The Smith Normal Form of the Incidence Matrix of Skew Lines in PG $(3, q)$

Andries Brouwer, T. U. Eindhoven Josh Ducey, University of Florida Peter Sin, University of Florida

Discrete Mathematics Seminar, U. Delaware, April 27th, 2011.

Outline

Introduction

All invariants are powers of p
p-filtrations and SNF bases

Invariants of the Strongly Regular Graph

Relation with Point-Line Incidence

Simultaneous SNF Bases

Skew lines

- We consider the relation of skewness between lines in $P G(3, q), q=p^{t}$.
- Under the Klein Correpondence, two lines are skew iff the corresponding points of the Klein quadric in $P G(5, q)$ are not orthogonal, i.e, not joined by a line of the quadric. Thus the graph of skew lines is the same as the non-collinearity graph of points in the hyperbolic polar space $O^{+}(5, q)$.
- This is a strongly regular graph.

Skew lines

- We consider the relation of skewness between lines in $P G(3, q), q=p^{t}$.
- Under the Klein Correpondence, two lines are skew iff the corresponding points of the Klein quadric in $P G(5, q)$ are not orthogonal, i.e, not joined by a line of the quadric. Thus the graph of skew lines is the same as the non-collinearity graph of points in the hyperbolic polar space $O^{+}(5, q)$.

Skew lines

- We consider the relation of skewness between lines in $P G(3, q), q=p^{t}$.
- Under the Klein Correpondence, two lines are skew iff the corresponding points of the Klein quadric in $P G(5, q)$ are not orthogonal, i.e, not joined by a line of the quadric. Thus the graph of skew lines is the same as the non-collinearity graph of points in the hyperbolic polar space $O^{+}(5, q)$.
- This is a strongly regular graph.

Notation

- V, a 4-dimensional vector space over F_{q}
- $\mathcal{L}_{r}=$ set of subspaces of dimension r in V
- A incidence matrix of skewness between lines in $\mathbb{P}(V)$
- A is square of size $\left(q^{2}+q+1\right)\left(q^{2}+1\right)$.
- For any matrix M, let $e_{i}(M)=$ number of invariant factors in the Smith Normal Form of M which are exactly divisible by p^{i}.

Outline

Introduction

All invariants are powers of p
p-filtrations and SNF bases

Invariants of the Strongly Regular Graph

Relation with Point-Line Incidence

Simultaneous SNF Bases

- $A^{2}=q^{4} I+\left(q^{4}-q^{3}-q^{2}+q\right) A+\left(q^{4}-q^{3}\right)(J-A-I)$
- Eigenvalues of A are $q,-q^{2}$, and q^{4} with respective multiplicities $q^{4}+q^{2}, q^{3}+q^{2}+q$, and 1 .
- Special case of oppositeness relation
- We can replace Z by a suitable p-adic ring; We will use an unramified extension R of \mathbb{Z}_{p} containing a ($q^{4}-1$)-th root of unity.
- $A^{2}=q^{4} I+\left(q^{4}-q^{3}-q^{2}+q\right) A+\left(q^{4}-q^{3}\right)(J-A-I)$
- Eigenvalues of A are $q,-q^{2}$, and q^{4} with respective multiplicities $q^{4}+q^{2}, q^{3}+q^{2}+q$, and 1 .
- Special case of oppositeness relation
- We can replace \mathbf{Z} by a suitable p-adic ring; We will use an unramified extension R of \mathbb{Z}_{p} containing a $\left(q^{4}-1\right)$-th root of unity.
- $A^{2}=q^{4} I+\left(q^{4}-q^{3}-q^{2}+q\right) A+\left(q^{4}-q^{3}\right)(J-A-I)$
- Eigenvalues of A are $q,-q^{2}$, and q^{4} with respective multiplicities $q^{4}+q^{2}, q^{3}+q^{2}+q$, and 1 .
- Special case of oppositeness relation
- We can replace Z by a suitable p-adic ring; We will use an unramified extension R of \mathbb{Z}_{p} containing a ($q^{4}-1$)-th root of unity.
- $A^{2}=q^{4} I+\left(q^{4}-q^{3}-q^{2}+q\right) A+\left(q^{4}-q^{3}\right)(J-A-I)$
- Eigenvalues of A are $q,-q^{2}$, and q^{4} with respective multiplicities $q^{4}+q^{2}, q^{3}+q^{2}+q$, and 1 .
- Special case of oppositeness relation
- We can replace \mathbf{Z} by a suitable p-adic ring; We will use an unramified extension R of \mathbb{Z}_{p} containing a ($q^{4}-1$)-th root of unity.

Theorem
Let $e_{i}=e_{i}(A)$.

1. $e_{i}=e_{3 t-i}$ for $0 \leq i<t$.
2. $e_{i}=0$ for $t<i<2 t, 3 t<i<4 t$, and $i>4 t$.
3. $\sum_{i=0}^{t} e_{i}=q^{4}+q^{2}$.
4. $\sum_{i=2 t}^{3 t} e_{i}=q^{3}+q^{2}+q$.
5. $e_{4 t}=1$.

Thus we get all the elementary divisor multiplicities once we know t of the numbers e_{0}, \ldots, e_{t} (or the numbers $e_{2 t}, \ldots, e_{3 t}$).

More notation

- $[3]^{t}=\left\{\left(s_{0}, \ldots, s_{t-1}\right) \mid s_{i} \in\{1,2,3\}\right.$ for all $\left.i\right\}$
- $\mathcal{H}(i)=\left\{\left(s_{0}, \ldots, s_{t-1}\right) \in[3]^{t} \mid \#\left\{j \mid s_{j}=2\right\}=i\right\}$
- For $\vec{s}=\left(s_{0}, \ldots, s_{t-1}\right) \in[3]^{t}$

$$
\lambda_{i}=p s_{i+1}-s_{i}
$$

(subscripts mod t) and

$$
\vec{\lambda}=\left(\lambda_{0}, \ldots, \lambda_{t-1}\right)
$$

- For an integer k, set d_{k} to be the coefficient of x^{k} in the expansion of $\left(1+x+\cdots+x^{p-1}\right)^{4}$. Set $d(\vec{s})=\prod_{i=0}^{t-1} d_{\lambda_{i}}$.
- Theorem

Let $e_{i}=e_{i}(A)$ denote the multiplicity of p^{i} as an elementary divisor of A. Then, for $0 \leq i \leq t$,

$$
e_{2 t+i}=\sum_{\vec{s} \in \mathcal{H}(i)} d(\vec{s}) .
$$

Example, $q=9$

- $\left(1+x+x^{2}\right)^{4}=$ $1+4 x+10 x^{2}+16 x^{3}+19 x^{4}+16 x^{5}+10 x^{6}+4 x^{7}+x^{8}$
- $\mathcal{H}(0)=\{(11),(13),(31),(33)\}$, $\mathcal{H}(1)=\{(21),(23),(12),(32)\}, \mathcal{H}(2)=\{(22)\}$.
- $e_{4}=d(11)+d(13)+d(31)+d(33)=202$
- $e_{5}=d(21)+d(23)+d(12)+d(32)=256$
- $e_{6}=d(22)=361$

Table: The elementary divisors of the incidence matrix of lines vs. lines in $\mathrm{PG}(3,9)$, where two lines are incident when skew.

Elem. Div.	1	3	3^{2}	3^{4}	3^{5}	3^{6}	3^{8}
Multiplicity	361	256	6025	202	256	361	1

Outline

Introduction

All invariants are powers of p
p-filtrations and SNF bases

Invariants of the Strongly Regular Graph

Relation with Point-Line Incidence

Simultaneous SNF Bases

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{l}$.
- $\eta: R^{m} \rightarrow R^{n}, R$-module homomorphism
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}\left(\right.$ and $\left.N_{-1}(\eta)=\{0\}\right)$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq$
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq$
- $\overline{N_{0}(\eta)} \subseteq \overline{N_{1}(\eta)} \subseteq$

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}, R$-module homomorphism

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}, R$-module homomorphism
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}, R$-module homomorphism
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}, R$-module homomorphism
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots$

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}, R$-module homomorphism
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \ldots$

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}, R$-module homomorphism
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \ldots$
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots$

p-filtrations

- R, local principal ideal domain, max ideal $p R, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}, R$-module homomorphism
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \cdots$
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots$
- $\overline{N_{0}(\eta)} \subseteq \overline{N_{1}(\eta)} \subseteq \cdots$.
- Lemma

Let $\eta: R^{m} \rightarrow R^{n}$ be a homomorphism of free R-modules of finite rank. Then, for $i \geq 0$,

$$
e_{i}(\eta)=\operatorname{dim}_{F}\left(\overline{M_{i}(\eta)} / \overline{M_{i+1}(\eta)}\right)=\operatorname{dim}_{F}\left(\overline{N_{i}(\eta)} / \overline{N_{i-1}(\eta)}\right) .
$$

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.
- $M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq M_{\ell}(\eta) \supsetneq \operatorname{ker}(\eta)$
- $\overline{\mathcal{B}_{\ell+1}}$ basis of $\operatorname{ker}(\eta)$
- Extend to a basis $\overline{\mathcal{B}_{\ell}} \cup \overline{\mathcal{B}_{\ell+1}}$ of $\overline{M_{\ell}(\eta)}$.
- Continue, to get a basis $\cup_{i=0}^{\ell+1} \overline{\mathcal{B}_{i}}$ of $\overline{M_{0}(\eta)}$.
- Lift the elements of $\overline{\mathcal{B}_{\ell+1}}$ to a set $\mathcal{B}_{\ell+1}$ of preimages in
ker(η).
- Continuing, enlarge each \mathcal{B}_{i+1} by adjoining a set \mathcal{B}_{i} of preimages in $M_{i}(\eta)$ of $\overline{\mathcal{B}_{i}}$.

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.
- $\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots \supseteq \overline{M_{\ell}(\eta)} \supseteq \overline{\operatorname{ker}(\eta)}$

- Lift the elements of $\overline{\mathcal{B}_{\ell+1}}$ to a set $\mathcal{B}_{\ell+1}$ of preimages in
- Continuing, enlarge each \mathcal{B}_{i+1} by adjoining a set \mathcal{B}_{i} of preimages in $M_{i}(\eta)$ of $\overline{\mathcal{B}_{i}}$.

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.
- $\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots \supseteq \overline{M_{\ell}(\eta)} \supsetneq \overline{\operatorname{ker}(\eta)}$
- $\overline{\mathcal{B}_{\ell+1}}$ basis of $\overline{\operatorname{ker}(\eta)}$

- Lift the elements of $\overline{\mathcal{B}_{\ell+1}}$ to a set $\mathcal{B}_{\ell+1}$ of preimages in
- Continuing, enlarge each \mathcal{B}_{i+1} by adjoining a set \mathcal{B}_{i} of
preimages in $M_{i}(\eta)$ of $\overline{\mathcal{B}_{i}}$.
The set $\mathcal{B}=\bigcup_{i=0}^{\ell+1} \mathcal{B}_{i}$ is an R-basis of R^{m}.

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.
- $\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots \supseteq \overline{M_{\ell}(\eta)} \supsetneq \overline{\operatorname{ker}(\eta)}$
- $\overline{\mathcal{B}_{\ell+1}}$ basis of $\overline{\operatorname{ker}(\eta)}$
- Extend to a basis $\overline{\mathcal{B}_{\ell}} \cup \overline{\mathcal{B}_{\ell+1}}$ of $\overline{M_{\ell}(\eta)}$.

- Continuing, enlarge each \mathcal{B}_{i+1} by adjoining a set \mathcal{B}_{i} of preimages in $M_{i}(\eta)$ of $\overline{\mathcal{B}_{i}}$.

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.
- $\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots \supseteq \overline{M_{\ell}(\eta)} \supsetneq \overline{\operatorname{ker}(\eta)}$
- $\overline{\mathcal{B}_{\ell+1}}$ basis of $\overline{\operatorname{ker}(\eta)}$
- Extend to a basis $\overline{\mathcal{B}_{\ell}} \cup \overline{\mathcal{B}_{\ell+1}}$ of $\overline{M_{\ell}(\eta)}$.
- Continue, to get a basis $\cup_{i=0}^{\ell+1} \overline{\mathcal{B}_{i}}$ of $\overline{M_{0}(\eta)}$.

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.
- $\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots \supseteq \overline{M_{\ell}(\eta)} \supsetneq \overline{\operatorname{ker}(\eta)}$
- $\overline{\mathcal{B}_{\ell+1}}$ basis of $\overline{\operatorname{ker}(\eta)}$
- Extend to a basis $\overline{\mathcal{B}_{\ell}} \cup \overline{\mathcal{B}_{\ell+1}}$ of $\overline{M_{\ell}(\eta)}$.
- Continue, to get a basis $\cup_{i=0}^{\ell+1} \overline{\mathcal{B}_{i}}$ of $\overline{M_{0}(\eta)}$.
- Lift the elements of $\overline{\mathcal{B}_{\ell+1}}$ to a set $\mathcal{B}_{\ell+1}$ of preimages in $\operatorname{ker}(\eta)$.
- Continuing, enlarge each \mathcal{B}_{i+1} by adjoining a set \mathcal{B}_{i} of

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.
- $\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots \supseteq \overline{M_{\ell}(\eta)} \supsetneq \overline{\operatorname{ker}(\eta)}$
- $\overline{\mathcal{B}_{\ell+1}}$ basis of $\overline{\operatorname{ker}(\eta)}$
- Extend to a basis $\overline{\mathcal{B}_{\ell}} \cup \overline{\mathcal{B}_{\ell+1}}$ of $\overline{M_{\ell}(\eta)}$.
- Continue, to get a basis $\cup_{i=0}^{\ell+1} \overline{\mathcal{B}_{i}}$ of $\overline{M_{0}(\eta)}$.
- Lift the elements of $\overline{\mathcal{B}_{\ell+1}}$ to a set $\mathcal{B}_{\ell+1}$ of preimages in $\operatorname{ker}(\eta)$.
- Continuing, enlarge each \mathcal{B}_{i+1} by adjoining a set \mathcal{B}_{i} of preimages in $M_{i}(\eta)$ of $\overline{\mathcal{B}_{i}}$.

Left SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair. We now describe how to construct such bases.
- $\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots \supseteq \overline{M_{\ell}(\eta)} \supsetneq \overline{\operatorname{ker}(\eta)}$
- $\overline{\mathcal{B}_{\ell+1}}$ basis of $\overline{\operatorname{ker}(\eta)}$
- Extend to a basis $\overline{\mathcal{B}_{\ell}} \cup \overline{\mathcal{B}_{\ell+1}}$ of $\overline{M_{\ell}(\eta)}$.
- Continue, to get a basis $\cup_{i=0}^{\ell+1} \overline{\mathcal{B}_{i}}$ of $\overline{M_{0}(\eta)}$.
- Lift the elements of $\overline{\mathcal{B}_{\ell+1}}$ to a set $\mathcal{B}_{\ell+1}$ of preimages in $\operatorname{ker}(\eta)$.
- Continuing, enlarge each \mathcal{B}_{i+1} by adjoining a set \mathcal{B}_{i} of preimages in $M_{i}(\eta)$ of $\overline{\mathcal{B}_{i}}$.
- The set $\mathcal{B}=\bigcup_{i=0}^{\ell+1} \mathcal{B}_{i}$ is an R-basis of R^{m}.

Right SNF Bases

- $N_{\ell}(\eta)=N_{\ell+1}(\eta)=\cdots$, call this module N^{\prime}
- N^{\prime} the purification of $\operatorname{Im} \eta$
- The elementary divisors of η remain the same if we change its codomain N^{\prime}.
- Basis $\overline{\mathcal{C}_{0}}$ of $\overline{N_{0}(\eta)}$,
- Extend to basis $\overline{\mathcal{C}_{0}} \cup \overline{\mathcal{C}_{1}}$ of $\overline{N_{1}(\eta)}$.
- Continue, ending with basis $\cup_{i=0}^{\ell} \overline{\mathcal{C}_{i}}$ of $\overline{N^{\prime}}$.
- Now we lift $\overline{\mathcal{C}_{0}}$ to a set \mathcal{C}_{0} of preimages in $N_{0}(\eta)$.
- Continuing, enlarge each \mathcal{C}_{i} by adjoining a set \mathcal{C}_{i+1} of preimages in $N_{i+1}(\eta)$ of $\overline{\mathcal{C}_{i+1}}$.
- $\mathcal{C}^{\prime}=\bigcup_{i=0}^{\ell} \mathcal{C}_{i}$ is an R-basis of N^{\prime}.
- Extend arbitrarily to a basis $\mathcal{C}=\bigcup_{i=0}^{\ell+1} \mathcal{C}_{i}$ of R^{n}.

Outline

Introduction

All invariants are powers of p
p-filtrations and SNF bases

Invariants of the Strongly Regular Graph

Relation with Point-Line Incidence

Simultaneous SNF Bases

Eliminating the all-one vector

- View A as an R-module map.
- $: R^{\mathcal{L}_{2}} \rightarrow R^{\mathcal{L}_{2}}$ sends a 2-subspace to the (formal) sum of the 2 -subspaces incident with it.

- (1) $A=q^{4} 1$
- $e_{4 t}(A)=e_{4 t}\left(A_{\gamma_{2}}\right)+1$
- $e_{i}(A)=e_{i}\left(\left.A\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

Eliminating the all-one vector

- View A as an R-module map.
- $A: R^{\mathcal{L}_{2}} \rightarrow R^{\mathcal{L}_{2}}$ sends a 2 -subspace to the (formal) sum of the 2 -subspaces incident with it.

- (1) $A=q^{4} 1$

- $e_{i}(A)=e_{i}\left(\left.A\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

Eliminating the all-one vector

- View A as an R-module map.
- $A: R^{\mathcal{L}_{2}} \rightarrow R^{\mathcal{L}_{2}}$ sends a 2 -subspace to the (formal) sum of the 2 -subspaces incident with it.
- $\mathbf{1}=\sum_{x \in \mathcal{L}_{2}} x$

- (1) $A=q^{4} 1$
- $e_{4 t}(A)=e_{4 t}\left(A \mid \gamma_{2}\right)+1$
- $e_{i}(A)=e_{i}\left(\left.A\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

Eliminating the all-one vector

- View A as an R-module map.
- $A: R^{\mathcal{L}_{2}} \rightarrow R^{\mathcal{L}_{2}}$ sends a 2 -subspace to the (formal) sum of the 2 -subspaces incident with it.
- $\mathbf{1}=\sum_{x \in \mathcal{L}_{2}} x$
- $Y_{2}=\left\{\sum_{x \in \mathcal{L}_{2}} a_{x} x \in R^{\mathcal{L}_{2}} \mid \sum_{x \in \mathcal{L}_{2}} a_{x}=0\right\}$

- $e_{4 t}(A)=e_{4 t}\left(\left.A\right|_{Y_{2}}\right)+1$
- $e_{i}(A)=e_{i}\left(\left.A\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

Eliminating the all-one vector

- View A as an R-module map.
- $A: R^{\mathcal{L}_{2}} \rightarrow R^{\mathcal{L}_{2}}$ sends a 2 -subspace to the (formal) sum of the 2 -subspaces incident with it.
- $\mathbf{1}=\sum_{x \in \mathcal{L}_{2}} x$
- $Y_{2}=\left\{\sum_{x \in \mathcal{L}_{2}} a_{x} x \in R^{\mathcal{L}_{2}} \mid \sum_{x \in \mathcal{L}_{2}} a_{x}=0\right\}$
- $R^{\mathcal{L}_{2}}=R \mathbf{1} \oplus Y_{2}$

- $e_{i}(A)=e_{i}\left(\left.A\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

Eliminating the all-one vector

- View A as an R-module map.
- $A: R^{\mathcal{L}_{2}} \rightarrow R^{\mathcal{L}_{2}}$ sends a 2 -subspace to the (formal) sum of the 2 -subspaces incident with it.
- $\mathbf{1}=\sum_{x \in \mathcal{L}_{2}} x$
- $Y_{2}=\left\{\sum_{x \in \mathcal{L}_{2}} a_{x} x \in R^{\mathcal{L}_{2}} \mid \sum_{x \in \mathcal{L}_{2}} a_{x}=0\right\}$
- $R^{\mathcal{L}_{2}}=R \mathbf{1} \oplus Y_{2}$
- (1) $A=q^{4} 1$
- $e_{4 t}(A)=e_{4 t}\left(\left.A\right|_{\gamma_{2}}\right)+1$
- $e_{i}(A)=e_{i}\left(\left.A\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

Eliminating the all-one vector

- View A as an R-module map.
- $A: R^{\mathcal{L}_{2}} \rightarrow R^{\mathcal{L}_{2}}$ sends a 2 -subspace to the (formal) sum of the 2 -subspaces incident with it.
- $\mathbf{1}=\sum_{x \in \mathcal{L}_{2}} x$
- $Y_{2}=\left\{\sum_{x \in \mathcal{L}_{2}} a_{x} x \in R^{\mathcal{L}_{2}} \mid \sum_{x \in \mathcal{L}_{2}} a_{x}=0\right\}$
- $R^{\mathcal{L}_{2}}=R \mathbf{1} \oplus Y_{2}$
- (1) $A=q^{4} 1$
- $e_{4 t}(A)=e_{4 t}\left(\left.A\right|_{Y_{2}}\right)+1$
- $e_{i}(A)=e_{i}\left(\left.A\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

Eliminating the all-one vector

- View A as an R-module map.
- $A: R^{\mathcal{L}_{2}} \rightarrow R^{\mathcal{L}_{2}}$ sends a 2 -subspace to the (formal) sum of the 2 -subspaces incident with it.
- $\mathbf{1}=\sum_{x \in \mathcal{L}_{2}} x$
- $Y_{2}=\left\{\sum_{x \in \mathcal{L}_{2}} a_{x} x \in R^{\mathcal{L}_{2}} \mid \sum_{x \in \mathcal{L}_{2}} a_{x}=0\right\}$
- $R^{\mathcal{L}_{2}}=R \mathbf{1} \oplus Y_{2}$
- (1) $A=q^{4} 1$
- $e_{4 t}(A)=e_{4 t}\left(\left.A\right|_{\gamma_{2}}\right)+1$
- $e_{i}(A)=e_{i}\left(\left.A\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

SRG equation

- $A\left(A+\left(q^{2}-q\right) I\right)=q^{3} I+\left(q^{4}-q^{3}\right) J$
- Let P and Q be unimodular, with $D=P A Q^{-1}$ diagonal.

Then we get the relation

$$
\begin{equation*}
Q\left(A+\left(q^{2}-q\right) /\right) P^{-1}=q^{3} D^{-1} \tag{1}
\end{equation*}
$$

SRG equation

- $A\left(A+\left(q^{2}-q\right) I\right)=q^{3} I+\left(q^{4}-q^{3}\right) J$
- On $Y_{2}, A\left(A+\left(q^{2}-q\right) I\right)=q^{3} I$.
- Let P and Q be unimodular, with $D=P A Q^{-1}$ diagonal. Then we get the relation

$$
Q\left(A+\left(q^{2}-q\right) /\right) P^{-1}=q^{3} D^{-1}
$$

SRG equation

- $A\left(A+\left(q^{2}-q\right) I\right)=q^{3} I+\left(q^{4}-q^{3}\right) J$
- On $Y_{2}, A\left(A+\left(q^{2}-q\right) I\right)=q^{3} I$.
- Let P and Q be unimodular, with $D=P A Q^{-1}$ diagonal. Then we get the relation

$$
\begin{equation*}
Q\left(A+\left(q^{2}-q\right) I\right) P^{-1}=q^{3} D^{-1} \tag{1}
\end{equation*}
$$

SRG equation (continued)

- $Q\left(A+\left(q^{2}-q\right) /\right) P^{-1}=q^{3} D^{-1}$
- $e_{i}\left(\left.A\right|_{\gamma_{2}}\right)=0$ for $i>3 t$.
- $e_{4 t}(A)=1$
- $e_{i}\left(A \mid \gamma_{2}+\left(q^{2}-q\right) /\right)=e_{3 t-i}\left(A \mid \gamma_{2}\right)$ for $0 \leq i \leq 3 t$.

SRG equation (continued)

- $Q\left(A+\left(q^{2}-q\right) I\right) P^{-1}=q^{3} D^{-1}$
- $e_{i}\left(\left.A\right|_{\gamma_{2}}\right)=0$ for $i>3 t$.
- $e_{i}\left(A \mid \gamma_{2}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(\left.A\right|_{\gamma_{2}}\right)$ for $0 \leq i \leq 3 t$.

SRG equation (continued)

- $Q\left(A+\left(q^{2}-q\right) I\right) P^{-1}=q^{3} D^{-1}$
- $e_{i}\left(\left.A\right|_{\gamma_{2}}\right)=0$ for $i>3 t$.
- $e_{4 t}(A)=1$

SRG equation (continued)

- $Q\left(A+\left(q^{2}-q\right) I\right) P^{-1}=q^{3} D^{-1}$
- $e_{i}\left(\left.A\right|_{\gamma_{2}}\right)=0$ for $i>3 t$.
- $e_{4 t}(A)=1$
- $e_{i}\left(\left.A\right|_{\gamma_{2}}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(\left.A\right|_{\gamma_{2}}\right)$ for $0 \leq i \leq 3 t$.

Proof of First Theorem

- $\left.\left.A\right|_{Y_{2}} \equiv A\right|_{Y_{2}}+\left(q^{2}-q\right) I\left(\bmod p^{t}\right)$
$e_{i}\left(\left.A\right|_{\gamma_{2}}\right)=e_{i}\left(\left.A\right|_{Y_{2}}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(\left.A\right|_{Y_{2}}\right)$, for $0 \leq i<t$
- $V_{\lambda}:=\lambda$-eigenspace for A (as a matrix over the field of fractions of R).
- $V_{q} \cap R^{\mathcal{L}_{2}}$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}}$ are pure R-submodules of Y_{2}.
$-V_{q} \cap R^{\mathcal{L}_{2}} \subseteq N_{t}\left(\left.A\right|_{Y_{2}}\right)$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}} \subseteq M_{2 t}\left(A \mid Y_{2}\right)$.
$q^{4}+q^{2}=\operatorname{dim}_{F}\left(\overline{V_{q} \cap \mathbb{Z}_{p}^{\mathcal{L}_{2}}}\right) \leq \operatorname{dim}_{F} \overline{N_{t}\left(A \mid Y_{2}\right)}=\sum_{i=0}^{t} e_{i}\left(\left.A\right|_{\gamma_{2}}\right)$ and
$q^{3}+q^{2}+q=\operatorname{dim}_{F}\left(\overline{V_{-q^{2}} \cap \mathbb{Z}_{p}^{\mathcal{L}_{2}}}\right) \leq \operatorname{dim}_{F} \overline{M_{2 t}\left(A \mid Y_{2}\right)}=\sum_{i=2 t}^{3 t} e_{i}\left(\left.A\right|_{\gamma_{2}}\right)$.
- Since $\left(q^{4}+q^{2}\right)+\left(q^{3}+q^{2}+q\right)=\operatorname{dim}_{F} \overline{Y_{2}}$, we must have equalities throughout, so $e_{i}(A)=0$ for all other i.

Proof of First Theorem

- $\left.\left.A\right|_{Y_{2}} \equiv A\right|_{Y_{2}}+\left(q^{2}-q\right) I\left(\bmod p^{t}\right)$
- $e_{i}\left(\left.A\right|_{Y_{2}}\right)=e_{i}\left(\left.A\right|_{Y_{2}}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(\left.A\right|_{Y_{2}}\right)$, for $0 \leq i<t$ fractions of R).
$V_{a} \cap R^{\mathcal{L}_{2}}$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}}$ are pure R-submodules of Y_{2}. $V_{q} \cap R^{\mathcal{L}_{2}} \subseteq N_{t}\left(\left.A\right|_{\gamma_{2}}\right)$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}} \subseteq M_{2 t}\left(A \mid \gamma_{2}\right)$.

and

- Since $\left(q^{4}+q^{2}\right)+\left(q^{3}+q^{2}+q\right)=\operatorname{dim}_{F} \overline{Y_{2}}$, we must have equalities throughout, so $e_{i}(A)=0$ for all other i.

Proof of First Theorem

- $\left.\left.A\right|_{Y_{2}} \equiv A\right|_{Y_{2}}+\left(q^{2}-q\right) I\left(\bmod p^{t}\right)$
- $e_{i}\left(\left.A\right|_{\gamma_{2}}\right)=e_{i}\left(\left.A\right|_{\gamma_{2}}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(\left.A\right|_{Y_{2}}\right)$, for $0 \leq i<t$
- $V_{\lambda}:=\lambda$-eigenspace for A (as a matrix over the field of fractions of R).
$\Rightarrow V_{q} \cap R^{\mathcal{L}_{2}} \subseteq N_{t}\left(A \mid Y_{2}\right)$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}} \subseteq M_{2 t}\left(\left.A\right|_{\gamma_{2}}\right)$.
and

Proof of First Theorem

- $\left.\left.A\right|_{Y_{2}} \equiv A\right|_{Y_{2}}+\left(q^{2}-q\right) I\left(\bmod p^{t}\right)$
- $e_{i}\left(\left.A\right|_{Y_{2}}\right)=e_{i}\left(\left.A\right|_{Y_{2}}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(\left.A\right|_{Y_{2}}\right)$, for $0 \leq i<t$
- $V_{\lambda}:=\lambda$-eigenspace for A (as a matrix over the field of fractions of R).
- $V_{q} \cap R^{\mathcal{L}_{2}}$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}}$ are pure R-submodules of Y_{2}.

and

Proof of First Theorem

- $\left.\left.A\right|_{Y_{2}} \equiv A\right|_{Y_{2}}+\left(q^{2}-q\right) I\left(\bmod p^{t}\right)$
- $e_{i}\left(\left.A\right|_{Y_{2}}\right)=e_{i}\left(\left.A\right|_{Y_{2}}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(A \mid Y_{\gamma_{2}}\right)$, for $0 \leq i<t$
- $V_{\lambda}:=\lambda$-eigenspace for A (as a matrix over the field of fractions of R).
- $V_{q} \cap R^{\mathcal{L}_{2}}$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}}$ are pure R-submodules of Y_{2}.
- $V_{q} \cap R^{\mathcal{L}_{2}} \subseteq N_{t}\left(A \mid Y_{2}\right)$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}} \subseteq M_{2 t}\left(A \mid \gamma_{2}\right)$.

Proof of First Theorem

- $\left.\left.A\right|_{Y_{2}} \equiv A\right|_{\gamma_{2}}+\left(q^{2}-q\right) I\left(\bmod p^{t}\right)$
- $e_{i}\left(\left.A\right|_{\gamma_{2}}\right)=e_{i}\left(\left.A\right|_{Y_{2}}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(A \mid Y_{\gamma_{2}}\right)$, for $0 \leq i<t$
- $V_{\lambda}:=\lambda$-eigenspace for A (as a matrix over the field of fractions of R).
- $V_{q} \cap R^{\mathcal{L}_{2}}$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}}$ are pure R-submodules of Y_{2}.
- $V_{q} \cap R^{\mathcal{L}_{2}} \subseteq N_{t}\left(\left.A\right|_{Y_{2}}\right)$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}} \subseteq M_{2 t}\left(\left.A\right|_{Y_{2}}\right)$.

$$
q^{4}+q^{2}=\operatorname{dim}_{F}\left(\overline{V_{q} \cap \mathbb{Z}_{p}^{\mathcal{L}_{2}}}\right) \leq \operatorname{dim}_{F} \overline{N_{t}\left(\left.A\right|_{\gamma_{2}}\right)}=\sum_{i=0}^{t} e_{i}\left(\left.A\right|_{Y_{2}}\right)
$$

and
$q^{3}+q^{2}+q=\operatorname{dim}_{F}\left(\overline{V_{-q^{2}} \cap \mathbb{Z}_{p}^{\mathcal{L}_{2}}}\right) \leq \operatorname{dim}_{F} \overline{M_{2 t}\left(\left.A\right|_{\gamma_{2}}\right)}=\sum_{i=2 t}^{3 t} e_{i}\left(\left.A\right|_{\gamma_{2}}\right)$.

Proof of First Theorem

- $\left.\left.A\right|_{Y_{2}} \equiv A\right|_{\gamma_{2}}+\left(q^{2}-q\right) I\left(\bmod p^{t}\right)$
- $e_{i}\left(\left.A\right|_{Y_{2}}\right)=e_{i}\left(\left.A\right|_{Y_{2}}+\left(q^{2}-q\right) I\right)=e_{3 t-i}\left(A \mid Y_{\gamma_{2}}\right)$, for $0 \leq i<t$
- $V_{\lambda}:=\lambda$-eigenspace for A (as a matrix over the field of fractions of R).
- $V_{q} \cap R^{\mathcal{L}_{2}}$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}}$ are pure R-submodules of Y_{2}.
- $V_{q} \cap R^{\mathcal{L}_{2}} \subseteq N_{t}\left(A \mid \gamma_{2}\right)$ and $V_{-q^{2}} \cap R^{\mathcal{L}_{2}} \subseteq M_{2 t}\left(A \mid \gamma_{2}\right)$.

$$
q^{4}+q^{2}=\operatorname{dim}_{F}\left(\overline{V_{q} \cap \mathbb{Z}_{p}^{\mathcal{L}_{2}}}\right) \leq \operatorname{dim}_{F} \overline{N_{t}\left(\left.A\right|_{\gamma_{2}}\right)}=\sum_{i=0}^{t} e_{i}\left(\left.A\right|_{Y_{2}}\right)
$$

and

$$
q^{3}+q^{2}+q=\operatorname{dim}_{F}\left(\overline{V_{-q^{2}} \cap \mathbb{Z}_{p}^{\mathcal{L}_{2}}}\right) \leq \operatorname{dim}_{F} \overline{M_{2 t}\left(\left.A\right|_{\gamma_{2}}\right)}=\sum_{i=2 t}^{3 t} e_{i}\left(\left.A\right|_{\gamma_{2}}\right)
$$

- Since $\left(q^{4}+q^{2}\right)+\left(q^{3}+q^{2}+q\right)=\operatorname{dim}_{F} \overline{Y_{2}}$, we must have equalities throughout, so $e_{i}(A)=0$ for all other i.

Remark

The above proof simply exploits the SRG equation, and makes no use of the geometry of $\operatorname{PG}(3, q)$. Therefore the first theorem is also true for the adjacency matrix A of any strongly regular graph with the same parameters.

Outline

> Introduction

> All invariants are powers of p
> p-filtrations and SNF bases

> Invariants of the Strongly Regular Graph

Relation with Point-Line Incidence

Simultaneous SNF Bases

- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $e_{i}\left(B^{t} B\right)=e_{i}\left(\left.B^{t} B\right|_{Y_{2}}\right)$ for $i \neq 4 t$.
- $B^{t} B=-\left[A+\left(q^{2}-q\right) I\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- On $Y_{2}, B^{t} B=-\left[A+\left(q^{2}-q\right) /\right]+q^{2} I$.
- $e_{i}\left(B^{t} B \mid \gamma_{2}\right)=e_{i}\left(A \mid \gamma_{2}+\left(q^{2}-q\right) I\right)$
- $e_{2 t+i}(A)=e_{t-i}\left(B^{t} B\right)$, for $0 \leq i \leq t$.
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.
$B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-I)$.
- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $e_{i}\left(B^{t} B\right)=e_{i}\left(\left.B^{t} B\right|_{Y_{2}}\right)$ for $i \neq 4 t$.
- $B^{t} B=-\left[A+\left(q^{2}-q\right) I\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- On $Y_{2}, B^{t} B=-\left[A+\left(q^{2}-q\right) /\right]+q^{2} l$.
- $e_{i}\left(B^{t} B \mid \gamma_{2}\right)=e_{i}\left(A \mid \gamma_{2}+\left(q^{2}-q\right) I\right)$
- $e_{2 t+i}(A)=e_{t-i}\left(B^{t} B\right)$, for $0 \leq i \leq t$.
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) . \tag{2}
\end{equation*}
$$

- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) \tag{2}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $e_{i}\left(B^{t} B\right)=e_{i}\left(\left.B^{t} B\right|_{\gamma_{2}}\right)$ for $i \neq 4 t$.

- $e_{i}\left(B^{t} B \mid \gamma_{2}\right)=e_{i}\left(A \mid \gamma_{2}+\left(q^{2}-q\right) I\right)$

- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) . \tag{2}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $e_{i}\left(B^{t} B\right)=e_{i}\left(\left.B^{t} B\right|_{Y_{2}}\right)$ for $i \neq 4 t$.

- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) . \tag{2}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $e_{i}\left(B^{t} B\right)=e_{i}\left(\left.B^{t} B\right|_{Y_{2}}\right)$ for $i \neq 4 t$.
- $B^{t} B=-\left[A+\left(q^{2}-q\right) I\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) . \tag{2}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $e_{i}\left(B^{t} B\right)=e_{i}\left(\left.B^{t} B\right|_{Y_{2}}\right)$ for $i \neq 4 t$.
- $B^{t} B=-\left[A+\left(q^{2}-q\right) I\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- On $Y_{2}, B^{t} B=-\left[A+\left(q^{2}-q\right) /\right]+q^{2} I$.
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) . \tag{2}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $e_{i}\left(B^{t} B\right)=e_{i}\left(\left.B^{t} B\right|_{Y_{2}}\right)$ for $i \neq 4 t$.
- $B^{t} B=-\left[A+\left(q^{2}-q\right) I\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- On $Y_{2}, B^{t} B=-\left[A+\left(q^{2}-q\right) /\right]+q^{2} l$.
- $e_{i}\left(\left.B^{t} B\right|_{\gamma_{2}}\right)=e_{i}\left(\left.A\right|_{\gamma_{2}}+\left(q^{2}-q\right) I\right)$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) . \tag{2}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $e_{i}\left(B^{t} B\right)=e_{i}\left(\left.B^{t} B\right|_{Y_{2}}\right)$ for $i \neq 4 t$.
- $B^{t} B=-\left[A+\left(q^{2}-q\right) I\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- On $Y_{2}, B^{t} B=-\left[A+\left(q^{2}-q\right) /\right]+q^{2} l$.
- $e_{i}\left(\left.B^{t} B\right|_{\gamma_{2}}\right)=e_{i}\left(\left.A\right|_{\gamma_{2}}+\left(q^{2}-q\right) I\right)$
- $e_{2 t+i}(A)=e_{t-i}\left(B^{t} B\right)$, for $0 \leq i \leq t$.

Outline

Introduction

All invariants are powers of p
p-filtrations and SNF bases

Invariants of the Strongly Regular Graph

Relation with Point-Line Incidence

Simultaneous SNF Bases

Proof of Second Theorem

- Suppose that we can diagonalize B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations

- Then we can diagonalize the product:

- In general is not possible to find such a matrix E ([5] is a source of information on this topic).
- Yet that is exactly what we will do.

Proof of Second Theorem

- Suppose that we can diagonalize B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations

- Then we can diagonalize the product:

$$
P B^{t} B Q^{-1}=D_{r, 1} D_{1, s},
$$

- In general is not possible to find such a matrix E ([5] is a source of information on this topic).
- Yet that is exactly what we will do.

Proof of Second Theorem

- Suppose that we can diagonalize B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations

- Then we can diagonalize the product:

$$
P B^{t} B Q^{-1}=D_{r, 1} D_{1, s},
$$

- In general is not possible to find such a matrix E ([5] is a source of information on this topic).
- Yet that is exactly what we will do.

Proof of Second Theorem

- Suppose that we can diagonalize B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations

- Then we can diagonalize the product:

$$
P B^{t} B Q^{-1}=D_{r, 1} D_{1, s},
$$

- In general is not possible to find such a matrix E ([5] is a source of information on this topic).
- Yet that is exactly what we will do.
- Lemma

There exists a basis \mathcal{B} of $R^{\mathcal{L}_{1}}$ that is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.

- The groun G has a cyclic subgroup S which is isomorphic to F^{\times}, acting on $R^{\mathcal{L}_{1}}$ with all isotypic components of rank 1.
- Taking a generator of each component, we get a basis \mathcal{I} of $R^{\mathcal{L}}{ }^{1}$.
- By using idempotents in $R G$, we can show that \mathcal{I} is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.
- Finally, the elementary divisors of B^{t} and B can be found in work of Chandler, Sin and Xiang.
- This lemma generalizes. Let $A_{1, \ell}$ be the incidence matrix between 1 -subspaces and ℓ-subspaces in any finite vector space. Using the generalization and the C-S-X formula, we can obtain the elementary divisors of the matrix $A_{1, r}^{t} A_{1, s}$.
- Lemma

There exists a basis \mathcal{B} of $R^{\mathcal{L}_{1}}$ that is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.
> - The group G has a cyclic subgroup S which is isomorphic to F^{\times}, acting on $R^{\mathcal{L}_{1}}$ with all isotypic components of rank 1
> - Taking a generator of each component, we get a basis \mathcal{I} of $R^{\mathcal{L}_{1}}$
> - By using idempotents in $R G$, we can show that \mathcal{I} is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.
> - Finally, the elementary divisors of B^{t} and B can be found in work of Chandler, Sin and Xiang.
> - This lemma generalizes. Let $A_{1, \ell}$ be the incidence matrix between 1 -subspaces and ℓ-subspaces in any finite vector space. Using the generalization and the C-S-X formula, we can obtain the elementary divisors of the matrix $A_{1, r}^{i} A_{1, s}$.

- Lemma

There exists a basis \mathcal{B} of $R^{\mathcal{L}_{1}}$ that is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.

- The group G has a cyclic subgroup S which is isomorphic to F^{\times}, acting on $R^{\mathcal{L}_{1}}$ with all isotypic components of rank 1 .
- Lemma

There exists a basis \mathcal{B} of $R^{\mathcal{L}_{1}}$ that is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.

- The group G has a cyclic subgroup S which is isomorphic to F^{\times}, acting on $R^{\mathcal{L}_{1}}$ with all isotypic components of rank 1 .
- Taking a generator of each component, we get a basis \mathcal{I} of $R^{\mathcal{L}_{1}}$.
- By using idempotents in $R G$, we can show that \mathcal{I} is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.
- Finally, the elementary divisors of B^{t} and B can be found in work of Chandler, Sin and Xiang.
- This lemma generalizes. Let A_{1}, be the incidence matrix between 1 -subspaces and ℓ-subspaces in any finite vector space. Using the generalization and the C-S-X formula, we can obtain the elementary divisors of the matrix $A_{1, r}^{t} A_{1, s}$.
- Lemma

There exists a basis \mathcal{B} of $R^{\mathcal{L}_{1}}$ that is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.

- The group G has a cyclic subgroup S which is isomorphic to F^{\times}, acting on $R^{\mathcal{L}_{1}}$ with all isotypic components of rank 1 .
- Taking a generator of each component, we get a basis \mathcal{I} of $R^{\mathcal{L}_{1}}$.
- By using idempotents in $R G$, we can show that \mathcal{I} is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.
- Finally, the elementary divisors of B^{t} and B can be found in work of Chandler, Sin and Xiang.
- This lemma generalizes. Let A_{1}, be the incidence matrix between 1 -subspaces and ℓ-subspaces in any finite vector space. Using the generalization and the C-S-X formula, we can obtain the elementary divisors of the matrix $A_{1, r}^{t} A_{1, s}$.
- Lemma

There exists a basis \mathcal{B} of $R^{\mathcal{L}_{1}}$ that is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.

- The group G has a cyclic subgroup S which is isomorphic to F^{\times}, acting on $R^{\mathcal{L}_{1}}$ with all isotypic components of rank 1 .
- Taking a generator of each component, we get a basis \mathcal{I} of $R^{\mathcal{L}_{1}}$.
- By using idempotents in $R G$, we can show that \mathcal{I} is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.
- Finally, the elementary divisors of B^{t} and B can be found in work of Chandler, Sin and Xiang.
between 1 -subspaces and ℓ-subspaces in any finite vector space. Using the generalization and the C-S-X formula. we can obtain the elementary divisors of the matrix $A_{1, r}^{t} A_{1, s}$.
- Lemma

There exists a basis \mathcal{B} of $R^{\mathcal{L}_{1}}$ that is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.

- The group G has a cyclic subgroup S which is isomorphic to F^{\times}, acting on $R^{\mathcal{L}_{1}}$ with all isotypic components of rank 1 .
- Taking a generator of each component, we get a basis \mathcal{I} of $R^{\mathcal{L}_{1}}$.
- By using idempotents in $R G$, we can show that \mathcal{I} is simultaneously a left SNF basis for B and a right SNF basis for B^{t}.
- Finally, the elementary divisors of B^{t} and B can be found in work of Chandler, Sin and Xiang.
- This lemma generalizes. Let $A_{1, \ell}$ be the incidence matrix between 1 -subspaces and ℓ-subspaces in any finite vector space. Using the generalization and the C-S-X formula, we can obtain the elementary divisors of the matrix $A_{1, r}^{t} A_{1, s}$.

Thank you for your attention!

References

(-ind Matthew Bardoe and Peter Sin, The permutation modules for $\mathrm{GL}\left(n+1, \mathbf{F}_{q}\right)$ acting on $\mathbf{P}^{n}\left(\mathbf{F}_{q}\right)$ and \mathbf{F}_{q}^{n-1}, J. London Math. Soc. (2) 61 (2000), no. 1, 58-80.

David B. Chandler, Peter Sin, and Qing Xiang, The invariant factors of the incidence matrices of points and subspaces in $\operatorname{PG}(n, q)$ and $\mathrm{AG}(n, q)$, Trans. Amer. Math. Soc. 358 (2006), no. 11, 4935-4957 (electronic).

- Noboru Hamada, On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes, Hiroshima Math. J. 3 (1973), 153-226.

Eric S. Lander, Symmetric designs: An algebraic approach, Cambridge University Press, 1983, London Math. Soc. Lecture Notes 74.
© Joseph John Rushanan，TOPICS IN INTEGRAL MATRICES AND ABELIAN GROUP CODES（SMITH NORMAL FORM （SNF），QUADRATIC，DUADIC，Q－CODES），ProQuest LLC，Ann Arbor，MI，1986，Thesis（Ph．D．）－California Institute of Technology．
國 Peter Sin，The elementary divisors of the incidence matrices of points and linear subspaces in $\mathbf{P}^{n}\left(\mathbf{F}_{p}\right)$ ，J．Algebra 232 （2000）， no．1，76－85．
亩 Peter Sin，The p－rank of the incidence matrix of intersecting linear subspaces，Des．Codes Cryptogr． 31 （2004），no．3， 213－220．
R Qing Xiang，Recent progress in algebraic design theory，Finite Fields Appl． 11 （2005），no．3，622－653．
囲 Qing Xiang，Recent results on p－ranks and Smith normal forms of some $2-(v, k, \lambda)$ designs，Coding theory and quantum computing，Contemp．Math．，vol．381，Amer．Math．Soc．， Providence，RI，2005，pp．53－67．

