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Let A be an m × n matrix with integer entries.

A can be regarded as the relation matrix of an abelian
group S(A) = Zm/Col(A)

The cyclic decomposition of S(A) is given by the Smith
Normal Form of A: There exist unimodular P, Q such that
D = PAQ has nonzero entries d1,. . . dr only on the leading
diagonal, and di divides di+1.
Other diagonal forms also describe S(A).
Generalizes from Z to principal ideal domains.
For each prime p, can find S(A)p by working over a p-local
ring. Then the di are powers of p called the p-elementary
divisors.
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Definition and history

A(Γ), an adjacency matrix of a (connected) graph
Γ = (V ,E).

L(Γ) = D(Γ)− A(Γ), Laplacian matrix.
K (Γ) = Tor(S(L(Γ))) is called the critical group of Γ.
|K (Γ)| = number of spanning trees (Kirchhoff’s Matrix-tree
Theorem).
Origins and early work on K (Γ) include: Sandpile model
(Dhar 1990), Chip-firing game (Biggs), Cycle Matroids
(Vince 1991), arithmetic graphs (Lorenzini, 1991).
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General problem

Compute the critical group for some graphs (families of
graphs).

Perhaps graphs with lots of automorphisms can be
approached using group theory, representation theory.
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Rank 3 group actions

Definition
The action of a group G on a set X is said to have rank 3 if it is
transitive and a point stabilizer has exactly three orbits.
Equivalently, G has 3 orbits on X × X .

I Sn acts on [n] := {1, . . .n} (n ≥ 4). The induced action on
unordered pairs has rank 3.

I PGL(n + 1,q) acts on projective space PG(n,q) (n ≥ 3).
Consider the induced action on lines.

I S = F×2
q (q odd), G = Fq o S, acting on Fq.

I Sn o Z2 acting on [n]× [n]

Primitive rank 3 permutation groups are known as
consequence of CFSG: Bannai (1971), Cameron (1981),
Kantor-Liebler (1982), Liebeck-Saxl (1986), Liebeck
(1987).
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Rank 3 graphs

(G,X ) rank 3 group of even order, orbits ∆, Φ, Ψ on X ×X .
The graphs (X ,Φ) and (X ,Ψ) are the associated rank 3
graphs.

They are strongly regular graphs.
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K (Γ) for some families of rank 3 graphs

Paley graphs (Chandler-Xiang-S, (2015))

Grassmann and skewness graphs of lines in PG(n − 1,q)
(Brouwer-Ducey-S,(2012); Ducey-S, (2017))
Kneser Graphs on 2-subsets (Ducey-Hill-S, (2017))
Classical polar graphs (Pantangi-S, (2017))
Van Lint-Schrijver cyclotomic SRGs (Pantangi, 2018)
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Some open cases to consider

I There are many families of rank 3 graphs where K (Γ) is
not yet known, e.g. associated with primitive actions of the
groups: E6(q), O+

10(q) (action on one orbit of t.i. 5-spaces);
U5(q) (action on t.i. lines); O±2m(p), p = 2 or 3 and
O2m+1(3) (action on nonisotropic points); wreathed cases.

I Imprimitive rank 3 examples
I SRGs in general.
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Let G ≤ Aut(Γ). Then ZV is a permutation module and
L(Γ) defines a ZG-module homomorphism with cokernel
S(L(Γ)), so K (Γ) is a ZG-module.

I We can analyze this module one prime at a time by
localization and reduction, then studying the associated
modules over a finite field.

I For each prime `, there is a canonical filtration of FV
` by

F`G-submodules, whose i-th subquotient has dimension
equals the multiplicity of `i as an elementary divisor.

I Often there is natural characteristic prime p that has to be
treated differently.
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special char. p

p-adic character sumsp-modular group reps

general module theory

cross-char. `

DFT `-modular group reps

geometric vectors
SRG, eigenvalues
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Paley graphs (Chandler-S-Xiang 2015)

Uses: DFT (Fq-action) to get the p′-part, F∗q-action Jacobi sums
and Transfer matrix method for p-part. The following gives the
p-part of K (Γ).

Theorem
Let q = pt be a prime power congruent to 1 modulo 4. Then the
number of p-adic elementary divisors of L(Paley(q)) which are
equal to pλ, 0 ≤ λ < t , is

f (t , λ) =

min{λ,t−λ}∑
i=0

t
t − i

(
t − i

i

)(
t − 2i
λ− i

)
(−p)i

(
p + 1

2

)t−2i

.

The number of p-adic elementary divisors of L(Paley(q)) which

are equal to pt is
(

p+1
2

)t
− 2.



K (Γ) examples for Paley graphs

K (Paley(53)) ∼= (Z/31Z)62⊕(Z/5Z)36⊕(Z/25Z)36⊕(Z/125Z)25.

K (Paley(54)) ∼= (Z/156Z)312 ⊕ (Z/5Z)144 ⊕ (Z/25Z)176

⊕ (Z/125Z)144 ⊕ (Z/625Z)79.



Grassmann graph or Skew lines graph, (Ducey-S
2017)

p′-part of K (Γ): Structure of F`GL(n,q)-permutation modules
(G. James) depends on relation of ` to n.

Examples:
` | [ n

1 ]q , ` |
[

n−2
1

]
q , ` | q + 1

` - b n−1
2 c

` - [ n
2 ]q

D1

F`
V = F`⊕ D2 F`

D1

` | [ n
2 ]q

D1

F`
V = F` D2 F`

D1

` | b n−1
2 c F`

V = F` ⊕

D1

F`

D2

F`

D1
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Skew lines graph

I For the Grassmann graph, |K (Γ)| is not divisible by p.

I For skew lines graph, K (Γ) has a large p-part.
The number of composition factors of FV

q grows like nt ,
where q = pt .
Structure of FqGL(n,q)-permutation module on points
(Bardoe-S 2000)
p-elementary divisors of pt-subspace inclusion matrices
(Chandler-S-Xiang 2006).
Subspace character sums (D. Wan)
Much of the difficulty was handled in n = 4 case
(Brouwer-Ducey-S 2012).
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Example: K (Γ) for Skew lines in PG(3,9)

K (Γ) ∼= (Z/8Z)5824 × (Z/16Z)818

× (Z/7Z)6641 × (Z/13Z)6641 × (Z/41Z)818

× (Z/3Z)256 × (Z/9Z)6025 × (Z/81Z)202 × (Z/243Z)256

× (Z/729Z)361 × (Z/6561Z)



Polar graphs

(Pantangi-S 2017) Uses structure of cross characteristic
permutation modules (S-Tiep, 2005 ).
The p-part of K (Γ) is trivial.



K (Γ) for polar graph on 2m-dimensional symplectic
space

(f , g) :=
(

q(qm−1)(qm−1+1)
2(q−1) , q(qm+1)(qm−1−1)

2(q−1)

)
(a, b, c, d) :=

(
v`(

[m−1
1

]
q), v`(

[m
1

]
q), v`(qm + 1), v`(qm−1 + 1)

)
Prime conditions multiplicities

` = 2 m even, q odd e0 = g +1, e1 = f −g−1, ed+1 = 1, and ed+b+1 =
g − 1.

m odd, q odd e0 = g, ea = 1, ea+c = f − g − 1, and ea+c+1 = g.

` 6= 2 b = d = 0 e0 = g + δa,0, ea = δc,0(f − 1) + 1 + δa,0(g), and
ea+c = f − 1 + δc,0.

a = c = 0 e0 = f +δd,0, ed = δb,0(g)+1+δd,0(f ), and eb+d =
g − 1 + δb,0



Example: q = 9, m = 3

Γ is an SRG(66430,7380,818,820). Eigenvalues
(7380,80,−82) with multiplicities (1,33579,32850).

K (Γ) ∼= (Z/2Z)× (Z/4Z)728 × (Z/8Z)32851 × (Z/41Z)

× (Z/91Z)32580× (Z/25Z)33578× (Z/5Z)× (Z/73Z)33579



Thank you for your attention!
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