Quantum Walks on Finite Groups

Peter Sin

University of Florida
U. Waterloo, May 6th, 2021 (online)

Joint work with Julien Sorci.

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

Continuous-time quantum walk

Let A be the adjacency matrix of a graph Γ. Then a continuous-time quantum walk on Γ is defined by the family of unitary operators

$$
U(t)=e^{i t A}, t \in \mathbb{R}
$$

acting on $\mathbb{C} V(\Gamma)$.

Continuous-time quantum walk

Let A be the adjacency matrix of a graph Γ. Then a continuous-time quantum walk on Γ is defined by the family of unitary operators

$$
U(t)=e^{i t A}, t \in \mathbb{R}
$$

acting on $\mathbb{C} V(\Gamma)$.
Γ has perfect state transfer from a to $b \in V(\Gamma)$ at time τ if
$\left|U(\tau)_{b, a}\right|=1$.
Γ has instantaneous uniform mixing at time τ if for all a, $b \in V(\Gamma)$ we have $\left|U(\tau)_{a, b}\right|=\frac{1}{\sqrt{|V(\Gamma)|}}$.
Basic questions: Which graphs admit PST and IUM? Examples? Nec./suff conditions?

Notation

$\operatorname{Cay}(G, S)$ simple, normal Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G)

Notation

$\operatorname{Cay}(G, S)$ simple, normal Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G) Conj. class assoc. scheme. If K_{i} are the conjugacy classes, then g is i-related to h iff $g^{-1} h \in K_{i}$. Not symmetric but $\operatorname{Cay}(G, S)$ is in a symmetric subscheme.

Notation

$\operatorname{Cay}(G, S)$ simple, normal Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G) Conj. class assoc. scheme. If K_{i} are the conjugacy classes, then g is i-related to h iff $g^{-1} h \in K_{i}$. Not symmetric but $\operatorname{Cay}(G, S)$ is in a symmetric subscheme.
Eigenvalues come from Irreducible characters. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$
\theta_{\chi}=\frac{1}{\chi(1)} \sum_{s \in S} \chi(s), \quad \text { with } \theta_{1}=|S| .
$$

Notation

$\operatorname{Cay}(G, S)$ simple, normal Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G)
Conj. class assoc. scheme. If K_{i} are the conjugacy classes, then g is i-related to h iff $g^{-1} h \in K_{i}$. Not symmetric but
$\operatorname{Cay}(G, S)$ is in a symmetric subscheme.
Eigenvalues come from Irreducible characters. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$
\theta_{\chi}=\frac{1}{\chi(1)} \sum_{s \in S} \chi(s), \quad \text { with } \theta_{1}=|S| .
$$

Idempotents of scheme. View g either as an element of $\mathbb{C} G$ or as a $|G| \times|G|$ matrix under the regular representation.

$$
E_{\chi}=\frac{\chi(1)}{|G|} \sum_{g} \chi\left(g^{-1}\right) g
$$

For each eigenvalue θ, let $X(\theta)=\left\{\chi \in \operatorname{Irr}(G) \mid \theta_{\chi}=\theta\right\}$. Then $\tilde{E}_{\theta}=\sum_{\chi \in X(\theta)} E_{\chi}$ is the idempotent of θ.

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

Two distinct vertices g and h are strongly cospectral iff for all eigenvalues θ we have $\tilde{E}_{\theta} g= \pm \tilde{E}_{\theta} h$.

Two distinct vertices g and h are strongly cospectral iff for all eigenvalues θ we have $\tilde{E}_{\theta} g= \pm \tilde{E}_{\theta} h$.
Necessary for PST and PGST (including discrete models).

Two distinct vertices g and h are strongly cospectral iff for all eigenvalues θ we have $\tilde{E}_{\theta} g= \pm \tilde{E}_{\theta} h$.
Necessary for PST and PGST (including discrete models).
If g and h are strongly cospectral then there exists a central involution z such that $h=z g$.

Two distinct vertices g and h are strongly cospectral iff for all eigenvalues θ we have $\tilde{E}_{\theta} g= \pm \tilde{E}_{\theta} h$.
Necessary for PST and PGST (including discrete models).
If g and h are strongly cospectral then there exists a central involution z such that $h=z g$.

Two distinct vertices g and h are strongly cospectral iff for all eigenvalues θ we have $\tilde{E}_{\theta} g= \pm \tilde{E}_{\theta} h$.
Necessary for PST and PGST (including discrete models).
If g and h are strongly cospectral then there exists a central involution z such that $h=z g$.

Proof.

Suppose $\tilde{E}_{\theta} h=\sigma_{\theta} \tilde{E}_{\theta} g, \sigma_{\theta} \in\{1,-1\}$. Let f be a polynomial with $f(\theta)=\sigma_{\theta}$ for all eigenvalues θ. Then from

$$
A=\sum_{\theta} \theta \tilde{E}_{\theta}
$$

we get

$$
f(A)=\sum_{\theta} \sigma_{\theta} \tilde{E}_{\theta}
$$

and so $f(A)^{2}=I$ and $f(A) g=h$. Then $f(A)=h g^{-1} \in Z(\mathbb{C} G) \cap G$ must be a central involution.

Strong Cospectrality in terms of characters.

Theorem
Distinct elements g and h of G are strongly cospectral iff there is a central involution z such that the following hold.
(a) $h=z g$.
(b) $(\forall \theta),(\forall \chi, \psi \in X(\theta)), \chi(z) / \chi(1)=\psi(z) / \psi(1)$.

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems
$\operatorname{Cay}(G, S)$ has perfect state transfer from g to h at time τ if $\left|U(\tau)_{h, g}\right|=1$. Special case of PST characterization for assoc schemes (Coutinho et.al).
$\operatorname{Cay}(G, S)$ has perfect state transfer from g to h at time τ if $\left|U(\tau)_{h, g}\right|=1$. Special case of PST characterization for assoc schemes (Coutinho et.al).
$\operatorname{Cay}(G, S)$ has perfect state transfer from g to h at time τ if $\left|U(\tau)_{h, g}\right|=1$. Special case of PST characterization for assoc schemes (Coutinho et.al).
Theorem
In Cay (G, S) we have PST between vertices g and h at some time if and only if the following hold.
(a) The eigenvalues are integers.
(b) g and h are strongly cospectral.
(c) Let $z=h g^{-1}$ and let $\Phi^{+}=\left\{\theta_{\chi} \mid \chi(z)>0\right\}$ and $\Phi^{-}=\left\{\theta_{\chi} \mid \chi(z)<0\right\}$. There is an integer N such that
(i) for all $\theta_{\chi} \in \Phi^{-}, v_{2}\left(\theta_{1}-\theta_{\chi}\right)=N$; and
(ii) for all $\theta_{\chi} \in \Phi^{+}, v_{2}\left(\theta_{1}-\theta_{\chi}\right)>N$.

Minimum time

Minimum value of t for PST is $2 \pi / g$, where $g=\operatorname{gcd}\left\{\theta_{1}-\theta_{\chi} \mid \chi \in \operatorname{Irr}(G)\right\}$.

Minimum time

Minimum value of t for PST is $2 \pi / g$, where $g=\operatorname{gcd}\left\{\theta_{1}-\theta_{\chi} \mid \chi \in \operatorname{Irr}(G)\right\}$.
g also appears in IUM.

Minimum time

Minimum value of t for PST is $2 \pi / g$, where $g=\operatorname{gcd}\left\{\theta_{1}-\theta_{\chi} \mid \chi \in \operatorname{Irr}(G)\right\}$.
g also appears in IUM.

Minimum time

Minimum value of t for PST is $2 \pi / g$, where $g=\operatorname{gcd}\left\{\theta_{1}-\theta_{\chi} \mid \chi \in \operatorname{Irr}(G)\right\}$.
g also appears in IUM.
Lemma
Any common divisor of the $\theta_{1}-\theta_{\chi}$ divides $|G|$ (as algebraic integers).

Minimum time

Minimum value of t for PST is $2 \pi / g$, where $g=\operatorname{gcd}\left\{\theta_{1}-\theta_{\chi} \mid \chi \in \operatorname{Irr}(G)\right\}$.
g also appears in IUM.
Lemma
Any common divisor of the $\theta_{1}-\theta_{\chi}$ divides $|G|$ (as algebraic integers).

- No assumption of integrality. Proof is similar to abelian case (Cao-Feng-Tan).

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

Extraspecial Groups

Let p be a prime. A p-group G is extraspecial if $Z(G)$ has order p and $G / Z(G)$ is elementary abelian. Structure is known, G is a central product of extraspecial groups of order p^{3}, and for each p there are just two isomorphism types. When $p=2$, we have D_{8} and Q_{8}.

Characters

Let G be extraspecial of order $2^{2 n+1}$, with $Z(G)=\langle z\rangle$.
Irreducible characters of a central product are products of irreducible characters of the component groups such that the factors in the product all agree on the amalgamated central subgroup.

Characters

Let G be extraspecial of order $2^{2 n+1}$, with $Z(G)=\langle z\rangle$.
Irreducible characters of a central product are products of irreducible characters of the component groups such that the factors in the product all agree on the amalgamated central subgroup.
So G has a unique nonlinear character Ψ, and we have $\Psi(1)=2^{n}, \Psi(z)=-2^{n}, \Psi(g)=0$ if $g \notin Z(G)$.

Character Table of D_{8} / Q_{8}

$X .1$	1	1	1	1	1
$X .2$	1	1	-1	1	-1
$X .3$	1	1	1	-1	-1
$X .4$	1	1	-1	-1	1
$X .5$	2	-2	0	0	0

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$
$\Phi^{-}=\left\{\theta_{\psi}=0\right\}$.

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$
$\phi^{-}=\left\{\theta_{\psi}=0\right\}$.
$G / Z(G) \cong \mathbb{F}_{2}^{2 n}$ and each $y \in \mathbb{F}_{2}^{2 n}$ gives a character $\lambda_{y}(x)=(-1)^{x \cdot y}$. Let \bar{S} be the image of S in $G / Z(G)$. Let $e_{y}=\#\{x \in \bar{S} \mid x \cdot y=0\}$.
$\theta_{\lambda_{y}}=2 \sum_{x \in \bar{S}}(-1)^{x \cdot y}=2\left(e_{y}-\left(\ell-e_{y}\right)\right)=4 e_{y}-2 \ell$.

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$
$\Phi^{-}=\left\{\theta_{\Psi}=0\right\}$.
$G / Z(G) \cong \mathbb{F}_{2}^{2 n}$ and each $y \in \mathbb{F}_{2}^{2 n}$ gives a character $\lambda_{y}(x)=(-1)^{x \cdot y}$. Let \bar{S} be the image of S in $G / Z(G)$. Let $e_{y}=\#\{x \in \bar{S} \mid x \cdot y=0\}$.
$\theta_{\lambda_{y}}=2 \sum_{x \in \bar{S}}(-1)^{x \cdot y}=2\left(e_{y}-\left(\ell-e_{y}\right)\right)=4 e_{y}-2 \ell$.
$\Phi^{+}=\left\{4 e_{y}-2 \ell \mid y \in \mathbb{F}_{2}^{2 n}\right\}$.

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$
$\phi^{-}=\left\{\theta_{\psi}=0\right\}$.
$G / Z(G) \cong \mathbb{F}_{2}^{2 n}$ and each $y \in \mathbb{F}_{2}^{2 n}$ gives a character
$\lambda_{y}(x)=(-1)^{x \cdot y}$. Let \bar{S} be the image of S in $G / Z(G)$. Let
$e_{y}=\#\{x \in \bar{S} \mid x \cdot y=0\}$.
$\theta_{\lambda_{y}}=2 \sum_{x \in \bar{S}}(-1)^{x \cdot y}=2\left(e_{y}-\left(\ell-e_{y}\right)\right)=4 e_{y}-2 \ell$.
$\Phi^{+}=\left\{4 e_{y}-2 \ell \mid y \in \mathbb{F}_{2}^{2 n}\right\}$.
Condition for strong cospectrality: $e_{y} \neq \ell / 2$.

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$
$\phi^{-}=\left\{\theta_{\psi}=0\right\}$.
$G / Z(G) \cong \mathbb{F}_{2}^{2 n}$ and each $y \in \mathbb{F}_{2}^{2 n}$ gives a character
$\lambda_{y}(x)=(-1)^{x \cdot y}$. Let \bar{S} be the image of S in $G / Z(G)$. Let
$e_{y}=\#\{x \in \bar{S} \mid x \cdot y=0\}$.
$\theta_{\lambda_{y}}=2 \sum_{x \in \bar{S}}(-1)^{x \cdot y}=2\left(e_{y}-\left(\ell-e_{y}\right)\right)=4 e_{y}-2 \ell$.
$\Phi^{+}=\left\{4 e_{y}-2 \ell \mid y \in \mathbb{F}_{2}^{2 n}\right\}$.
Condition for strong cospectrality: $e_{y} \neq \ell / 2$.
$v_{2}\left(\theta_{1}-\theta_{\Psi}\right)=v_{2}(2 \ell)$.

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$
$\phi^{-}=\left\{\theta_{\psi}=0\right\}$.
$G / Z(G) \cong \mathbb{F}_{2}^{2 n}$ and each $y \in \mathbb{F}_{2}^{2 n}$ gives a character
$\lambda_{y}(x)=(-1)^{x \cdot y}$. Let \bar{S} be the image of S in $G / Z(G)$. Let
$e_{y}=\#\{x \in \bar{S} \mid x \cdot y=0\}$.
$\theta_{\lambda_{y}}=2 \sum_{x \in \bar{S}}(-1)^{x \cdot y}=2\left(e_{y}-\left(\ell-e_{y}\right)\right)=4 e_{y}-2 \ell$.
$\Phi^{+}=\left\{4 e_{y}-2 \ell \mid y \in \mathbb{F}_{2}^{2 n}\right\}$.
Condition for strong cospectrality: $e_{y} \neq \ell / 2$.
$v_{2}\left(\theta_{1}-\theta_{\Psi}\right)=v_{2}(2 \ell)$.
$v_{2}\left(\theta_{1}-\theta_{\lambda_{y}}\right)=4 \ell-4 e_{y}$.

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$
$\Phi^{-}=\left\{\theta_{\psi}=0\right\}$.
$G / Z(G) \cong \mathbb{F}_{2}^{2 n}$ and each $y \in \mathbb{F}_{2}^{2 n}$ gives a character
$\lambda_{y}(x)=(-1)^{x \cdot y}$. Let \bar{S} be the image of S in $G / Z(G)$. Let
$e_{y}=\#\{x \in \bar{S} \mid x \cdot y=0\}$.
$\theta_{\lambda_{y}}=2 \sum_{x \in \bar{S}}(-1)^{x \cdot y}=2\left(e_{y}-\left(\ell-e_{y}\right)\right)=4 e_{y}-2 \ell$.
$\phi^{+}=\left\{4 e_{y}-2 \ell \mid y \in \mathbb{F}_{2}^{2 n}\right\}$.
Condition for strong cospectrality: $e_{y} \neq \ell / 2$.
$v_{2}\left(\theta_{1}-\theta_{\psi}\right)=v_{2}(2 \ell)$.
$v_{2}\left(\theta_{1}-\theta_{\lambda_{y}}\right)=4 \ell-4 e_{y}$.
If ℓ is odd, the we have PST in $\operatorname{Cay}(G, S)$.

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.
Noncentral conjugacy classes are of form $\{g, g z\}$
$\Phi^{-}=\left\{\theta_{\psi}=0\right\}$.
$G / Z(G) \cong \mathbb{F}_{2}^{2 n}$ and each $y \in \mathbb{F}_{2}^{2 n}$ gives a character
$\lambda_{y}(x)=(-1)^{x \cdot y}$. Let \bar{S} be the image of S in $G / Z(G)$. Let
$e_{y}=\#\{x \in \bar{S} \mid x \cdot y=0\}$.
$\theta_{\lambda_{y}}=2 \sum_{x \in \bar{S}}(-1)^{x \cdot y}=2\left(e_{y}-\left(\ell-e_{y}\right)\right)=4 e_{y}-2 \ell$.
$\Phi^{+}=\left\{4 e_{y}-2 \ell \mid y \in \mathbb{F}_{2}^{2 n}\right\}$.
Condition for strong cospectrality: $e_{y} \neq \ell / 2$.
$v_{2}\left(\theta_{1}-\theta_{\psi}\right)=v_{2}(2 \ell)$.
$v_{2}\left(\theta_{1}-\theta_{\lambda_{y}}\right)=4 \ell-4 e_{y}$.
If ℓ is odd, the we have PST in $\operatorname{Cay}(G, S)$.
The precise conditions on S for PST can been worked out.

Heisenberg Groups

Let $G=H_{n}\left(\mathbb{F}_{q}\right)$ be the group of matrices of the form

$$
\left[\begin{array}{ccc}
1 & v^{t} & a \\
0 & I_{n} & w \\
0 & 0 & 1
\end{array}\right], \quad v, w \in \mathbb{F}_{q}^{n}, a \in \mathbb{F}_{q}
$$

$$
|Z(G)|=q
$$

Heisenberg Groups

Let $G=H_{n}\left(\mathbb{F}_{q}\right)$ be the group of matrices of the form

$$
\left[\begin{array}{ccc}
1 & v^{t} & a \\
0 & I_{n} & w \\
0 & 0 & 1
\end{array}\right], \quad v, w \in \mathbb{F}_{q}^{n}, a \in \mathbb{F}_{q}
$$

$|Z(G)|=q$.
Noncentral conj. classes have size q and are the cosets $g Z(G)$

Characters

There are two types:

- Characters of $G / Z(G)$

Characters

There are two types:

- Characters of $G / Z(G)$
- For each nonprincipal character μ of $Z(G)$ there is a character Ψ_{μ} whose restriction to $Z(G)$ is $q^{n} \mu$ and which vanishes on $G \backslash Z(G)$.

Character table of H_1(4) $\begin{array}{llllllllllllllllllll}2 & 6 & 4 & 4 & 4 & 6 & 6 & 6 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4\end{array}$ 1a 2a 2b 2c 2 d 2 e 2 f 2 g 4 a 4 b 4 c 2 h 4 d 4 e 4 f 2 i 4 g 4 h 4 i

Check for PST

Assume $q=2^{e}, e \geq 2$.
Pick involution $z \in Z(G)$. Take $S=\{z\} \cup$
(self-inverse union of ℓ noncentral classes that generate G).

Check for PST

Assume $q=2^{e}, e \geq 2$.
Pick involution $z \in Z(G)$. Take $S=\{z\} \cup$
(self-inverse union of ℓ noncentral classes that generate G).

$$
\theta_{1}=q \ell+1
$$

Check for PST

Assume $q=2^{e}, e \geq 2$.
Pick involution $z \in Z(G)$. Take $S=\{z\} \cup$
(self-inverse union of ℓ noncentral classes that generate G).
$\theta_{1}=q \ell+1$
For characters λ of $G / Z(G)$ we have $\theta_{\lambda} \equiv 1(\bmod q)$.

Check for PST

Assume $q=2^{e}, e \geq 2$.
Pick involution $z \in Z(G)$. Take $S=\{z\} \cup$
(self-inverse union of ℓ noncentral classes that generate G).
$\theta_{1}=q \ell+1$
For characters λ of $G / Z(G)$ we have $\theta_{\lambda} \equiv 1(\bmod q)$.
If Ψ is nonlinear and $\Psi(z)>0$, then $\theta_{\Psi}=1$.

Check for PST

Assume $q=2^{e}, e \geq 2$.
Pick involution $z \in Z(G)$. Take $S=\{z\} \cup$
(self-inverse union of ℓ noncentral classes that generate G).
$\theta_{1}=q \ell+1$
For characters λ of $G / Z(G)$ we have $\theta_{\lambda} \equiv 1(\bmod q)$.
If Ψ is nonlinear and $\Psi(z)>0$, then $\theta_{\psi}=1$.
If Ψ is nonlinear and $\Psi(z)<0$, then $\theta_{\Psi}=-1$.

Check for PST

Assume $q=2^{e}, e \geq 2$.
Pick involution $z \in Z(G)$. Take $S=\{z\} \cup$
(self-inverse union of ℓ noncentral classes that generate G).
$\theta_{1}=q \ell+1$
For characters λ of $G / Z(G)$ we have $\theta_{\lambda} \equiv 1(\bmod q)$.
If Ψ is nonlinear and $\Psi(z)>0$, then $\theta_{\Psi}=1$.
If Ψ is nonlinear and $\Psi(z)<0$, then $\theta_{\psi}=-1$.
Condition for strong cospectrality holds.

Check for PST

Assume $q=2^{e}, e \geq 2$.
Pick involution $z \in Z(G)$. Take $S=\{z\} \cup$
(self-inverse union of ℓ noncentral classes that generate G).
$\theta_{1}=q \ell+1$
For characters λ of $G / Z(G)$ we have $\theta_{\lambda} \equiv 1(\bmod q)$.
If Ψ is nonlinear and $\Psi(z)>0$, then $\theta_{\psi}=1$.
If ψ is nonlinear and $\Psi(z)<0$, then $\theta_{\Psi}=-1$.
Condition for strong cospectrality holds.

$$
\theta_{1}-\theta_{\chi} \equiv\left\{\begin{array}{lll}
0 & (\bmod q) & \text { if } \theta_{\chi} \in \Phi^{+} \\
2 & (\bmod q) & \text { if } \theta_{\chi} \in \Phi^{-}
\end{array}\right.
$$

Hence condition for PST is satisfied.

Suzuki 2-groups

Let $n=2 m+1$ be odd and let $F \in \operatorname{Aut}\left(\mathbb{F}_{2^{n}}\right)$ be the Frobenius map $F(x)=x^{2}$ Then $\sigma=F^{m+1}$ satisfies $\sigma^{2}=F$. Let $G=S\left(2^{n}\right)$ be the group of matrices

$$
\left[\begin{array}{ccc}
1 & x & y \\
0 & 1 & \sigma(x) \\
0 & 0 & 1
\end{array}\right], \quad x \in \mathbb{F}_{2^{n}}
$$

$|Z(G)|=|G / Z(G)|=2^{n}$, all involutions lie in $Z(G)$.
Similar analysis to Heisenberg case shows that PST holds for many sets S. (Exercise)

Character table of $S(8)$
$\begin{array}{lllllllllllllllllllllll}2 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4\end{array}$

1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 4d 4e 4f 4g 4h 4i 4j 4k $414 m 4 n$

X. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X. 2	1	1	1	1	1	1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	-1	-1	1	1
X. 3	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	1	1
X. 4	1	1	1	1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1
X. 5	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1
X. 6	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	-1	-1
X. 7	1	1	1	1	1	1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1
X. 8	1	1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1
X. 9	2	2	-2	-2	-2	2	2	-2	.	.	.		A	-A			
X. 10	2	2	-2	-2	-2	2	2	-2	.	-	.	.	-A	A			
X. 11	2	-2	2	2	-2	2	-2	-2	A	-A		
X. 12	2	-2	2	2	-2	2	-2	-2	-A	A		.	-			.			.	.		
X. 13	2	-2	-2	-2	2	2	-2	2	-	-			.	-A	A
X. 14	2	-2	-2	-2	2	2	-2	2	-	-	.	.	-			.	-	.	.		A	-A
X. 15	2	2	2	-2	2	-2	-2	-2	-	-		.	.				-A	A	.	.		
X. 16	2	2	2	-2	2	-2	-2	-2	-	A	-A		.		
X. 17	2	2	-2	2	-2	-2	-2	2	-		-A	A	-		
X. 18	2	2	-2	2	-2	-2	-2	2	.		A	-A	.	.		.		-	-	.		
X. 19	2	-2	2	-2	-2	-2	2	2	-	.	.	.	-	.		.			A	-A		
X. 20	2	-2	2	-2	-2	-2	2	2	-	.		.	-	.		.			-A	A		
X. 21	2	-2	-2	2	2	-2	2	-2	-	.		.	-	.		-A	-	-	.	.		
X. 22	2	-2	-2	2	2	-2	2	-2	-A	A	.	-	.	.		

$A=2 * E(4)=2 * \operatorname{Sqrt}(-1)=2 i$

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems
$\operatorname{Cay}(G, S)$ has instantaneous uniform mixing at time τ if for all $x, y \in G$ we have $\left|U(\tau)_{x, y}\right|=\frac{1}{\sqrt{|G|}}$.
$\operatorname{Cay}(G, S)$ has instantaneous uniform mixing at time τ if for all $x, y \in G$ we have $\left|U(\tau)_{x, y}\right|=\frac{1}{\sqrt{|G|}}$.
$U(t)=e^{i t A}=\sum e^{i t \theta} E_{\chi}$
$\operatorname{Cay}(G, S)$ has instantaneous uniform mixing at time τ if for all $x, y \in G$ we have $\left|U(\tau)_{x, y}\right|=\frac{1}{\sqrt{|G|}}$.
$U(t)=e^{i t A}=\sum e^{i t \theta_{\chi}} E_{\chi}$
$U(t)_{X, y}=\left(e^{i t A}\right)_{X, y}=\frac{1}{|G|} \sum_{\chi} e^{i t \theta_{\chi}} \chi(1) \chi\left(x^{-1} y\right)$.
$\operatorname{Cay}(G, S)$ has instantaneous uniform mixing at time τ if for all $x, y \in G$ we have $\left|U(\tau)_{x, y}\right|=\frac{1}{\sqrt{|G|}}$.
$U(t)=e^{i t A}=\sum e^{i t \theta_{\chi}} E_{\chi}$
$U(t)_{x, y}=\left(e^{i t A}\right)_{X, y}=\frac{1}{|G|} \sum_{\chi} e^{i t \theta_{\chi}} \chi(1) \chi\left(x^{-1} y\right)$.
IUM occurs at time τ iff

$$
\begin{equation*}
(\forall g \in G) \quad\left|\sum_{\chi} e^{i \tau \theta_{\chi}} \chi(1) \chi(g)\right|=\sqrt{|G|} . \tag{1}
\end{equation*}
$$

$\operatorname{Cay}(G, S)$ has instantaneous uniform mixing at time τ if for all $x, y \in G$ we have $\left|U(\tau)_{x, y}\right|=\frac{1}{\sqrt{|G|}}$.
$U(t)=e^{i t A}=\sum e^{i t \theta} E_{\chi}$
$U(t)_{x, y}=\left(e^{i t A}\right)_{x, y}=\frac{1}{|G|} \sum_{\chi} e^{i t \theta_{\chi}} \chi(1) \chi\left(x^{-1} y\right)$.
IUM occurs at time τ iff

$$
\begin{equation*}
(\forall g \in G) \quad\left|\sum_{\chi} e^{i \tau \theta} \chi \chi(1) \chi(g)\right|=\sqrt{|G|} . \tag{1}
\end{equation*}
$$

The above is a condition on the columns of the character table. There is a "dual" condition on the rows (Chan): IUM occurs at time τ iff

$$
\begin{equation*}
\left(\exists t_{i} \in \mathbb{C},\left|t_{i}\right|=1, t_{i^{*}}=t_{i}\right) \quad(\forall \chi) \quad \sqrt{|G|} e^{i \tau \theta_{\chi}}=\sum_{i} t_{i} \frac{\chi\left(K_{i}\right)}{\chi(1)} \tag{2}
\end{equation*}
$$

$\operatorname{Cay}(G, S)$ has instantaneous uniform mixing at time τ if for all $x, y \in G$ we have $\left|U(\tau)_{x, y}\right|=\frac{1}{\sqrt{|G|}}$.
$U(t)=e^{i t A}=\sum e^{i t \theta_{\chi}} E_{\chi}$
$U(t)_{x, y}=\left(e^{i t A}\right)_{x, y}=\frac{1}{|G|} \sum_{\chi} e^{i t \theta_{\chi}} \chi(1) \chi\left(x^{-1} y\right)$.
IUM occurs at time τ iff

$$
\begin{equation*}
(\forall g \in G) \quad\left|\sum_{\chi} e^{i \tau \theta_{\chi}} \chi(1) \chi(g)\right|=\sqrt{|G|} . \tag{1}
\end{equation*}
$$

The above is a condition on the columns of the character table. There is a "dual" condition on the rows (Chan): IUM occurs at time τ iff

$$
\begin{equation*}
\left(\exists t_{i} \in \mathbb{C},\left|t_{i}\right|=1, t_{i^{*}}=t_{i}\right) \quad(\forall \chi) \quad \sqrt{|G|} e^{i \tau \theta}=\sum_{i} t_{i} \frac{\chi\left(K_{i}\right)}{\chi(1)} \tag{2}
\end{equation*}
$$

Conditions (1) and (2) are related: If the t_{i} exist then,

$$
\sqrt{|G|} t_{i}=\sum_{\chi} e^{i \tau \theta_{\chi}} \chi(1) \chi\left(g_{i}\right)
$$

Complex Hadamard matrices

Similarly, $Z(\mathbb{C} G)$ contains a complex Hadamard matrix iff one of the follwing dual conditions holds.

$$
\begin{gather*}
\left(\exists t_{i} \in \mathbb{C},\left|t_{i}\right|=1\right)(\forall \chi) \quad \sqrt{|G|}=\left|\sum_{i} t_{i} \frac{\chi\left(K_{i}\right)}{\chi(1)}\right| . \tag{3}\\
\left(\exists u_{\chi} \in \mathbb{C},\left|u_{\chi}\right|=1\right)(\forall g) \quad \sqrt{|G|}=\left|\sum_{\chi} u_{\chi} \chi(1) \chi(g)\right| . \tag{4}
\end{gather*}
$$

Apply to examples

Apply to examples

Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \geq \sqrt{|G|}$. Let G be an extraspecial p-group or a finite Heisenberg group. Then G has a character supported on $Z(G)$ and
$|Z(G)|<\sqrt{|G|}$, so there is no complex Hadamard matrix in $Z(\mathbb{C} G)$, hence no IUM at any time for any $\operatorname{Cay}(G, S)$.

Apply to examples

Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \geq \sqrt{|G|}$. Let G be an extraspecial p-group or a finite Heisenberg group. Then G has a character supported on $Z(G)$ and $|Z(G)|<\sqrt{|G|}$, so there is no complex Hadamard matrix in $Z(\mathbb{C} G)$, hence no IUM at any time for any $\operatorname{Cay}(G, S)$.
Suzuki 2-groups cannot be eliminated this way; there is a complex Hadamard matrix in $Z(\mathbb{C} G)$.

Apply to examples

Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \geq \sqrt{|G|}$.
Let G be an extraspecial p-group or a finite Heisenberg group.
Then G has a character supported on $Z(G)$ and
$|Z(G)|<\sqrt{|G|}$, so there is no complex Hadamard matrix in
$Z(\mathbb{C} G)$, hence no IUM at any time for any $\operatorname{Cay}(G, S)$.
Suzuki 2-groups cannot be eliminated this way; there is a complex Hadamard matrix in $Z(\mathbb{C G})$.
But no IUM at any time t. This is because in condition (1) χ and $\bar{\chi}$ give same eigenvalue.

What examples have been found?

Examples of IUM on Cayley graphs: cubelike graphs, halved and folded cubes (Chan) cubelike graphs from bent functions, integral abelian Cayley graphs (Cao-Feng-Tan).
No nonabelian examples known.

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

- IUM in a nonabelian group? Infinite family of examples?
- IUM in a nonabelian group? Infinite family of examples?
- Complex Hadamard matrices in $Z(\mathbb{C} G)$ for nonabelian G.
- IUM in a nonabelian group? Infinite family of examples?
- Complex Hadamard matrices in $Z(\mathbb{C} G)$ for nonabelian G.
- More PST examples in nonabelian groups (known in 2-groups, dihedral, direct products)

