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Continuous-time quantum walk

Let A be the adjacency matrix of a graph Γ. Then a
continuous-time quantum walk on Γ is defined by the family of
unitary operators

U(t) = eitA, t ∈ R,

acting on CV (Γ).

Γ has perfect state transfer from a to b ∈ V (Γ) at time τ if
|U(τ)b,a| = 1.
Γ has instantaneous uniform mixing at time τ if for all a,
b ∈ V (Γ) we have |U(τ)a,b| = 1√

|V (Γ)|
.

Basic questions: Which graphs admit PST and IUM?
Examples? Nec./suff conditions?
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Notation

Cay(G,S) simple, normal Cayley graph, (S closed under
inversion, conjugation, 1 /∈ S, connected if S generates G)

Conj. class assoc. scheme. If Ki are the conjugacy classes,
then g is i-related to h iff g−1h ∈ Ki . Not symmetric but
Cay(G,S) is in a symmetric subscheme.
Eigenvalues come from Irreducible characters. χ ∈ Irr(G)
gives the eigenvalue

θχ =
1

χ(1)

∑
s∈S

χ(s), with θ1 = |S|.

Idempotents of scheme. View g either as an element of CG
or as a |G| × |G| matrix under the regular representation.

Eχ =
χ(1)

|G|
∑

g

χ(g−1)g

For each eigenvalue θ, let X (θ) = {χ ∈ Irr(G) | θχ = θ}. Then
Ẽθ =

∑
χ∈X(θ) Eχ is the idempotent of θ.



Notation

Cay(G,S) simple, normal Cayley graph, (S closed under
inversion, conjugation, 1 /∈ S, connected if S generates G)
Conj. class assoc. scheme. If Ki are the conjugacy classes,
then g is i-related to h iff g−1h ∈ Ki . Not symmetric but
Cay(G,S) is in a symmetric subscheme.

Eigenvalues come from Irreducible characters. χ ∈ Irr(G)
gives the eigenvalue

θχ =
1

χ(1)

∑
s∈S

χ(s), with θ1 = |S|.

Idempotents of scheme. View g either as an element of CG
or as a |G| × |G| matrix under the regular representation.

Eχ =
χ(1)

|G|
∑

g

χ(g−1)g

For each eigenvalue θ, let X (θ) = {χ ∈ Irr(G) | θχ = θ}. Then
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Two distinct vertices g and h are strongly cospectral iff
for all eigenvalues θ we have Ẽθg = ±Ẽθh.

Necessary for PST and PGST (including discrete models).
If g and h are strongly cospectral then there exists a
central involution z such that h = zg.

Proof.
Suppose Ẽθh = σθẼθg, σθ ∈ {1,−1}. Let f be a polynomial with
f (θ) = σθ for all eigenvalues θ. Then from

A =
∑
θ

θẼθ

we get
f (A) =

∑
θ

σθẼθ,

and so f (A)2 = I and f (A)g = h. Then
f (A) = hg−1 ∈ Z (CG) ∩G must be a central involution.
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Strong Cospectrality in terms of characters.

Theorem
Distinct elements g and h of G are strongly cospectral iff there
is a central involution z such that the following hold.
(a) h = zg.
(b) (∀θ), (∀χ, ψ ∈ X (θ)), χ(z)/χ(1) = ψ(z)/ψ(1).
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Cay(G,S) has perfect state transfer from g to h at time τ if
|U(τ)h,g | = 1. Special case of PST characterization for assoc
schemes (Coutinho et.al).

Theorem
In Cay(G,S) we have PST between vertices g and h at some
time if and only if the following hold.
(a) The eigenvalues are integers.
(b) g and h are strongly cospectral.
(c) Let z = hg−1 and let Φ+ = {θχ|χ(z) > 0} and

Φ− = {θχ|χ(z) < 0}. There is an integer N such that
(i) for all θχ ∈ Φ−, v2(θ1 − θχ) = N; and
(ii) for all θχ ∈ Φ+, v2(θ1 − θχ) > N.
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Minimum time

Minimum value of t for PST is 2π/g, where
g = gcd{θ1 − θχ | χ ∈ Irr(G)}.

g also appears in IUM.

Lemma
Any common divisor of the θ1 − θχ divides |G| (as algebraic
integers).

I No assumption of integrality. Proof is similar to abelian
case (Cao-Feng-Tan).
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Extraspecial Groups

Let p be a prime. A p-group G is extraspecial if Z (G) has order
p and G/Z (G) is elementary abelian. Structure is known, G is
a central product of extraspecial groups of order p3, and for
each p there are just two isomorphism types. When p = 2, we
have D8 and Q8.



Characters

Let G be extraspecial of order 22n+1, with Z (G) = 〈z〉.
Irreducible characters of a central product are products of
irreducible characters of the component groups such that
the factors in the product all agree on the amalgamated
central subgroup.

So G has a unique nonlinear character Ψ, and we have
Ψ(1) = 2n, Ψ(z) = −2n, Ψ(g) = 0 if g /∈ Z (G).

Character Table of D8/Q8

X .1 1 1 1 1 1
X .2 1 1 −1 1 −1
X .3 1 1 1 −1 −1
X .4 1 1 −1 −1 1
X .5 2 −2 0 0 0
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Check PST conditions

Let S be a union of ` noncentral classes that generate G.

Noncentral conjugacy classes are of form {g,gz}
Φ− = {θΨ = 0}.
G/Z (G) ∼= F2n

2 and each y ∈ F2n
2 gives a character

λy (x) = (−1)x ·y . Let S be the image of S in G/Z (G). Let
ey = #{x ∈ S | x · y = 0}.
θλy = 2

∑
x∈S(−1)x ·y = 2(ey − (`− ey )) = 4ey − 2`.

Φ+ = {4ey − 2` | y ∈ F2n
2 }.

Condition for strong cospectrality: ey 6= `/2.
v2(θ1 − θΨ) = v2(2`).
v2(θ1 − θλy ) = 4`− 4ey .
If ` is odd, the we have PST in Cay(G,S).
The precise conditions on S for PST can been worked out.
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Heisenberg Groups

Let G = Hn(Fq) be the group of matrices of the form1 v t a
0 In w
0 0 1

 , v , w ∈ Fn
q, a ∈ Fq.

|Z (G)| = q.

Noncentral conj. classes have size q and are the cosets
gZ (G)
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Characters

There are two types:
I Characters of G/Z (G)

I For each nonprincipal character µ of Z (G) there is a
character Ψµ whose restriction to Z (G) is qnµ and which
vanishes on G \ Z (G).
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Character table of H_1(4)
2 6 4 4 4 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4

1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 2h 4d 4e 4f 2i 4g 4h 4i

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
X.3 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
X.4 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.5 1 1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
X.6 1 1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
X.7 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
X.8 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
X.9 1 -1 1 -1 1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
X.10 1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
X.11 1 -1 1 -1 1 1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
X.12 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
X.13 1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
X.14 1 -1 -1 1 1 1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1
X.15 1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
X.16 1 -1 -1 1 1 1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
X.17 4 . . . 4 -4 -4 . . . . . . . . . . . .
X.18 4 . . . -4 -4 4 . . . . . . . . . . . .
X.19 4 . . . -4 4 -4 . . . . . . . . . . . .



Check for PST

Assume q = 2e, e ≥ 2.
Pick involution z ∈ Z (G). Take S = {z} ∪
(self-inverse union of ` noncentral classes that generate G).

θ1 = q`+ 1
For characters λ of G/Z (G) we have θλ ≡ 1 (mod q).
If Ψ is nonlinear and Ψ(z) > 0, then θΨ = 1.
If Ψ is nonlinear and Ψ(z) < 0, then θΨ = −1.
Condition for strong cospectrality holds.

θ1 − θχ ≡

{
0 (mod q) ifθχ ∈ Φ+

2 (mod q) ifθχ ∈ Φ−

Hence condition for PST is satisfied.
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Suzuki 2-groups

Let n = 2m + 1 be odd and let F ∈ Aut(F2n ) be the Frobenius
map F (x) = x2 Then σ = F m+1 satisfies σ2 = F . Let G = S(2n)
be the group of matrices1 x y

0 1 σ(x)
0 0 1

 , x ∈ F2n .

|Z (G)| = |G/Z (G)| = 2n, all involutions lie in Z (G).
Similar analysis to Heisenberg case shows that PST holds for
many sets S. (Exercise)



Character table of S(8)
2 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4

1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 4d 4e 4f 4g 4h 4i 4j 4k 4l 4m 4n

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1
X.3 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1
X.4 1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.5 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1
X.6 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1
X.7 1 1 1 1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1
X.8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1
X.9 2 2 -2 -2 -2 2 2 -2 . . . . A -A . . . . . . . .
X.10 2 2 -2 -2 -2 2 2 -2 . . . . -A A . . . . . . . .
X.11 2 -2 2 2 -2 2 -2 -2 A -A . . . . . . . . . . . .
X.12 2 -2 2 2 -2 2 -2 -2 -A A . . . . . . . . . . . .
X.13 2 -2 -2 -2 2 2 -2 2 . . . . . . . . . . . . -A A
X.14 2 -2 -2 -2 2 2 -2 2 . . . . . . . . . . . . A -A
X.15 2 2 2 -2 2 -2 -2 -2 . . . . . . . . -A A . . . .
X.16 2 2 2 -2 2 -2 -2 -2 . . . . . . . . A -A . . . .
X.17 2 2 -2 2 -2 -2 -2 2 . . -A A . . . . . . . . . .
X.18 2 2 -2 2 -2 -2 -2 2 . . A -A . . . . . . . . . .
X.19 2 -2 2 -2 -2 -2 2 2 . . . . . . . . . . A -A . .
X.20 2 -2 2 -2 -2 -2 2 2 . . . . . . . . . . -A A . .
X.21 2 -2 -2 2 2 -2 2 -2 . . . . . . A -A . . . . . .
X.22 2 -2 -2 2 2 -2 2 -2 . . . . . . -A A . . . . . .

A = 2*E(4) = 2*Sqrt(-1) = 2i
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Cay(G,S) has instantaneous uniform mixing at time τ if
for all x , y ∈ G we have |U(τ)x ,y | = 1√

|G|
.

U(t) = eitA =
∑

eitθχEχ
U(t)x ,y = (eitA)x ,y = 1

|G|
∑

χ eitθχχ(1)χ(x−1y).
IUM occurs at time τ iff

(∀g ∈ G) |
∑
χ

eiτθχχ(1)χ(g)| =
√
|G|. (1)

The above is a condition on the columns of the character
table. There is a “dual” condition on the rows (Chan): IUM
occurs at time τ iff

(∃ti ∈ C, |ti | = 1, ti∗ = ti) (∀χ)
√
|G|eiτθχ =

∑
i

ti
χ(Ki)

χ(1)
.

(2)
Conditions (1) and (2) are related: If the ti exist then,√

|G|ti =
∑
χ

eiτθχχ(1)χ(gi)
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Complex Hadamard matrices

Similarly, Z (CG) contains a complex Hadamard matrix iff one
of the follwing dual conditions holds.

(∃ti ∈ C, |ti | = 1)(∀χ)
√
|G| = |

∑
i

ti
χ(Ki)

χ(1)
|. (3)

(∃uχ ∈ C, |uχ| = 1)(∀g)
√
|G| = |

∑
χ

uχχ(1)χ(g)|. (4)



Apply to examples

Condition (3) immediately implies |Supp(χ)| ≥
√
|G|.

Let G be an extraspecial p-group or a finite Heisenberg group.
Then G has a character supported on Z (G) and
|Z (G)| <

√
|G|, so there is no complex Hadamard matrix in

Z (CG), hence no IUM at any time for any Cay(G,S).
Suzuki 2-groups cannot be eliminated this way; there is a
complex Hadamard matrix in Z (CG).
But no IUM at any time t . This is because in condition (1) χ and
χ give same eigenvalue.
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What examples have been found?

Examples of IUM on Cayley graphs:
cubelike graphs, halved and folded cubes (Chan)
cubelike graphs from bent functions, integral abelian Cayley
graphs (Cao-Feng-Tan).
No nonabelian examples known.
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I IUM in a nonabelian group? Infinite family of examples?

I Complex Hadamard matrices in Z (CG) for nonabelian G.
I More PST examples in nonabelian groups (known in

2-groups, dihedral, direct products)
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