Critical Groups of Rank 3 graphs

Peter Sin, U. of Florida

Finite Geometry and Extremal Combinatorics, U. Delaware August 2019

Contents

Smith normal form

The critical group of a graph
Rank 3 Graphs
Progress on computing $K(\Gamma)$
Methods

Illustrative examples

Collaborators

The coauthors for various parts of this talk are: Andries Brouwer, David Chandler, Josh Ducey, Ian Hill, Venkata Raghu Tej Pantangi and Qing Xiang.

Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples

Let A be an $m \times n$ matrix with integer entries.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.
Other diagonal forms also describe $S(A)$.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.
Other diagonal forms also describe $S(A)$.
Generalizes from \mathbb{Z} to principal ideal domains.

Let A be an $m \times n$ matrix with integer entries.
A can be regarded as the relation matrix of an abelian group $S(A)=\mathbb{Z}^{m} / \operatorname{Col}(A)$
The cyclic decomposition of $S(A)$ is given by the Smith Normal Form of A : There exist unimodular P, Q such that $D=P A Q$ has nonzero entries $d_{1}, \ldots d_{r}$ only on the leading diagonal, and d_{i} divides d_{i+1}.
Other diagonal forms also describe $S(A)$.
Generalizes from \mathbb{Z} to principal ideal domains.
For each prime p, can find $S(A)_{p}$ by working over a p-local ring. Then the d_{i} are powers of p called the p-elementary divisors.

Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples

Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph
$\Gamma=(V, E)$.

Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph
$\Gamma=(V, E)$.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.

Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph
$\Gamma=(V, E)$.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.
$K(\Gamma)=\operatorname{Tor}(S(L(\Gamma)))$ is called the critical group of Γ.

Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph
$\Gamma=(V, E)$.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.
$K(\Gamma)=\operatorname{Tor}(S(L(\Gamma)))$ is called the critical group of Γ.
$|K(\Gamma)|=$ number of spanning trees (Kirchhoff's Matrix-tree
Theorem).

Definition and history

$A(\Gamma)$, an adjacency matrix of a (connected) graph
$\Gamma=(V, E)$.
$L(\Gamma)=D(\Gamma)-A(\Gamma)$, Laplacian matrix.
$K(\Gamma)=\operatorname{Tor}(S(L(\Gamma)))$ is called the critical group of Γ.
$|K(\Gamma)|=$ number of spanning trees (Kirchhoff's Matrix-tree Theorem).
Origins and early work on $K(\Gamma)$ include: Sandpile model (Dhar 1990), Chip-firing game (Biggs), Cycle Matroids (Vince 1991), arithmetic graphs (Lorenzini, 1991).

General problem

Compute the critical group for some graphs (families of graphs).

General problem

Compute the critical group for some graphs (families of graphs).
Perhaps graphs with lots of automorphisms can be approached using group theory, representation theory.

Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples

Rank 3 group actions

Rank 3 group actions

Definition

The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits.
Equivalently, G has 3 orbits on $X \times X$.

Rank 3 group actions

Definition

The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits.
Equivalently, G has 3 orbits on $X \times X$.

- S_{n} acts on $[n]:=\{1, \ldots n\}(n \geq 4)$. The induced action on unordered pairs has rank 3.

Rank 3 group actions

Definition
The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits.
Equivalently, G has 3 orbits on $X \times X$.

- S_{n} acts on $[n]:=\{1, \ldots n\}(n \geq 4)$. The induced action on unordered pairs has rank 3.
- $P G L(n+1, q)$ acts on projective space $P G(n, q)(n \geq 3)$. Consider the induced action on lines.

Rank 3 group actions

Definition

The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits.
Equivalently, G has 3 orbits on $X \times X$.

- S_{n} acts on $[n]:=\{1, \ldots n\}(n \geq 4)$. The induced action on unordered pairs has rank 3.
- $P G L(n+1, q)$ acts on projective space $P G(n, q)(n \geq 3)$. Consider the induced action on lines.
$-S=\mathbb{F}_{q}^{\times 2}(q$ odd $), G=\mathbb{F}_{q} \rtimes S$, acting on \mathbb{F}_{q}.

Rank 3 group actions

Definition

The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits.
Equivalently, G has 3 orbits on $X \times X$.

- S_{n} acts on $[n]:=\{1, \ldots n\}(n \geq 4)$. The induced action on unordered pairs has rank 3.
- $P G L(n+1, q)$ acts on projective space $P G(n, q)(n \geq 3)$. Consider the induced action on lines.
- $S=\mathbb{F}_{q}^{\times 2}(q$ odd $), G=\mathbb{F}_{q} \rtimes S$, acting on \mathbb{F}_{q}.
- $S_{n} 2 Z_{2}$ acting on $[n] \times[n]$

Rank 3 group actions

Definition

The action of a group G on a set X is said to have rank 3 if it is transitive and a point stabilizer has exactly three orbits.
Equivalently, G has 3 orbits on $X \times X$.

- S_{n} acts on $[n]:=\{1, \ldots n\}(n \geq 4)$. The induced action on unordered pairs has rank 3.
- $P G L(n+1, q)$ acts on projective space $P G(n, q)(n \geq 3)$. Consider the induced action on lines.
- $S=\mathbb{F}_{q}^{\times 2}(q$ odd $), G=\mathbb{F}_{q} \rtimes S$, acting on \mathbb{F}_{q}.
- $S_{n} \imath Z_{2}$ acting on $[n] \times[n]$

Primitive rank 3 permutation groups are known as consequence of CFSG: Bannai (1971), Cameron (1981), Kantor-Liebler (1982), Liebeck-Saxl (1986), Liebeck (1987).

Rank 3 graphs

(G, X) rank 3 group of even order, orbits Δ, Φ, Ψ on $X \times X$. The graphs (X, Φ) and (X, Ψ) are the associated rank 3 graphs.

Rank 3 graphs

(G, X) rank 3 group of even order, orbits Δ, Φ, Ψ on $X \times X$. The graphs (X, Φ) and (X, Ψ) are the associated rank 3 graphs.
They are strongly regular graphs.

Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples

$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))

$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
Grassmann and skewness graphs of lines in $\operatorname{PG}(n-1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))

$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
Grassmann and skewness graphs of lines in $\operatorname{PG}(n-1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))

$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
Grassmann and skewness graphs of lines in $\operatorname{PG}(n-1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
Classical polar graphs (Pantangi-S, (2017))

$K(\Gamma)$ for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))
Grassmann and skewness graphs of lines in $\operatorname{PG}(n-1, q)$ (Brouwer-Ducey-S,(2012); Ducey-S, (2017))
Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
Classical polar graphs (Pantangi-S, (2017))
Van Lint-Schrijver cyclotomic SRGs (Pantangi, 2018)

Some open cases to consider

- There are many families of rank 3 graphs where $K(\Gamma)$ is not yet known, e.g. associated with primitive actions of the groups: $E_{6}(q), O_{10}^{+}(q)$ (action on one orbit of t.i. 5-spaces); $U_{5}(q)$ (action on t.i. lines); $O_{2 m}^{ \pm}(p), p=2$ or 3 and $O_{2 m+1}(3)$ (action on nonisotropic points); wreathed cases.

Some open cases to consider

- There are many families of rank 3 graphs where $K(\Gamma)$ is not yet known, e.g. associated with primitive actions of the groups: $E_{6}(q), O_{10}^{+}(q)$ (action on one orbit of t.i. 5-spaces); $U_{5}(q)$ (action on t.i. lines); $O_{2 m}^{ \pm}(p), p=2$ or 3 and $O_{2 m+1}(3)$ (action on nonisotropic points); wreathed cases.
- Imprimitive rank 3 examples

Some open cases to consider

- There are many families of rank 3 graphs where $K(\Gamma)$ is not yet known, e.g. associated with primitive actions of the groups: $E_{6}(q), O_{10}^{+}(q)$ (action on one orbit of t.i. 5-spaces); $U_{5}(q)$ (action on t.i. lines); $O_{2 m}^{ \pm}(p), p=2$ or 3 and $O_{2 m+1}(3)$ (action on nonisotropic points); wreathed cases.
- Imprimitive rank 3 examples
- SRGs in general.

Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples

Let $G \leq \operatorname{Aut}(\Gamma)$. Then \mathbb{Z}^{V} is a permutation module and $L(\Gamma)$ defines a $\mathbb{Z} G$-module homomorphism with cokernel $S(L(\Gamma))$, so $K(\Gamma)$ is a $\mathbb{Z} G$-module.

Let $G \leq \operatorname{Aut}(\Gamma)$. Then \mathbb{Z}^{V} is a permutation module and $L(\Gamma)$ defines a $\mathbb{Z} G$-module homomorphism with cokernel $S(L(\Gamma))$, so $K(\Gamma)$ is a $\mathbb{Z} G$-module.

- We can analyze this module one prime at a time by localization and reduction, then studying the associated modules over a finite field.

Let $G \leq \operatorname{Aut}(\Gamma)$. Then \mathbb{Z}^{V} is a permutation module and $L(\Gamma)$ defines a $\mathbb{Z} G$-module homomorphism with cokernel $S(L(\Gamma))$, so $K(\Gamma)$ is a $\mathbb{Z} G$-module.

- We can analyze this module one prime at a time by localization and reduction, then studying the associated modules over a finite field.
- For each prime ℓ, there is a canonical filtration of \mathbb{F}_{ℓ}^{V} by $\mathbb{F}_{\ell} G$-submodules, whose i-th subquotient has dimension equals the multiplicity of ℓ^{i} as an elementary divisor.

Let $G \leq \operatorname{Aut}(\Gamma)$. Then \mathbb{Z}^{V} is a permutation module and $L(\Gamma)$ defines a $\mathbb{Z} G$-module homomorphism with cokernel $S(L(\Gamma))$, so $K(\Gamma)$ is a $\mathbb{Z} G$-module.

- We can analyze this module one prime at a time by localization and reduction, then studying the associated modules over a finite field.
- For each prime ℓ, there is a canonical filtration of \mathbb{F}_{ℓ}^{V} by $\mathbb{F}_{\ell} G$-submodules, whose i-th subquotient has dimension equals the multiplicity of ℓ^{i} as an elementary divisor.
- Often there is natural characteristic prime p that has to be treated differently.

Smith normal form

The critical group of a graph

Rank 3 Graphs

Progress on computing $K(\Gamma)$

Methods

Illustrative examples

Paley graphs (Chandler-S-Xiang 2015)

Uses: DFT (\mathbb{F}_{q}-action) to get the p^{\prime}-part, \mathbb{F}_{q}^{*}-action Jacobi sums and Transfer matrix method for p-part. The following gives the p-part of $K(\Gamma)$.
Theorem
Let $q=p^{t}$ be a prime power congruent to 1 modulo 4. Then the number of p-adic elementary divisors of $L(\operatorname{Paley}(q))$ which are equal to $p^{\lambda}, 0 \leq \lambda<t$, is

$$
f(t, \lambda)=\sum_{i=0}^{\min \{\lambda, t-\lambda\}} \frac{t}{t-i}\binom{t-i}{i}\binom{t-2 i}{\lambda-i}(-p)^{i}\left(\frac{p+1}{2}\right)^{t-2 i} .
$$

The number of p-adic elementary divisors of $L(\operatorname{Paley}(q))$ which are equal to p^{t} is $\left(\frac{p+1}{2}\right)^{t}-2$.

$K(\Gamma)$ examples for Paley graphs

$K\left(\operatorname{Paley}\left(5^{3}\right)\right) \cong(\mathbb{Z} / 31 \mathbb{Z})^{62} \oplus(\mathbb{Z} / 5 \mathbb{Z})^{36} \oplus(\mathbb{Z} / 25 \mathbb{Z})^{36} \oplus(\mathbb{Z} / 125 \mathbb{Z})^{25}$.

$$
\begin{aligned}
K\left(\text { Paley }\left(5^{4}\right)\right) \cong(\mathbb{Z} / 156 \mathbb{Z})^{312} & \oplus(\mathbb{Z} / 5 \mathbb{Z})^{144} \oplus(\mathbb{Z} / 25 \mathbb{Z})^{176} \\
& \oplus(\mathbb{Z} / 125 \mathbb{Z})^{144} \oplus(\mathbb{Z} / 625 \mathbb{Z})^{79} .
\end{aligned}
$$

Grassmann graph or Skew lines graph, (Ducey-S 2017)

p^{\prime}-part of $K(\Gamma)$: Structure of $\mathbb{F}_{\ell} G L(n, q)$-permutation modules (G. James) depends on relation of ℓ to n.

Grassmann graph or Skew lines graph, (Ducey-S 2017)

p^{\prime}-part of $K(\Gamma)$: Structure of $\mathbb{F}_{\ell} G L(n, q)$-permutation modules
(G. James) depends on relation of ℓ to n.

Examples:

	$\ell\left\|\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}, \ell\right\|\left[\begin{array}{c}n-2 \\ 1\end{array}\right]_{q}, \ell \mid q+1$	
$\ell \backslash\left\lfloor\frac{n-1}{2}\right\rfloor$		
$\ell \backslash\left\lfloor\frac{n-1}{2}\right\rfloor$	$\mathbb{F}_{\ell}{ }^{V}=\mathbb{F}_{\ell} \oplus$	D_{1} F_{ℓ} D_{2} $\mathrm{~F}_{\ell}$ D_{1}

Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.

Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part.

Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part. The number of composition factors of \mathbb{F}_{q}^{V} grows like n^{t}, where $q=p^{t}$.

Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part. The number of composition factors of \mathbb{F}_{q}^{V} grows like n^{t}, where $q=p^{t}$.
Structure of $\mathbb{F}_{q} G L(n, q)$-permutation module on points (Bardoe-S 2000)

Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part.

The number of composition factors of \mathbb{F}_{q}^{V} grows like n^{t}, where $q=p^{t}$.
Structure of $\mathbb{F}_{q} G L(n, q)$-permutation module on points (Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).

Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part.

The number of composition factors of \mathbb{F}_{q}^{V} grows like n^{t}, where $q=p^{t}$.
Structure of $\mathbb{F}_{q} G L(n, q)$-permutation module on points (Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).
Subspace character sums (D. Wan)

Skew lines graph

- For the Grassmann graph, $|K(\Gamma)|$ is not divisible by p.
- For skew lines graph, $K(\Gamma)$ has a large p-part. The number of composition factors of \mathbb{F}_{q}^{V} grows like n^{t}, where $q=p^{t}$.
Structure of $\mathbb{F}_{q} G L(n, q)$-permutation module on points (Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices (Chandler-S-Xiang 2006).
Subspace character sums (D. Wan)
Much of the difficulty was handled in $n=4$ case (Brouwer-Ducey-S 2012).

Example: $K(\Gamma)$ for Skew lines in $\operatorname{PG}(3,9)$

$$
\begin{aligned}
& K(\Gamma) \cong(\mathbb{Z} / 8 \mathbb{Z})^{5824} \times(\mathbb{Z} / 16 \mathbb{Z})^{818} \\
& \quad \times(\mathbb{Z} / 7 \mathbb{Z})^{6641} \times(\mathbb{Z} / 13 \mathbb{Z})^{6641} \times(\mathbb{Z} / 41 \mathbb{Z})^{818} \\
& \times(\mathbb{Z} / 3 \mathbb{Z})^{256} \times(\mathbb{Z} / 9 \mathbb{Z})^{6025} \times(\mathbb{Z} / 81 \mathbb{Z})^{202} \times(\mathbb{Z} / 243 \mathbb{Z})^{256} \\
& \quad \times(\mathbb{Z} / 729 \mathbb{Z})^{361} \times(\mathbb{Z} / 6561 \mathbb{Z})
\end{aligned}
$$

Polar graphs

(Pantangi-S 2017) Uses structure of cross characteristic permutation modules (S-Tiep, 2005).
The p-part of $K(\Gamma)$ is trivial.

$K(\Gamma)$ for polar graph on $2 m$-dimensional symplectic

 space| $(f, g):=\left(\frac{q\left(q^{m}-1\right)\left(q^{m-1}+1\right)}{2(q-1)}, \frac{q\left(q^{m}+1\right)\left(q^{m-1}-1\right)}{2(q-1)}\right)$ | | |
| :---: | :---: | :---: |
| $(a, b, c, d):=\left(v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right), v_{\ell}\left(\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}\right), v_{\ell}\left(q^{m}+1\right), v_{\ell}\left(q^{m-1}+1\right)\right)$ | | |
| Prime | conditions | multiplicities |
| $\ell=2$ | m even, q odd | $\begin{aligned} & e_{0}=g+1, e_{1}=f-g-1, e_{d+1}=1, \text { and } e_{d+b+1}= \\ & g-1 . \end{aligned}$ |
| | m odd, q odd | $e_{0}=g, e_{a}=1, e_{a+c}=f-g-1$, and $e_{a+c+1}=g$. |
| $\ell \neq 2$ | $b=d=0$ | $\begin{aligned} & e_{0}=g+\delta_{a, 0}, e_{a}=\delta_{c, 0}(f-1)+1+\delta_{a, 0}(g), \text { and } \\ & e_{a+c}=f-1+\delta_{c, 0} . \end{aligned}$ |
| | $a=c=0$ | $\begin{aligned} & e_{0}=f+\delta_{d, 0}, e_{d}=\delta_{b, 0}(g)+1+\delta_{d, 0}(f), \text { and } e_{b+d}= \\ & g-1+\delta_{b, 0} \end{aligned}$ |

Example: $q=9, m=3$

Γ is an $\operatorname{SRG}(66430,7380,818,820)$. Eigenvalues (7380, 80, -82) with multiplicities (1, 33579, 32850).

$$
\begin{aligned}
& K(\Gamma) \cong(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 4 \mathbb{Z})^{728} \times(\mathbb{Z} / 8 \mathbb{Z})^{32851} \times(\mathbb{Z} / 41 \mathbb{Z}) \\
& \times(\mathbb{Z} / 91 \mathbb{Z})^{32580} \times(\mathbb{Z} / 25 \mathbb{Z})^{33578} \times(\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 73 \mathbb{Z})^{33579}
\end{aligned}
$$

Thank you for your attention!

References

国 A. E. Brouwer, J. E. Ducey, and P. Sin, "The elementary divisors of the incidence matrix of skew lines in $\operatorname{PG}(3, q)$," Proc. Amer. Math. Soc., vol. 140, no. 8, pp. 2561-2573, 2012.
© D. B. Chandler, P. Sin, Q. Xiang, The Smith and critical groups of Paley graphs, Journal of Algebraic Combinatorics vol. 41, pp. 1013-1022, 2015.
围 J. E. Ducey, and P. Sin, Josh Ducey and Peter Sin, "The Smith group and the critical group of the Grassmann graph of lines in finite projective space and of its complement", Bulletin of the Institute of Mathematics Academia Sinica 13 (4) (2018) 411-442. arxiv.org/abs/1706.01294

References

- Joshua Ducey, Ian Hill and Peter Sin, The critical group of the Kneser graph on 2-element subsets of an n-element set, Linear Algebra and its Applications (2018) Volume 546, Pages 154-168. arxiv.org:1707.09115

嗇 Venkata Raghu Tej Pantangi and Peter Sin, Smith and Critical groups of Polar Graphs, To appear in J. Comb. Theory A. arxiv.org:1706.08175

R Venkata Raghu Tej Pantangi, Critical groups of Van Lint-Schrijver cyclotomic strongly regular graphs, To appear in Finite Fields and their Applications. arXiv:1810.01003

