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Skew lines

I We consider the relation of skewness between lines in
PG(3,q), q = pt .

I Under the Klein Correpondence, two lines are skew iff the
corresponding points of the Klein quadric in PG(5,q) are
not orthogonal, i.e, not joined by a line of the quadric. Thus
the graph of skew lines is the same as the non-collinearity
graph of points in the hyperbolic polar space O+(5,q).

I This is a strongly regular graph.
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Notation

I V , a 4-dimensional vector space over Fq

I Lr = set of subspaces of dimension r in V
I A incidence matrix of skewness between lines in P(V )

I A is square of size (q2 + q + 1)(q2 + 1).
I For any matrix M, let ei(M) = number of invariant factors in

the Smith Normal Form of M which are exactly divisible by
pi .
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I A2 = q4I + (q4 − q3 − q2 + q)A + (q4 − q3)(J − A− I)
I Eigenvalues of A are q, −q2, and q4 with respective

multiplicities q4 + q2, q3 + q2 + q, and 1.
I Special case of oppositeness relation
I We can replace Z by a suitable p-adic ring; We will use an

unramified extension R of Zp containing a (q4 − 1)-th root
of unity.
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Theorem
Let ei = ei(A).

1. ei = e3t−i for 0 ≤ i < t .

2. ei = 0 for t < i < 2t , 3t < i < 4t , and i > 4t .

3.
∑t

i=0 ei = q4 + q2.

4.
∑3t

i=2t ei = q3 + q2 + q.

5. e4t = 1.

Thus we get all the elementary divisor multiplicities once we
know t of the numbers e0, . . . ,et (or the numbers e2t , . . . ,e3t ).



More notation

I [3]t = {(s0, . . . , st−1) | si ∈ {1,2,3} for all i}
I H(i) =

{
(s0, . . . , st−1) ∈ [3]t

∣∣#{j |sj = 2} = i
}

I For ~s = (s0, . . . , st−1) ∈ [3]t

λi = psi+1 − si ,

(subscripts mod t) and

~λ = (λ0, . . . , λt−1)

I For an integer k , set dk to be the coefficient of xk in the
expansion of (1 + x + · · ·+ xp−1)4. Set d(~s) =

∏t−1
i=0 dλi .



I Theorem
Let ei = ei(A) denote the multiplicity of pi as an elementary
divisor of A. Then, for 0 ≤ i ≤ t ,

e2t+i =
∑

~s∈H(i)

d(~s).



Example, q = 9

I (1 + x + x2)4 =
1 + 4x + 10x2 + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8

I H(0) = {(11), (13), (31), (33)},
H(1) = {(21), (23), (12), (32)}, H(2) = {(22)}.

I e4 = d(11) + d(13) + d(31) + d(33) = 202
I e5 = d(21) + d(23) + d(12) + d(32) = 256
I e6 = d(22) = 361



Table: The elementary divisors of the incidence matrix of lines vs.
lines in PG(3,9), where two lines are incident when skew.

Elem. Div. 1 3 32 34 35 36 38

Multiplicity 361 256 6025 202 256 361 1
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p-filtrations

I R, local principal ideal domain, max ideal pR, F = R/pR.
I For L ≤ R`, set L = (L + pR`)/pR`.
I η : Rm → Rn, R-module homomorphism
I Mi(η) = {x ∈ Rm | η(x) ∈ piRn}
I Ni(η) = {p−iη(x) | x ∈ Mi(η)} (and N−1(η) = {0})
I Rm = M0(η) ⊇ M1(η) ⊇ · · ·
I N0(η) ⊆ N1(η) ⊆ · · ·
I F m = M0(η) ⊇ M1(η) ⊇ · · ·
I N0(η) ⊆ N1(η) ⊆ · · · .
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I Lemma
Let η : Rm → Rn be a homomorphism of free R-modules of
finite rank. Then, for i ≥ 0,

ei(η) = dimF

(
Mi(η)/Mi+1(η)

)
= dimF

(
Ni(η)/Ni−1(η)

)
.



Left SNF Bases

I For a given homomorphism η : Rm → Rn, we will be
interested in pairs of bases (B, C) with respect to which the
matrix of η is in Smith normal form.

I We define a left SNF basis for η to be any basis of Rm that
belongs to such a pair. Similarly, a right SNF basis for η is
any basis of Rn belonging to such a pair. We now describe
how to construct such bases.

I M0(η) ⊇ M1(η) ⊇ · · · ⊇ M`(η) ) ker(η)
I B`+1 basis of ker(η)
I Extend to a basis B` ∪ B`+1 of M`(η).
I Continue, to get a basis ∪`+1

i=0Bi of M0(η).
I Lift the elements of B`+1 to a set B`+1 of preimages in

ker(η).
I Continuing, enlarge each Bi+1 by adjoining a set Bi of

preimages in Mi(η) of Bi .
I The set B =

⋃`+1
i=0 Bi is an R-basis of Rm.
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Right SNF Bases

I N`(η) = N`+1(η) = · · · , call this module N ′

I N ′ the purification of Im η

I The elementary divisors of η remain the same if we change
its codomain N ′.

I Basis C0 of N0(η),
I Extend to basis C0 ∪ C1 of N1(η).
I Continue, ending with basis ∪`i=0Ci of N ′.
I Now we lift C0 to a set C0 of preimages in N0(η).
I Continuing, enlarge each Ci by adjoining a set Ci+1 of

preimages in Ni+1(η) of Ci+1.
I C′ =

⋃`
i=0 Ci is an R-basis of N ′.

I Extend arbitrarily to a basis C =
⋃`+1

i=0 Ci of Rn.
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Eliminating the all-one vector

I View A as an R-module map.
I A : RL2 → RL2 sends a 2-subspace to the (formal) sum of

the 2-subspaces incident with it.
I 1 =

∑
x∈L2

x

I Y2 =
{∑

x∈L2
axx ∈ RL2

∣∣∣ ∑x∈L2
ax = 0

}
I RL2 = R1⊕ Y2

I (1)A = q41
I e4t(A) = e4t(A|Y2) + 1
I ei(A) = ei(A|Y2) for i 6= 4t .
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∑
x∈L2

x
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I (1)A = q41
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SRG equation

I A(A + (q2 − q)I) = q3I + (q4 − q3)J
I On Y2, A(A + (q2 − q)I) = q3I.
I Let P and Q be unimodular, with D = PAQ−1 diagonal.

Then we get the relation

Q(A + (q2 − q)I)P−1 = q3D−1, (1)
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SRG equation (continued)

I Q(A + (q2 − q)I)P−1 = q3D−1

I ei(A|Y2) = 0 for i > 3t .
I e4t(A) = 1
I ei(A|Y2 + (q2 − q)I) = e3t−i(A|Y2)for 0 ≤ i ≤ 3t .
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Proof of First Theorem

I A|Y2 ≡ A|Y2 + (q2 − q)I (mod pt)
I ei(A|Y2) = ei(A|Y2 + (q2 − q)I) = e3t−i(A|Y2), for 0 ≤ i < t
I Vλ := λ-eigenspace for A (as a matrix over the field of

fractions of R).
I Vq ∩ RL2 and V−q2 ∩ RL2 are pure R-submodules of Y2.
I Vq ∩ RL2 ⊆ Nt(A|Y2) and V−q2 ∩ RL2 ⊆ M2t(A|Y2).
I

q4 + q2 = dimF (Vq ∩ ZL2
p ) ≤ dimF Nt(A|Y2) =

t∑
i=0

ei(A|Y2)

and

q3+q2+q = dimF (V−q2 ∩ ZL2
p ) ≤ dimF M2t(A|Y2) =

3t∑
i=2t

ei(A|Y2).

I Since (q4 + q2) + (q3 + q2 + q) = dimF Y2, we must have
equalities throughout, so ei(A) = 0 for all other i .
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Remark
The above proof simply exploits the SRG equation, and makes
no use of the geometry of PG(3,q). Therefore the first theorem
is also true for the adjacency matrix A of any strongly regular
graph with the same parameters.
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I B denote the incidence matrix with rows indexed by L1 and
columns indexed by L2, where incidence again means
zero intersection.

I Bt denotes the transpose of B, and is just the incidence
matrix of lines vs. points.

I

BtB = (q3+q2)I+(q3+q2−q−1)A+(q3+q2−q)(J−A−I).
(2)

I (1)BtB = q4(q2 + q + 1)(q + 1)1,
I ei(BtB) = ei(BtB|Y2) for i 6= 4t .
I BtB = −[A + (q2 − q)I] + q2I + (q3 + q2 − q)J
I On Y2, BtB = −[A + (q2 − q)I] + q2I.
I ei(BtB|Y2) = ei(A|Y2 + (q2 − q)I)
I e2t+i(A) = et−i(BtB), for 0 ≤ i ≤ t .
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Proof of Second Theorem

I Suppose that we can diagonalize Bt and B by:

PBtE−1 = D2,1

and
EBQ−1 = D1,2

where E is the same matrix in both equations
I Then we can diagonalize the product:

PBtBQ−1 = Dr ,1D1,s,

I In general is not possible to find such a matrix E ([5] is a
source of information on this topic).

I Yet that is exactly what we will do.
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I Lemma
There exists a basis B of RL1 that is simultaneously a left SNF
basis for B and a right SNF basis for Bt .

I The group G has a cyclic subgroup S which is isomorphic
to F×, acting on RL1 with all isotypic components of rank 1.

I Taking a generator of each component, we get a basis I of
RL1 .

I By using idempotents in RG, we can show that I is
simultaneously a left SNF basis for B and a right SNF
basis for Bt .

I Finally, the elementary divisors of Bt and B can be found in
work of Chandler, Sin and Xiang.

I This lemma generalizes. Let A1,` be the incidence matrix
between 1-subspaces and `-subspaces in any finite vector
space. Using the generalization and the C-S-X formula, we
can obtain the elementary divisors of the matrix At

1,r A1,s.
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Thank you for your attention!
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