cases.

▶ Imprimitive rank 3 examples
Some open cases to consider

- There are many families of rank 3 graphs where $K(\Gamma)$ is not yet known, e.g. associated with primitive actions of the groups: $E_6(q)$, $O^+_{10}(q)$ (action on one orbit of t.i. 5-spaces); $U_5(q)$ (action on t.i. lines); $O^\pm_{2m}(p)$, $p = 2$ or 3 and $O_{2m+1}(3)$ (action on nonisotropic points); wreathed cases.
- Imprimitive rank 3 examples
- SRGs in general.
Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples
Let $G \leq \text{Aut}(\Gamma)$. Then \mathbb{Z}^\vee is a permutation module and $L(\Gamma)$ defines a $\mathbb{Z}G$-module homomorphism with cokernel $S(L(\Gamma))$, so $K(\Gamma)$ is a $\mathbb{Z}G$-module.
Let $G \leq \text{Aut}(\Gamma)$. Then \mathbb{Z}^V is a permutation module and $L(\Gamma)$ defines a $\mathbb{Z}G$-module homomorphism with cokernel $S(L(\Gamma))$, so $K(\Gamma)$ is a $\mathbb{Z}G$-module.

We can analyze this module one prime at a time by localization and reduction, then studying the associated modules over a finite field.
Let $G \leq \text{Aut}(\Gamma)$. Then \mathbb{Z}^V is a permutation module and $L(\Gamma)$ defines a $\mathbb{Z}G$-module homomorphism with cokernel $S(L(\Gamma))$, so $K(\Gamma)$ is a $\mathbb{Z}G$-module.

- We can analyze this module one prime at a time by localization and reduction, then studying the associated modules over a finite field.

- For each prime ℓ, there is a canonical filtration of \mathbb{F}_ℓ^V by $\mathbb{F}_\ell G$-submodules, whose i-th subquotient has dimension equals the multiplicity of ℓ^i as an elementary divisor.
Let $G \leq \text{Aut}(\Gamma)$. Then \mathbb{Z}^V is a permutation module and $L(\Gamma)$ defines a $\mathbb{Z}G$-module homomorphism with cokernel $S(L(\Gamma))$, so $K(\Gamma)$ is a $\mathbb{Z}G$-module.

- We can analyze this module one prime at a time by localization and reduction, then studying the associated modules over a finite field.
- For each prime ℓ, there is a canonical filtration of \mathbb{F}_ℓ^V by $\mathbb{F}_\ell G$-submodules, whose i-th subquotient has dimension equals the multiplicity of ℓ^i as an elementary divisor.
- Often there is natural characteristic prime p that has to be treated differently.
p-modular group reps

p-adic character sums

special char. p

general module theory

cross-char. ℓ

DFT

ℓ-modular group reps

geometric vectors

SRG, eigenvalues
Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples
Paley graphs (Chandler-S-Xiang 2015)

Uses: DFT (\mathbb{F}_q-action) to get the p'-part, \mathbb{F}_q^*-action Jacobi sums and Transfer matrix method for p-part. The following gives the p-part of $K(\Gamma)$.

Theorem

Let $q = p^t$ be a prime power congruent to 1 modulo 4. Then the number of p-adic elementary divisors of $L(\text{Paley}(q))$ which are equal to p^λ, $0 \leq \lambda < t$, is

$$ f(t, \lambda) = \sum_{i=0}^{\min\{\lambda, t-\lambda\}} \frac{t}{t-i} \binom{t-i}{i} \binom{t-2i}{\lambda-i} (-p)^i \left(\frac{p+1}{2} \right)^{t-2i} $$

The number of p-adic elementary divisors of $L(\text{Paley}(q))$ which are equal to p^t is $\left(\frac{p+1}{2} \right)^t - 2$.
$K(\Gamma)$ examples for Paley graphs

$$K(\text{Paley}(5^3)) \cong (\mathbb{Z}/31\mathbb{Z})^{62} \oplus (\mathbb{Z}/5\mathbb{Z})^{36} \oplus (\mathbb{Z}/25\mathbb{Z})^{36} \oplus (\mathbb{Z}/125\mathbb{Z})^{25}.$$

$$K(\text{Paley}(5^4)) \cong (\mathbb{Z}/156\mathbb{Z})^{312} \oplus (\mathbb{Z}/5\mathbb{Z})^{144} \oplus (\mathbb{Z}/25\mathbb{Z})^{176} \oplus (\mathbb{Z}/125\mathbb{Z})^{144} \oplus (\mathbb{Z}/625\mathbb{Z})^{79}.$$
Grassmann graph or Skew lines graph, (Ducey-S 2017)

p'-part of $K(\Gamma)$: Structure of $\mathbb{F}_\ell GL(n, q)$-permutation modules (G. James) depends on relation of ℓ to n.

$D_1^F \ell V = \mathbb{F}_\ell \oplus D_2^F \ell$

$D_1^F \ell V = \mathbb{F}_\ell \oplus D_2^F \ell$

$D_1^F \ell V = \mathbb{F}_\ell \oplus D_2^F \ell$
Grassmann graph or Skew lines graph, (Ducey-S 2017)

\(\rho' \)-part of \(K(\Gamma) \): Structure of \(\mathbb{F}_\ell GL(n, q) \)-permutation modules (G. James) depends on relation of \(\ell \) to \(n \).

Examples:

<table>
<thead>
<tr>
<th>(\ell \mid \left\lfloor \frac{n-1}{2} \right\rfloor)</th>
<th>(\ell \mid \left\lfloor \frac{n-2}{1} \right\rfloor), (\ell \mid q+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell \nmid \left\lfloor \frac{n-2}{1} \right\rfloor)</td>
<td>(\mathbb{F}\ell V = \mathbb{F}\ell \oplus D_1) (\mathbb{F}_\ell) (D_2) (D_1)</td>
</tr>
</tbody>
</table>
For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.

Structure of $F_{q^t}GL(n, q)$-permutation module on points (Bardoe-S 2000) p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006). Subspace character sums (D. Wan) Much of the difficulty was handled in $n=4$ case (Brouwer-Ducey-S 2012).
For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
For skew lines graph, $K(\Gamma)$ has a large p-part.
Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part.
 The number of composition factors of \mathbb{F}_q^V grows like n^t, where $q = p^t$.
Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part.
 The number of composition factors of \mathbb{F}_q^V grows like n^t, where $q = p^t$.

Structure of $\mathbb{F}_q GL(n, q)$-permutation module on points (Bardoe-S 2000)
For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.

For skew lines graph, $K(\Gamma)$ has a large p-part. The number of composition factors of \mathbb{F}_q^V grows like n^t, where $q = p^t$.

Structure of $\mathbb{F}_qGL(n, q)$-permutation module on points (Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).
Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part.
 The number of composition factors of \mathbb{F}_q^V grows like n^t, where $q = p^t$.
Structure of $\mathbb{F}_q\text{GL}(n, q)$-permutation module on points (Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).
Subspace character sums (D. Wan)
For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.

For skew lines graph, $K(\Gamma)$ has a large p-part.

The number of composition factors of \mathbb{F}_q^V grows like n^t, where $q = p^t$.

Structure of $\mathbb{F}_q GL(n, q)$-permutation module on points (Bardoe-S 2000)

p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).

Subspace character sums (D. Wan)

Much of the difficulty was handled in $n = 4$ case (Brouwer-Ducey-S 2012).
Example: $K(\Gamma)$ for Skew lines in $\text{PG}(3,9)$

\[K(\Gamma) \cong (\mathbb{Z}/8\mathbb{Z})^{5824} \times (\mathbb{Z}/16\mathbb{Z})^{818} \]
\[\times (\mathbb{Z}/7\mathbb{Z})^{6641} \times (\mathbb{Z}/13\mathbb{Z})^{6641} \times (\mathbb{Z}/41\mathbb{Z})^{818} \]
\[\times (\mathbb{Z}/3\mathbb{Z})^{256} \times (\mathbb{Z}/9\mathbb{Z})^{6025} \times (\mathbb{Z}/81\mathbb{Z})^{202} \times (\mathbb{Z}/243\mathbb{Z})^{256} \]
\[\times (\mathbb{Z}/729\mathbb{Z})^{361} \times (\mathbb{Z}/6561\mathbb{Z}) \]
(Pantangi-S 2017) Uses structure of cross characteristic permutation modules (S-Tiep, 2005). The p-part of $K(\Gamma)$ is trivial.
$K(\Gamma)$ for polar graph on $2m$-dimensional symplectic space

$$(f, g) := \left(\frac{q(q^m-1)(q^{m-1}+1)}{2(q-1)}, \frac{q(q^m+1)(q^{m-1}-1)}{2(q-1)} \right)$$

$$(a, b, c, d) := \left(\nu_\ell\left(\left[\begin{array}{c} m-1 \\ 1 \end{array} \right]_q \right), \nu_\ell\left(\left[\begin{array}{c} m \\ 1 \end{array} \right]_q \right), \nu_\ell(q^m + 1), \nu_\ell(q^{m-1} + 1) \right)$$

<table>
<thead>
<tr>
<th>Prime</th>
<th>conditions</th>
<th>multiplicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell = 2$</td>
<td>m even, q odd</td>
<td>$e_0 = g + 1$, $e_1 = f - g - 1$, $e_{d+1} = 1$, and $e_{d+b+1} = g - 1$.</td>
</tr>
<tr>
<td></td>
<td>m odd, q odd</td>
<td>$e_0 = g$, $e_a = 1$, $e_{a+c} = f - g - 1$, and $e_{a+c+1} = g$.</td>
</tr>
<tr>
<td>$\ell \neq 2$</td>
<td>$b = d = 0$</td>
<td>$e_0 = g + \delta_{a,0}$, $e_a = \delta_{c,0}(f - 1) + 1 + \delta_{a,0}(g)$, and $e_{a+c} = f - 1 + \delta_{c,0}$.</td>
</tr>
<tr>
<td></td>
<td>$a = c = 0$</td>
<td>$e_0 = f + \delta_{d,0}$, $e_d = \delta_{b,0}(g) + 1 + \delta_{d,0}(f)$, and $e_{b+d} = g - 1 + \delta_{b,0}$</td>
</tr>
</tbody>
</table>
Example: $q = 9, \ m = 3$

Γ is an SRG$(66430, 7380, 818, 820)$. Eigenvalues $(7380, 80, -82)$ with multiplicities $(1, 33579, 32850)$.

$$K(\Gamma) \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/4\mathbb{Z})^{728} \times (\mathbb{Z}/8\mathbb{Z})^{32851} \times (\mathbb{Z}/41\mathbb{Z})$$
$$\times (\mathbb{Z}/91\mathbb{Z})^{32580} \times (\mathbb{Z}/25\mathbb{Z})^{33578} \times (\mathbb{Z}/5\mathbb{Z}) \times (\mathbb{Z}/73\mathbb{Z})^{33579}$$
Thank you for your attention!
References

