Quantum Walks on Finite Groups

Peter Sin

University of Florida

U. Waterloo, May 6th, 2021 (online)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Joint work with Julien Sorci.

Background. Cayley Graphs, Characters

- Strong Cospectrality
- Perfect State Transfer
- Examples
- Uniform mixing
- **Open Problems**

Let *A* be the adjacency matrix of a graph Γ . Then a continuous-time quantum walk on Γ is defined by the family of unitary operators

$$U(t) = e^{itA}, t \in \mathbb{R},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

acting on $\mathbb{C}V(\Gamma)$.

Let A be the adjacency matrix of a graph Γ . Then a continuous-time quantum walk on Γ is defined by the family of unitary operators

$$U(t)=e^{itA},t\in\mathbb{R},$$

acting on $\mathbb{C}V(\Gamma)$.

Γ has **perfect state transfer** from *a* to $b \in V(Γ)$ at time τ if $|U(τ)_{b,a}| = 1$. Γ has **instantaneous uniform mixing** at time τ if for all *a*, $b \in V(Γ)$ we have $|U(τ)_{a,b}| = \frac{1}{\sqrt{|V(Γ)|}}$.

Basic questions: Which graphs admit PST and IUM? Examples? Nec./suff conditions?

Cay(G, S) simple, normal Cayley graph, (*S* closed under inversion, conjugation, $1 \notin S$, connected if *S* generates *G*)

Cay(*G*, *S*) simple, normal Cayley graph, (*S* closed under inversion, conjugation, $1 \notin S$, connected if *S* generates *G*) **Conj. class assoc. scheme.** If K_i are the conjugacy classes, then *g* is *i*-related to *h* iff $g^{-1}h \in K_i$. Not symmetric but Cay(*G*, *S*) is in a symmetric subscheme.

(ロ) (同) (三) (三) (三) (○) (○)

Cay(*G*, *S*) simple, normal Cayley graph, (*S* closed under inversion, conjugation, $1 \notin S$, connected if *S* generates *G*) **Conj. class assoc. scheme.** If K_i are the conjugacy classes, then *g* is *i*-related to *h* iff $g^{-1}h \in K_i$. Not symmetric but Cay(*G*, *S*) is in a symmetric subscheme. Eigenvalues come from **Irreducible characters**. $\chi \in Irr(G)$

gives the eigenvalue

$$\theta_{\chi} = \frac{1}{\chi(1)} \sum_{\boldsymbol{s} \in \boldsymbol{S}} \chi(\boldsymbol{s}), \quad \text{with } \theta_1 = |\boldsymbol{S}|.$$

(ロ) (同) (三) (三) (三) (○) (○)

Cay(*G*, *S*) simple, normal Cayley graph, (*S* closed under inversion, conjugation, $1 \notin S$, connected if *S* generates *G*) **Conj. class assoc. scheme.** If K_i are the conjugacy classes, then *g* is *i*-related to *h* iff $g^{-1}h \in K_i$. Not symmetric but Cay(*G*, *S*) is in a symmetric subscheme. Eigenvalues come from **Irreducible characters**. $\chi \in Irr(G)$

gives the eigenvalue

$$\theta_{\chi} = \frac{1}{\chi(1)} \sum_{s \in S} \chi(s), \quad \text{with } \theta_1 = |S|.$$

Idempotents of scheme. View *g* either as an element of $\mathbb{C}G$ or as a $|G| \times |G|$ matrix under the regular representation.

$$E_{\chi} = \frac{\chi(1)}{|G|} \sum_{g} \chi(g^{-1})g$$

For each eigenvalue θ , let $X(\theta) = \{\chi \in \operatorname{Irr}(G) \mid \theta_{\chi} = \theta\}$. Then $\tilde{E}_{\theta} = \sum_{\chi \in X(\theta)} E_{\chi}$ is the idempotent of θ .

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$. Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$.

Necessary for PST and PGST (including discrete models).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$. Necessary for PST and PGST (including discrete models). If g and h are strongly cospectral then there exists a central involution z such that h = zg.

(ロ) (同) (三) (三) (三) (○) (○)

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$. Necessary for PST and PGST (including discrete models). If g and h are strongly cospectral then there exists a central involution z such that h = zg.

(ロ) (同) (三) (三) (三) (○) (○)

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$. Necessary for PST and PGST (including discrete models). If g and h are strongly cospectral then there exists a central involution z such that h = zg.

Proof.

Suppose $\tilde{E}_{\theta}h = \sigma_{\theta}\tilde{E}_{\theta}g$, $\sigma_{\theta} \in \{1, -1\}$. Let *f* be a polynomial with $f(\theta) = \sigma_{\theta}$ for all eigenvalues θ . Then from

$$A = \sum_{ heta} heta ilde{E}_{ heta}$$

we get

$$f(\mathbf{A}) = \sum_{\theta} \sigma_{\theta} \tilde{\mathbf{E}}_{\theta},$$

and so $f(A)^2 = I$ and f(A)g = h. Then $f(A) = hg^{-1} \in Z(\mathbb{C}G) \cap G$ must be a central involution.

Theorem

Distinct elements g and h of G are strongly cospectral iff there is a central involution z such that the following hold.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(a) h = zg.

(b)
$$(\forall \theta)$$
, $(\forall \chi, \psi \in X(\theta))$, $\chi(z)/\chi(1) = \psi(z)/\psi(1)$.

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Cay(*G*, *S*) has **perfect state transfer** from *g* to *h* at time τ if $|U(\tau)_{h,g}| = 1$. Special case of PST characterization for assoc schemes (Coutinho et.al).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Cay(*G*, *S*) has **perfect state transfer** from *g* to *h* at time τ if $|U(\tau)_{h,g}| = 1$. Special case of PST characterization for assoc schemes (Coutinho et.al).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Cay(*G*, *S*) has **perfect state transfer** from *g* to *h* at time τ if $|U(\tau)_{h,g}| = 1$. Special case of PST characterization for assoc schemes (Coutinho et.al).

Theorem

In Cay(G, S) we have PST between vertices g and h at some time if and only if the following hold.

(a) The eigenvalues are integers.

(b) g and h are strongly cospectral.

(c) Let $z = hg^{-1}$ and let $\Phi^+ = \{\theta_{\chi} | \chi(z) > 0\}$ and $\Phi^- = \{\theta_{\chi} | \chi(z) < 0\}$. There is an integer N such that (i) for all $\theta_{\chi} \in \Phi^-$, $v_2(\theta_1 - \theta_{\chi}) = N$; and (ii) for all $\theta_{\chi} \in \Phi^+$, $v_2(\theta_1 - \theta_{\chi}) > N$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Minimum value of *t* for PST is $2\pi/g$, where $g = \text{gcd}\{\theta_1 - \theta_{\chi} \mid \chi \in \text{Irr}(G)\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Minimum value of *t* for PST is $2\pi/g$, where $g = \gcd\{\theta_1 - \theta_\chi \mid \chi \in Irr(G)\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

g also appears in IUM.

Minimum value of *t* for PST is $2\pi/g$, where $g = \gcd\{\theta_1 - \theta_\chi \mid \chi \in Irr(G)\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

g also appears in IUM.

Minimum value of *t* for PST is $2\pi/g$, where $g = \text{gcd}\{\theta_1 - \theta_{\chi} \mid \chi \in \text{Irr}(G)\}$. *g* also appears in IUM.

Lemma

Any common divisor of the $\theta_1 - \theta_{\chi}$ divides |G| (as algebraic integers).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Minimum value of *t* for PST is $2\pi/g$, where $g = \gcd\{\theta_1 - \theta_{\chi} \mid \chi \in Irr(G)\}$. *g* also appears in IUM.

Lemma

Any common divisor of the $\theta_1 - \theta_{\chi}$ divides |G| (as algebraic integers).

 No assumption of integrality. Proof is similar to abelian case (Cao-Feng-Tan).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへ⊙

Let *p* be a prime. A *p*-group *G* is extraspecial if Z(G) has order *p* and G/Z(G) is elementary abelian. Structure is known, *G* is a central product of extraspecial groups of order p^3 , and for each *p* there are just two isomorphism types. When p = 2, we have D_8 and Q_8 .

Characters

Let *G* be extraspecial of order 2^{2n+1} , with $Z(G) = \langle z \rangle$.

Irreducible characters of a central product are products of irreducible characters of the component groups such that the factors in the product all agree on the amalgamated central subgroup.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Characters

Let *G* be extraspecial of order 2^{2n+1} , with $Z(G) = \langle z \rangle$.

Irreducible characters of a central product are products of irreducible characters of the component groups such that the factors in the product all agree on the amalgamated central subgroup.

So *G* has a unique nonlinear character Ψ , and we have $\Psi(1) = 2^n$, $\Psi(z) = -2^n$, $\Psi(g) = 0$ if $g \notin Z(G)$.

<i>X</i> .1	1	1	1	1	1
X.2	1	1	-1	1	-1
Х.З	1	1	1	-1	-1
<i>X</i> .4	1	1	-1	-1	1
X.5	2	-2	0	0	0

Character Table of D_8/Q_8

Let S be a union of ℓ noncentral classes that generate G.

Let *S* be a union of ℓ noncentral classes that generate *G*. Noncentral conjugacy classes are of form $\{g, gz\}$

Let *S* be a union of ℓ noncentral classes that generate *G*. Noncentral conjugacy classes are of form $\{g, gz\}$

$$\Phi^- = \{\theta_{\Psi} = \mathbf{0}\}.$$

Let *S* be a union of ℓ noncentral classes that generate *G*. Noncentral conjugacy classes are of form $\{g, gz\}$

$$\begin{array}{l} \Phi^{-} = \{\theta_{\Psi} = 0\}.\\ G/Z(G) \cong \mathbb{F}_{2}^{2n} \text{ and each } y \in \mathbb{F}_{2}^{2n} \text{ gives a character}\\ \lambda_{y}(x) = (-1)^{x \cdot y}. \text{ Let } \overline{S} \text{ be the image of } S \text{ in } G/Z(G). \text{ Let}\\ e_{y} = \#\{x \in \overline{S} \mid x \cdot y = 0\}.\\ \theta_{\lambda_{y}} = 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_{y} - (\ell - e_{y})) = 4e_{y} - 2\ell. \end{array}$$

Let *S* be a union of ℓ noncentral classes that generate *G*. Noncentral conjugacy classes are of form $\{g, gz\}$

$$\begin{split} \Phi^- &= \{\theta_{\Psi} = 0\}.\\ G/Z(G) &\cong \mathbb{F}_2^{2n} \text{ and each } y \in \mathbb{F}_2^{2n} \text{ gives a character}\\ \lambda_y(x) &= (-1)^{x \cdot y}. \text{ Let } \overline{S} \text{ be the image of } S \text{ in } G/Z(G). \text{ Let}\\ e_y &= \#\{x \in \overline{S} \mid x \cdot y = 0\}.\\ \theta_{\lambda_y} &= 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_y - (\ell - e_y)) = 4e_y - 2\ell.\\ \Phi^+ &= \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}. \end{split}$$

Let *S* be a union of ℓ noncentral classes that generate *G*. Noncentral conjugacy classes are of form $\{g, gz\}$

$$\begin{split} \Phi^- &= \{\theta_{\Psi} = 0\}.\\ G/Z(G) &\cong \mathbb{F}_2^{2n} \text{ and each } y \in \mathbb{F}_2^{2n} \text{ gives a character}\\ \lambda_y(x) &= (-1)^{x \cdot y}. \text{ Let } \overline{S} \text{ be the image of } S \text{ in } G/Z(G). \text{ Let}\\ e_y &= \#\{x \in \overline{S} \mid x \cdot y = 0\}.\\ \theta_{\lambda_y} &= 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_y - (\ell - e_y)) = 4e_y - 2\ell.\\ \Phi^+ &= \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}. \end{split}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\begin{split} \Phi^- &= \{\theta_{\Psi} = 0\}.\\ G/Z(G) &\cong \mathbb{F}_2^{2n} \text{ and each } y \in \mathbb{F}_2^{2n} \text{ gives a character}\\ \lambda_y(x) &= (-1)^{x \cdot y}. \text{ Let } \overline{S} \text{ be the image of } S \text{ in } G/Z(G). \text{ Let}\\ e_y &= \#\{x \in \overline{S} \mid x \cdot y = 0\}.\\ \theta_{\lambda_y} &= 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_y - (\ell - e_y)) = 4e_y - 2\ell.\\ \Phi^+ &= \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$v_2(\theta_1-\theta_\Psi)=v_2(2\ell).$$

$$\begin{array}{l} \Phi^{-} = \{\theta_{\Psi} = 0\}.\\ G/Z(G) \cong \mathbb{F}_{2}^{2n} \text{ and each } y \in \mathbb{F}_{2}^{2n} \text{ gives a character}\\ \lambda_{y}(x) = (-1)^{x \cdot y}. \text{ Let } \overline{S} \text{ be the image of } S \text{ in } G/Z(G). \text{ Let}\\ e_{y} = \#\{x \in \overline{S} \mid x \cdot y = 0\}.\\ \theta_{\lambda_{y}} = 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_{y} - (\ell - e_{y})) = 4e_{y} - 2\ell.\\ \Phi^{+} = \{4e_{y} - 2\ell \mid y \in \mathbb{F}_{2}^{2n}\}. \end{array}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$egin{aligned} & v_2(heta_1- heta_\Psi)=v_2(2\ell).\ & v_2(heta_1- heta_{\lambda_y})=4\ell-4e_y. \end{aligned}$$

$$\Phi^{-} = \{\theta_{\Psi} = 0\}.$$

$$G/Z(G) \cong \mathbb{F}_{2}^{2n} \text{ and each } y \in \mathbb{F}_{2}^{2n} \text{ gives a character}$$

$$\lambda_{y}(x) = (-1)^{x \cdot y}. \text{ Let } \overline{S} \text{ be the image of } S \text{ in } G/Z(G). \text{ Let } e_{y} = \#\{x \in \overline{S} \mid x \cdot y = 0\}.$$

$$\theta_{\lambda_{y}} = 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_{y} - (\ell - e_{y})) = 4e_{y} - 2\ell.$$

$$\Phi^{+} = \{4e_{y} - 2\ell \mid y \in \mathbb{F}_{2}^{2n}\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$egin{aligned} &v_2(heta_1- heta_\Psi)=v_2(2\ell).\ &v_2(heta_1- heta_{\lambda_y})=4\ell-4e_y.\ & ext{If }\ell ext{ is odd, the we have PST in } ext{Cay}(G,S). \end{aligned}$$

$$\begin{split} \Phi^- &= \{\theta_{\Psi} = 0\}.\\ G/Z(G) &\cong \mathbb{F}_2^{2n} \text{ and each } y \in \mathbb{F}_2^{2n} \text{ gives a character}\\ \lambda_y(x) &= (-1)^{x \cdot y}. \text{ Let } \overline{S} \text{ be the image of } S \text{ in } G/Z(G). \text{ Let}\\ e_y &= \#\{x \in \overline{S} \mid x \cdot y = 0\}.\\ \theta_{\lambda_y} &= 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_y - (\ell - e_y)) = 4e_y - 2\ell.\\ \Phi^+ &= \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}. \end{split}$$

Condition for strong cospectrality: $e_y \neq \ell/2$.

$$egin{aligned} & v_2(heta_1- heta_\Psi)=v_2(2\ell).\ & v_2(heta_1- heta_{\lambda_y})=4\ell-4e_y. \end{aligned}$$

If ℓ is odd, the we have PST in Cay(*G*, *S*).

The precise conditions on S for PST can been worked out.

Let $G = H_n(\mathbb{F}_q)$ be the group of matrices of the form

$$egin{bmatrix} 1 & v^t & a \ 0 & I_n & w \ 0 & 0 & 1 \end{bmatrix}, \quad v,\,w\in \mathbb{F}_q^n,\,a\in \mathbb{F}_q.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$|Z(G)|=q.$$

Let $G = H_n(\mathbb{F}_q)$ be the group of matrices of the form

$$egin{bmatrix} 1 & v^t & a \ 0 & I_n & w \ 0 & 0 & 1 \end{bmatrix}, \quad v, \, w \in \mathbb{F}_q^n, \, a \in \mathbb{F}_q.$$

|Z(G)|=q.

Noncentral conj. classes have size q and are the cosets gZ(G)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

There are two types:

• Characters of G/Z(G)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

There are two types:

- Characters of G/Z(G)
- For each nonprincipal character μ of Z(G) there is a character Ψ_μ whose restriction to Z(G) is qⁿμ and which vanishes on G \ Z(G).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Character table of H_1(4)																				
	2	6	4	4	4	6	6	6	4	4	4	4	4	4	4	4	4	4	4	4
		1a	2a	2b	2c	2d	2e	2f	2g	4a	4b	4c	2h	4d	4e	4f	2i	4g	4h	4i
X.1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Х.2		1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1
Х.З		1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1
Χ.4		1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
Х.5		1	1	-1	-1	1	1	1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
Х.6		1	1	-1	-1	1	1	1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1
Χ.7		1	1	-1	-1	1	1	1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
X.8		1	1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
Х.9		1	-1	1	-1	1	1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
X.10		1	-1	1	-1	1	1	1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
X.11		1	-1	1	-1	1	1	1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1
X.12		1	-1	1	-1	1	1	1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1
X.13		1	-1	-1	1	1	1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
X.14		1	-1	-1	1	1	1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1
X.15		1	-1	-1	1	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1
X.16		1	-1	-1	1	1	1	1	-1	1	1	-1	-1	1	1	-1	1	-1	-1	1
X.17		4				4	-4	-4												
X.18		4				-4	-4	4												
X.19		4				-4	4	-4												

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup$

(self-inverse union of ℓ noncentral classes that generate *G*).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup$ (self-inverse union of ℓ noncentral classes that generate *G*). $\theta_1 = q\ell + 1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup$ (self-inverse union of ℓ noncentral classes that generate *G*).

 $\theta_1 = q\ell + 1$

For characters λ of G/Z(G) we have $\theta_{\lambda} \equiv 1 \pmod{q}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup \{z\}$

(self-inverse union of ℓ noncentral classes that generate *G*). $\theta_1 = q\ell + 1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For characters λ of G/Z(G) we have $\theta_{\lambda} \equiv 1 \pmod{q}$.

If Ψ is nonlinear and $\Psi(z) > 0$, then $\theta_{\Psi} = 1$.

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup$

(self-inverse union of ℓ noncentral classes that generate *G*). $\theta_1 = q\ell + 1$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

For characters λ of G/Z(G) we have $\theta_{\lambda} \equiv 1 \pmod{q}$.

If Ψ is nonlinear and $\Psi(z) > 0$, then $\theta_{\Psi} = 1$.

If Ψ is nonlinear and $\Psi(z) < 0$, then $\theta_{\Psi} = -1$.

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup$

(self-inverse union of ℓ noncentral classes that generate *G*). $\theta_1 = q\ell + 1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For characters λ of G/Z(G) we have $\theta_{\lambda} \equiv 1 \pmod{q}$.

If Ψ is nonlinear and $\Psi(z) > 0$, then $\theta_{\Psi} = 1$.

If Ψ is nonlinear and $\Psi(z) < 0$, then $\theta_{\Psi} = -1$.

Condition for strong cospectrality holds.

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup$

(self-inverse union of ℓ noncentral classes that generate *G*). $\theta_1 = q\ell + 1$

For characters λ of G/Z(G) we have $\theta_{\lambda} \equiv 1 \pmod{q}$.

If Ψ is nonlinear and $\Psi(z) > 0$, then $\theta_{\Psi} = 1$.

If Ψ is nonlinear and $\Psi(z) < 0$, then $\theta_{\Psi} = -1$.

Condition for strong cospectrality holds.

$$heta_1 - heta_\chi \equiv egin{cases} \mathsf{0} \pmod{q} & \operatorname{if} heta_\chi \in \Phi^+ \ \mathsf{2} \pmod{q} & \operatorname{if} heta_\chi \in \Phi^- \end{cases}$$

Hence condition for PST is satisfied.

Let n = 2m + 1 be odd and let $F \in Aut(\mathbb{F}_{2^n})$ be the Frobenius map $F(x) = x^2$ Then $\sigma = F^{m+1}$ satisfies $\sigma^2 = F$. Let $G = S(2^n)$ be the group of matrices

$$\begin{bmatrix} 1 & x & y \\ 0 & 1 & \sigma(x) \\ 0 & 0 & 1 \end{bmatrix}, \quad x \in \mathbb{F}_{2^n}.$$

 $|Z(G)| = |G/Z(G)| = 2^n$, all involutions lie in Z(G). Similar analysis to Heisenberg case shows that PST holds for many sets *S*. (Exercise)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Character table of S(8)																							
	2	6	6	6	6	6	6	6	6	4	4	4	4	4	4	4	4	4	4	4	4	4	4
			~	~	~	~ 1	~	0.0	~						4.6								
		la	2a	26	2c	2d	2e	2İ	2g	4a	4b	4C	4d	4e	4İ	4g	4h	41	4 J	4 K	41	4m	4n
X.1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
x.2		1	1	1	1	1	1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	-1	-1	1	1
х.3		1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	1	1
Χ.4		1	1	1	1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1
х.5		1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1
Х.6		1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	-1	-1
Χ.7		1	1	1	1	1	1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1
х.8		1	1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1
х.9		2	2	-2	-2	-2	2	2	-2					A	-A								
X.10		2	2	-2	-2	-2	2	2	-2					-A	A								
X.11		2	-2	2	2	-2	2	-2	-2	A	-A												
X.12		2	-2	2	2	-2	2	-2	-2	-A	A												
X.13		2	-2	-2	-2	2	2	-2	2													-A	A
X.14		2	-2	-2	-2	2	2	-2	2													Α	-A
X.15		2	2	2	-2	2	-2	-2	-2									$-\mathbb{A}$	Α				
X.16		2	2	2	-2	2	-2	-2	-2									Α	-A				
X.17		2	2	-2	2	-2	-2	-2	2			$-\mathbb{A}$	A										
X.18		2	2	-2	2	-2	-2	-2	2			Α	-A										
X.19		2	-2	2	-2	-2	-2	2	2											Α	$-\mathbb{A}$		
X.20		2	-2	2	-2	-2	-2	2	2											$-\mathbb{A}$	Α		
X.21		2	-2	-2	2	2	-2	2	-2							A	$-\mathbb{A}$						
X.22		2	-2	-2	2	2	-2	2	-2	•	•	•	•	•	•	-A	A	•	•	•	•	•	•

 $A = 2 \times E(4) = 2 \times Sqrt(-1) = 2i$

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Cay(*G*, *S*) has instantaneous uniform mixing at time τ if for all *x*, $y \in G$ we have $|U(\tau)_{x,y}| = \frac{1}{\sqrt{|G|}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Cay(*G*, *S*) has **instantaneous uniform mixing** at time τ if for all $x, y \in G$ we have $|U(\tau)_{x,y}| = \frac{1}{\sqrt{|G|}}$.

 $U(t) = e^{itA} = \sum e^{it heta_{\chi}} E_{\chi}$

Cay(*G*, *S*) has **instantaneous uniform mixing** at time τ if for all $x, y \in G$ we have $|U(\tau)_{x,y}| = \frac{1}{\sqrt{|G|}}$. $U(t) = e^{itA} = \sum e^{it\theta_{\chi}} E_{\chi}$ $U(t)_{x,y} = (e^{itA})_{x,y} = \frac{1}{|G|} \sum_{\chi} e^{it\theta_{\chi}} \chi(1) \chi(x^{-1}y)$.

(日) (日) (日) (日) (日) (日) (日)

Cay(*G*, *S*) has **instantaneous uniform mixing** at time τ if for all $x, y \in G$ we have $|U(\tau)_{x,y}| = \frac{1}{\sqrt{|G|}}$. $U(t) = e^{itA} = \sum e^{it\theta_{\chi}} E_{\chi}$ $U(t)_{x,y} = (e^{itA})_{x,y} = \frac{1}{|G|} \sum_{\chi} e^{it\theta_{\chi}} \chi(1)\chi(x^{-1}y)$. IUM occurs at time τ iff

$$(\forall g \in G) \mid \sum_{\chi} e^{i\tau\theta_{\chi}}\chi(1)\chi(g) \mid = \sqrt{|G|}.$$
 (1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cay(*G*, *S*) has **instantaneous uniform mixing** at time τ if for all $x, y \in G$ we have $|U(\tau)_{x,y}| = \frac{1}{\sqrt{|G|}}$. $U(t) = e^{itA} = \sum e^{it\theta_{\chi}} E_{\chi}$ $U(t)_{x,y} = (e^{itA})_{x,y} = \frac{1}{|G|} \sum_{\chi} e^{it\theta_{\chi}} \chi(1)\chi(x^{-1}y)$. IUM occurs at time τ iff

$$(\forall \boldsymbol{g} \in \boldsymbol{G}) \mid \sum_{\chi} \boldsymbol{e}^{i\tau\theta_{\chi}}\chi(1)\chi(\boldsymbol{g}) \mid = \sqrt{|\boldsymbol{G}|}.$$
 (1)

(日) (日) (日) (日) (日) (日) (日)

The above is a condition on the columns of the character table. There is a "dual" condition on the rows (Chan): IUM occurs at time τ iff

$$(\exists t_i \in \mathbb{C}, |t_i| = 1, t_{i^*} = t_i) \quad (\forall \chi) \quad \sqrt{|G|} e^{i\tau\theta_{\chi}} = \sum_i t_i \frac{\chi(K_i)}{\chi(1)}.$$
(2)

Cay(*G*, *S*) has **instantaneous uniform mixing** at time τ if for all $x, y \in G$ we have $|U(\tau)_{x,y}| = \frac{1}{\sqrt{|G|}}$. $U(t) = e^{itA} = \sum e^{it\theta_{\chi}} E_{\chi}$ $U(t)_{x,y} = (e^{itA})_{x,y} = \frac{1}{|G|} \sum_{\chi} e^{it\theta_{\chi}} \chi(1)\chi(x^{-1}y)$. IUM occurs at time τ iff

$$(\forall g \in G) \mid \sum_{\chi} e^{i\tau\theta_{\chi}}\chi(1)\chi(g) \mid = \sqrt{|G|}.$$
 (1)

The above is a condition on the columns of the character table. There is a "dual" condition on the rows (Chan): IUM occurs at time τ iff

$$(\exists t_i \in \mathbb{C}, |t_i| = 1, t_{i^*} = t_i) \quad (\forall \chi) \quad \sqrt{|G|} e^{i\tau\theta_{\chi}} = \sum_i t_i \frac{\chi(K_i)}{\chi(1)}.$$
(2)

Conditions (1) and (2) are related: If the t_i exist then,

$$\sqrt{|G|}t_i = \sum_{\chi} e^{i\tau\theta_{\chi}}\chi(1)\chi(g_i)$$

Similarly, $Z(\mathbb{C}G)$ contains a complex Hadamard matrix iff one of the following dual conditions holds.

$$(\exists t_i \in \mathbb{C}, |t_i| = 1)(\forall \chi) \quad \sqrt{|G|} = |\sum_i t_i \frac{\chi(K_i)}{\chi(1)}|.$$
(3)

$$(\exists u_{\chi} \in \mathbb{C}, |u_{\chi}| = 1)(\forall g) \quad \sqrt{|G|} = |\sum_{\chi} u_{\chi}\chi(1)\chi(g)|.$$
 (4)

Apply to examples

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \ge \sqrt{|G|}$. Let *G* be an extraspecial *p*-group or a finite Heisenberg group. Then *G* has a character supported on Z(G) and $|Z(G)| < \sqrt{|G|}$, so there is no complex Hadamard matrix in $Z(\mathbb{C}G)$, hence no IUM at any time for any $\operatorname{Cay}(G, S)$.

(日) (日) (日) (日) (日) (日) (日)

Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \ge \sqrt{|G|}$. Let *G* be an extraspecial *p*-group or a finite Heisenberg group. Then *G* has a character supported on Z(G) and $|Z(G)| < \sqrt{|G|}$, so there is no complex Hadamard matrix in $Z(\mathbb{C}G)$, hence no IUM at any time for any $\operatorname{Cay}(G, S)$. Suzuki 2-groups cannot be eliminated this way; there is a complex Hadamard matrix in $Z(\mathbb{C}G)$. Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \ge \sqrt{|G|}$. Let *G* be an extraspecial *p*-group or a finite Heisenberg group. Then *G* has a character supported on Z(G) and $|Z(G)| < \sqrt{|G|}$, so there is no complex Hadamard matrix in $Z(\mathbb{C}G)$, hence no IUM at any time for any $\operatorname{Cay}(G, S)$. Suzuki 2-groups cannot be eliminated this way; there is a complex Hadamard matrix in $Z(\mathbb{C}G)$. But no IUM at any time *t*. This is because in condition (1) χ and $\overline{\chi}$ give same eigenvalue. Examples of IUM on Cayley graphs: cubelike graphs, halved and folded cubes (Chan) cubelike graphs from bent functions, integral abelian Cayley graphs (Cao-Feng-Tan). No nonabelian examples known. Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

IUM in a nonabelian group? Infinite family of examples?

- ► IUM in a nonabelian group? Infinite family of examples?
- Complex Hadamard matrices in $Z(\mathbb{C}G)$ for nonabelian G.

IUM in a nonabelian group? Infinite family of examples?

• Complex Hadamard matrices in $Z(\mathbb{C}G)$ for nonabelian G.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 More PST examples in nonabelian groups (known in 2-groups, dihedral, direct products)