On the dimensions of LDPC codes defined by equations over finite fields

Peter Sin

USM, Penang, June 2009.

## Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\operatorname{Sp}(4, q)$.


## Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\operatorname{Sp}(4, q)$.


## Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\operatorname{Sp}(4, q)$.


## Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- The proof involves the geometry of generalized quadrangles and the representation theory of $\operatorname{Sp}(4 q)$.


## Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).

The proof involves the geometry of generalized
quadrangles and the representation theory of $\operatorname{Sp}(4, q)$.

## Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We'll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\operatorname{Sp}(4, q)$.


## The codes $L U(3, q)$

- q, any prime power
- $P^{*}, L^{*}$ be two sets in bijection with $\mathrm{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ if and only if

$$
\begin{equation*}
y=a x+b \quad \text { and } \quad z=a y+c \tag{1}
\end{equation*}
$$

- The binary incidence matrix $M_{2}\left(P^{*}, L^{*}\right)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated LU(3, q). We have:

$$
\operatorname{dim} \operatorname{LU}(3, q)=q^{3}-\operatorname{rank} M_{2}\left(P^{*}, L^{*}\right)
$$

## The codes $L U(3, q)$

- q, any prime power
- $P^{*}, L^{*}$ be two sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ if and only if

$$
y=a x+b \quad \text { and } \quad z=a y+c
$$

- The binary incidence matrix $M_{2}\left(P^{*}, L^{*}\right)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are desianated LU(3, a). We have:

$$
\operatorname{dim} L U(3, q)=q^{3}-\operatorname{rank} M_{2}\left(P^{*}, L^{*}\right)
$$

## The codes $L U(3, q)$

- q, any prime power
- $P^{*}, L^{*}$ be two sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ if and only if

$$
\begin{equation*}
y=a x+b \quad \text { and } \quad z=a y+c \tag{1}
\end{equation*}
$$

- The binary incidence matrix $M_{2}\left(P^{*}, L^{*}\right)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are desianated $\operatorname{LU}(3, a)$. We have:



## The codes $L U(3, q)$

- q, any prime power
- $P^{*}, L^{*}$ be two sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ if and only if

$$
\begin{equation*}
y=a x+b \quad \text { and } \quad z=a y+c \tag{1}
\end{equation*}
$$

- The binary incidence matrix $M_{2}\left(P^{*}, L^{*}\right)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated LU(3, q). We have:


## The codes $L U(3, q)$

- q, any prime power
- $P^{*}, L^{*}$ be two sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ if and only if

$$
\begin{equation*}
y=a x+b \quad \text { and } \quad z=a y+c \tag{1}
\end{equation*}
$$

- The binary incidence matrix $M_{2}\left(P^{*}, L^{*}\right)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $\mathrm{LU}(3, q)$. We have:

$$
\operatorname{dim} L U(3, q)=q^{3}-\operatorname{rank} M_{2}\left(P^{*}, L^{*}\right)
$$

- Conjecture: If $q$ is odd, the dimension of $\operatorname{LU}(3, q)$ is $\left(q^{3}-2 q^{2}+3 q-2\right) / 2$.
- This number was known to be a lower bound when $q$ is an odd prime.
- Conjecture: If $q$ is odd, the dimension of $\operatorname{LU}(3, q)$ is $\left(q^{3}-2 q^{2}+3 q-2\right) / 2$.
- This number was known to be a lower bound when $q$ is an odd prime.


## The symplectic generalized quadrangle

- q, any prime power

nonsingular alternating bilinear form
- $e_{0}, e_{1}, e_{2}, e_{3}$, a symplectic basis such that
$\left(e_{0}, e_{3}\right)=\left(e_{1}, e_{2}\right)=1$
- $x_{0}, x_{1}, x_{2}, x_{3}$, coordinates for basis
- $P=\mathbf{P}(V)$, the set of points of the projective space of $V$
- $L$, the set of totally isotropic 2-dimensional subspaces of $V$, considered as lines in $P$
- $(P, L)$ is called the symplectic generalized quadrangle.


## The symplectic generalized quadrangle

- q, any prime power
- $(V,(.,)$.$) , a 4-dimensional F_{q}$-vector space with a nonsingular alternating bilinear form
$\Rightarrow e_{0}, e_{1}, e_{2}, e_{3}$, a symplectic basis such that $\left(e_{0}, e_{3}\right)=\left(e_{1}, e_{2}\right)=1$
- $x_{0}, x_{1}, x_{2}, x_{3}$, coordinates for basis
- $P=P(V)$, the set of points of the projective space of $V$
- $L$, the set of totally isotropic 2-dimensional subspaces of $V$, considered as lines in $P$
$\Rightarrow(P, L)$ is called the symplectic generalized quadrangle.


## The symplectic generalized quadrangle

- q, any prime power
- $(V,(.,)$.$) , a 4-dimensional F_{q}$-vector space with a nonsingular alternating bilinear form
- $e_{0}, e_{1}, e_{2}, e_{3}$, a symplectic basis such that $\left(e_{0}, e_{3}\right)=\left(e_{1}, e_{2}\right)=1$
$\Rightarrow x_{0}, x_{1}, x_{2}, x_{3}$, coordinates for basis
- $P=\mathbf{P}(V)$, the set of points of the projective space of $V$
- $L$, the set of totally isotropic 2-dimensional subspaces of $V$ considered as lines in $P$
- $(P, L)$ is called the symplectic generalized quadrangle.


## The symplectic generalized quadrangle

- q, any prime power
- $(V,(.,)$.$) , a 4-dimensional F_{q}$-vector space with a nonsingular alternating bilinear form
- $e_{0}, e_{1}, e_{2}, e_{3}$, a symplectic basis such that $\left(e_{0}, e_{3}\right)=\left(e_{1}, e_{2}\right)=1$
- $x_{0}, x_{1}, x_{2}, x_{3}$, coordinates for basis
- $L$, the set of totally isotropic 2-dimensional subspaces of $V$, considered as lines in $P$
$\Rightarrow(P, L)$ is called the symplectic generalized quadrangle.


## The symplectic generalized quadrangle

- q, any prime power
- $(V,(.,)$.$) , a 4-dimensional F_{q}$-vector space with a nonsingular alternating bilinear form
- $e_{0}, e_{1}, e_{2}, e_{3}$, a symplectic basis such that $\left(e_{0}, e_{3}\right)=\left(e_{1}, e_{2}\right)=1$
- $x_{0}, x_{1}, x_{2}, x_{3}$, coordinates for basis
- $P=\mathbf{P}(V)$, the set of points of the projective space of $V$
- $L$, the set of totally isotropic 2-dimensional subspaces of $V$, considered as lines in $P$
- $(P, L)$ is called the symplectic generalized quadrangle.


## The symplectic generalized quadrangle

- q, any prime power
- $(V,(.,)$.$) , a 4-dimensional \mathbf{F}_{q}$-vector space with a nonsingular alternating bilinear form
- $e_{0}, e_{1}, e_{2}, e_{3}$, a symplectic basis such that $\left(e_{0}, e_{3}\right)=\left(e_{1}, e_{2}\right)=1$
- $x_{0}, x_{1}, x_{2}, x_{3}$, coordinates for basis
- $P=\mathbf{P}(V)$, the set of points of the projective space of $V$
- $L$, the set of totally isotropic 2-dimensional subspaces of $V$, considered as lines in $P$
$\Rightarrow(P, L)$ is called the symplectic generalized quadrangle.


## The symplectic generalized quadrangle

- q, any prime power
- $(V,(.,)$.$) , a 4-dimensional \mathbf{F}_{q}$-vector space with a nonsingular alternating bilinear form
- $e_{0}, e_{1}, e_{2}, e_{3}$, a symplectic basis such that $\left(e_{0}, e_{3}\right)=\left(e_{1}, e_{2}\right)=1$
- $x_{0}, x_{1}, x_{2}, x_{3}$, coordinates for basis
- $P=\mathbf{P}(V)$, the set of points of the projective space of $V$
- L, the set of totally isotropic 2-dimensional subspaces of $V$, considered as lines in $P$
- $(P, L)$ is called the symplectic generalized quadrangle.


## Quadrangle property

Given any line and any point not on the line, there is a unique line which passes though the given point and meets the given line.


- $p_{0}=\left\langle e_{0}\right\rangle$ and $\ell_{0}=\left\langle e_{0}, e_{1}\right\rangle$.
$\Rightarrow p^{-}$, the set of points on lines through the point $p$

- $L_{1}$, the set of lines in $L$ which do not meet $\ell_{0}$
- We have new incidence systems $\left(P_{1}, L_{1}\right),\left(P, L_{1}\right),\left(P_{1}, L\right)$.
- $p_{0}=\left\langle e_{0}\right\rangle$ and $\ell_{0}=\left\langle e_{0}, e_{1}\right\rangle$.
- $p^{\perp}$, the set of points on lines through the point $p$

- $L_{1}$, the set of lines in $L$ which do not meet $\ell_{0}$
- We have new incidence systems $\left(P_{1}, L_{1}\right),\left(P, L_{1}\right),\left(P_{1}, L\right)$.
- $p_{0}=\left\langle e_{0}\right\rangle$ and $\ell_{0}=\left\langle e_{0}, e_{1}\right\rangle$.
- $p^{\perp}$, the set of points on lines through the point $p$
- $P_{1}=P \backslash p_{0}^{\perp}$
- $L_{1}$, the set of lines in $L$ which do not meet $\ell_{0}$
- We have new incidence systems $\left(P_{1}, L_{1}\right),\left(P, L_{1}\right),\left(P_{1}, L\right)$.
- $p_{0}=\left\langle e_{0}\right\rangle$ and $\ell_{0}=\left\langle e_{0}, e_{1}\right\rangle$.
- $p^{\perp}$, the set of points on lines through the point $p$
- $P_{1}=P \backslash p_{0}^{\perp}$
- $L_{1}$, the set of lines in $L$ which do not meet $\ell_{0}$
- We have new incidence systems $\left(P_{1}, L_{1}\right),\left(P, L_{1}\right),\left(P_{1}, L\right)$.
- $p_{0}=\left\langle e_{0}\right\rangle$ and $\ell_{0}=\left\langle e_{0}, e_{1}\right\rangle$.
- $p^{\perp}$, the set of points on lines through the point $p$
- $P_{1}=P \backslash p_{0}^{\perp}$
- $L_{1}$, the set of lines in $L$ which do not meet $\ell_{0}$
- We have new incidence systems $\left(P_{1}, L_{1}\right),\left(P, L_{1}\right),\left(P_{1}, L\right)$.
- We will see below that $\left(P_{1}, L_{1}\right)$ is equivalent to the system $\left(P^{*}, L^{*}\right)$.
- So we want to prove:


## - A known result is:

## - Note that the difference in ranks is $2 q$.

- We will see below that $\left(P_{1}, L_{1}\right)$ is equivalent to the system $\left(P^{*}, L^{*}\right)$.
- So we want to prove:

- Note that the difference in ranks is $2 q$.
- We will see below that $\left(P_{1}, L_{1}\right)$ is equivalent to the system $\left(P^{*}, L^{*}\right)$.
- So we want to prove:

Theorem
Assume $q$ is odd. The rank of $M_{2}\left(P_{1}, L_{1}\right)$ equals $\left(q^{3}+2 q^{2}-3 q+2\right) / 2$.

- Note that the difference in ranks is $2 q$.
- We will see below that $\left(P_{1}, L_{1}\right)$ is equivalent to the system ( $\left.P^{*}, L^{*}\right)$.
- So we want to prove:

Theorem
Assume $q$ is odd. The rank of $M_{2}\left(P_{1}, L_{1}\right)$ equals $\left(q^{3}+2 q^{2}-3 q+2\right) / 2$.

- A known result is:

Theorem
(Bagchi-Brouwer-Wilbrink) Assume $q$ is a power of an odd prime. Then the rank of $M_{2}(P, L)$ is $\left(q^{3}+2 q^{2}+q+2\right) / 2$. - Note that the difference in ranks is $2 q$.

- We will see below that $\left(P_{1}, L_{1}\right)$ is equivalent to the system $\left(P^{*}, L^{*}\right)$.
- So we want to prove:

Theorem
Assume $q$ is odd. The rank of $M_{2}\left(P_{1}, L_{1}\right)$ equals $\left(q^{3}+2 q^{2}-3 q+2\right) / 2$.

- A known result is:


## Theorem

(Bagchi-Brouwer-Wilbrink) Assume $q$ is a power of an odd prime. Then the rank of $M_{2}(P, L)$ is $\left(q^{3}+2 q^{2}+q+2\right) / 2$.

- Note that the difference in ranks is $2 q$.
- We will see below that $\left(P_{1}, L_{1}\right)$ is equivalent to the system $\left(P^{*}, L^{*}\right)$.
- So we want to prove:


## Theorem

Assume $q$ is odd. The rank of $M_{2}\left(P_{1}, L_{1}\right)$ equals $\left(q^{3}+2 q^{2}-3 q+2\right) / 2$.

- A known result is:


## Theorem

(Bagchi-Brouwer-Wilbrink) Assume $q$ is a power of an odd prime. Then the rank of $M_{2}(P, L)$ is $\left(q^{3}+2 q^{2}+q+2\right) / 2$.

- Note that the difference in ranks is $2 q$.

Next, see $\left(P_{1}, L_{1}\right) \cong\left(P^{*}, L^{*}\right)$, for $q$ any prime power.

## Coordinates of $P_{1}$

- $x_{0}, x_{1}, x_{2}, x_{3}$ be homogeneous coordinates of $P$
$\Rightarrow p_{0}=\left\langle e_{0}\right\rangle$

$$
\begin{aligned}
P_{1} & =\left\{\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mid x_{3} \neq 0\right\} \\
& =\left\{(a: b: c: 1) \mid, a, b, c \in \mathbf{F}_{q}\right\} \cong \mathbf{F}_{q}^{3} .
\end{aligned}
$$

## Coordinates of $P_{1}$

- $x_{0}, x_{1}, x_{2}, x_{3}$ be homogeneous coordinates of $P$
- $p_{0}=\left\langle e_{0}\right\rangle$



## Coordinates of $P_{1}$

- $x_{0}, x_{1}, x_{2}, x_{3}$ be homogeneous coordinates of $P$
- $p_{0}=\left\langle e_{0}\right\rangle$

$$
\begin{align*}
P_{1} & =\left\{\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mid x_{3} \neq 0\right\} \\
& =\left\{(a: b: c: 1) \mid, a, b, c \in \mathbf{F}_{q}\right\} \cong \mathbf{F}_{q}{ }^{3} . \tag{2}
\end{align*}
$$

## Coordinates of lines in $P(V)$

- $e_{i} \wedge e_{j}, 0 \leq i<j \leq 3$, basis of the exterior square $\wedge^{2}(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $\mathbf{P}\left(\wedge^{2}(V)\right)$
- If $W$ is a 2-dimensional subspace of $V$ then
$\wedge^{2}(W) \in \mathrm{P}\left(\wedge^{2}(V)\right)$.
- If $W=\left\langle\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(b_{0}: b_{1}: b_{2}: b_{3}\right)\right\rangle$ then $\wedge^{2}(W)$ has coordinates $p_{i j}=a_{i} b_{j}-a_{j} b_{i}$, its Grassmann-Plücker coordinates.
- The totality of points of $\mathbf{P}\left(\wedge^{2}(V)\right)$ obtained from all $W$ forms the set with equation $p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$, called the Klein Quadric.


## Coordinates of lines in $P(V)$

- $e_{i} \wedge e_{j}, 0 \leq i<j \leq 3$, basis of the exterior square $\wedge^{2}(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $\mathbf{P}\left(\wedge^{2}(V)\right)$
- If $W$ is a 2-dimensional subspace of $V$ then $\wedge^{2}(W) \in \mathbf{P}\left(\wedge^{2}(V)\right)$.
- If $W=\left\langle\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(b_{0}: b_{1}: b_{2}: b_{3}\right)\right\rangle$ then $\left.\wedge^{2}(W)\right)$ coordinates.
- The totality of points of $P\left(\Lambda^{2}(V)\right)$ obtained from all W forms the set with equation $p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$, called the Klein Quadric.


## Coordinates of lines in $P(V)$

- $e_{i} \wedge e_{j}, 0 \leq i<j \leq 3$, basis of the exterior square $\wedge^{2}(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $\mathbf{P}\left(\wedge^{2}(V)\right)$
- If $W$ is a 2-dimensional subspace of $V$ then $\wedge^{2}(W) \in \mathbf{P}\left(\wedge^{2}(V)\right)$.
$\begin{aligned} & \text { If } W=\left\langle\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(b_{0}: b_{1}: b_{2}: b_{3}\right)\right\rangle \text { then } \wedge^{2}(W) \\ & \text { has coordinates } p_{i j}=a_{i} b_{j}-a_{j} b_{i} \text {, its Grassmann-Plücker }\end{aligned}$ coordinates.
- The totality of points of $P\left(\Lambda^{2}(V)\right)$ obtained from all $W$ forms the set with equation $p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$, called the Klein Quadric.


## Coordinates of lines in $P(V)$

- $e_{i} \wedge e_{j}, 0 \leq i<j \leq 3$, basis of the exterior square $\wedge^{2}(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $\mathbf{P}\left(\wedge^{2}(V)\right)$
- If $W$ is a 2-dimensional subspace of $V$ then $\wedge^{2}(W) \in \mathbf{P}\left(\wedge^{2}(V)\right)$.
- If $W=\left\langle\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(b_{0}: b_{1}: b_{2}: b_{3}\right)\right\rangle$ then $\wedge^{2}(W)$ has coordinates $p_{i j}=a_{i} b_{j}-a_{j} b_{i}$, its Grassmann-Plücker coordinates.



## Coordinates of lines in $P(V)$

- $e_{i} \wedge e_{j}, 0 \leq i<j \leq 3$, basis of the exterior square $\wedge^{2}(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $\mathbf{P}\left(\wedge^{2}(V)\right)$
- If $W$ is a 2-dimensional subspace of $V$ then $\wedge^{2}(W) \in \mathbf{P}\left(\wedge^{2}(V)\right)$.
- If $W=\left\langle\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(b_{0}: b_{1}: b_{2}: b_{3}\right)\right\rangle$ then $\wedge^{2}(W)$ has coordinates $p_{i j}=a_{i} b_{j}-a_{j} b_{i}$, its Grassmann-Plücker coordinates.
- The totality of points of $\mathbf{P}\left(\wedge^{2}(V)\right)$ obtained from all $W$ forms the set with equation $p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$, called the Klein Quadric.


## Coordinates of $L$ and $L_{1}$

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03}=-p_{12}$.
- $L_{1}$ is the subset of $L$ given by $p_{23} \neq 0$. - The quadratic relation yields



## Coordinates of $L$ and $L_{1}$

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03}=-p_{12}$.
$-\ell_{0}=\langle(1: 0: 0: 0),(0: 1: 0: 0)\rangle$
$-L_{1}$ is the subset of $L$ given by $p_{23} \neq 0$.
- The quadratic relation yields



## Coordinates of $L$ and $L_{1}$

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03}=-p_{12}$.
$-\ell_{0}=\langle(1: 0: 0: 0),(0: 1: 0: 0)\rangle$
- $L_{1}$ is the subset of $L$ given by $p_{23} \neq 0$.


## - The quadratic relation yields

## Coordinates of $L$ and $L_{1}$

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03}=-p_{12}$.
- $\ell_{0}=\langle(1: 0: 0: 0),(0: 1: 0: 0)\rangle$
- $L_{1}$ is the subset of $L$ given by $p_{23} \neq 0$.
- The quadratic relation yields

$$
\begin{align*}
L_{1} & \cong\left\{\left(z^{2}+x y: x: z:-z: y: 1\right) \mid x, y, z \in \mathbf{F}_{q}\right\} \\
& \cong \mathbf{F}_{q}{ }^{3} \tag{3}
\end{align*}
$$

## Incidence equations

- When is $(a: b: c: 1) \in P_{1}$ on $\left(z^{2}+x y: x: z:-z: y: 1\right) \in L_{1}$ ?
- If the line is spanned by points with homogeneous coordinates $\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$ and $\left(b_{0}: b_{1}: b_{2}: b_{3}\right)$. The given point and line are incident if and only if all $3 \times 3$ minors of the matrix



## Incidence equations

- When is $(a: b: c: 1) \in P_{1}$ on $\left(z^{2}+x y: x: z:-z: y: 1\right) \in L_{1}$ ?
- If the line is spanned by points with homogeneous coordinates $\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$ and $\left(b_{0}: b_{1}: b_{2}: b_{3}\right)$. The given point and line are incident if and only if all $3 \times 3$ minors of the matrix

$$
\left(\begin{array}{cccc}
a & b & c & 1  \tag{4}\\
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

are zero.

- The four equations which result reduce to the two equations

$$
\begin{equation*}
z=-c y+b, \quad x=c z-a \tag{5}
\end{equation*}
$$

- Hence $\left(P_{1}, L_{1}\right)$ and ( $\left.P^{*}, L^{*}\right)$ are equivalent.
- The four equations which result reduce to the two equations

$$
\begin{equation*}
z=-c y+b, \quad x=c z-a \tag{5}
\end{equation*}
$$

- Hence $\left(P_{1}, L_{1}\right)$ and $\left(P^{*}, L^{*}\right)$ are equivalent.


## Relative dimensions and a bound

$q$ is any prime power.

- $\mathbf{F}_{2}[P]$, the vector space of all $F_{2}$-valued functions on $P$
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathrm{F}_{2}[P]$.
- $C(P, L)$, the subspace of $\mathbf{F}_{2}[P]$ spanned by the $\ell \in L$.
- $C\left(P, L_{1}\right)$, the subspace generated by lines in $L_{1}$
- $\pi_{P_{1}}: \mathbf{F}_{2}[P] \rightarrow \mathbf{F}_{2}\left[P_{1}\right]$, natural projection map
- $C\left(P_{1}, L\right)=\pi_{P_{1}}(C(P, L)), C\left(P_{1}, L_{1}\right)=\pi_{P_{1}}\left(C\left(P, L_{1}\right)\right)$


## Relative dimensions and a bound

$q$ is any prime power.

- $\mathbf{F}_{2}[P]$, the vector space of all $\mathbf{F}_{2}$-valued functions on $P$
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbf{F}_{2}[P]$.
- $C(P, L)$, the subspace of $F_{2}[P]$ spanned by the $\ell \in L$.
- $C\left(P, L_{1}\right)$, the subspace generated by lines in $L_{1}$
$-\pi_{P_{1}}: \mathbf{F}_{2}[P] \rightarrow \mathbf{F}_{2}\left[P_{1}\right]$, natural projection map
- $C\left(P_{1}, L\right)=\pi_{P_{1}}(C(P, L)), C\left(P_{1}, L_{1}\right)=\pi_{P_{1}}\left(C\left(P, L_{1}\right)\right)$


## Relative dimensions and a bound

$q$ is any prime power.

- $\mathbf{F}_{2}[P]$, the vector space of all $\mathbf{F}_{2}$-valued functions on $P$
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathrm{F}_{2}[P]$.
- $C(P, L)$, the subspace of $F_{2}[P]$ spanned by the $\ell \in L$.
- $C\left(P, L_{1}\right)$, the subspace generated by lines in $L_{1}$
- $\pi_{P_{1}}: \mathbf{F}_{2}[P] \rightarrow \mathbf{F}_{2}\left[P_{1}\right]$, natural projection map
- $C\left(P_{1}, L\right)=\pi_{P_{1}}(C(P, L)), C\left(P_{1}, L_{1}\right)=\pi_{P_{1}}\left(C\left(P, L_{1}\right)\right)$


## Relative dimensions and a bound

$q$ is any prime power.

- $\mathbf{F}_{2}[P]$, the vector space of all $\mathbf{F}_{2}$-valued functions on $P$
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathrm{F}_{2}[P]$.
- $C(P, L)$, the subspace of $F_{2}[P]$ spanned by the $\ell \in L$.
- $C\left(P, L_{1}\right)$, the subspace generated by lines in $L_{1}$



## Relative dimensions and a bound

$q$ is any prime power.

- $\mathbf{F}_{2}[P]$, the vector space of all $\mathbf{F}_{2}$-valued functions on $P$
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathrm{F}_{2}[P]$.
- $C(P, L)$, the subspace of $F_{2}[P]$ spanned by the $\ell \in L$.
- $C\left(P, L_{1}\right)$, the subspace generated by lines in $L_{1}$
- $\pi_{P_{1}}: \mathbf{F}_{2}[P] \rightarrow \mathbf{F}_{2}\left[P_{1}\right]$, natural projection map


## Relative dimensions and a bound

$q$ is any prime power.

- $\mathrm{F}_{2}[P]$, the vector space of all $\mathrm{F}_{2}$-valued functions on $P$
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathrm{F}_{2}[P]$.
- $C(P, L)$, the subspace of $F_{2}[P]$ spanned by the $\ell \in L$.
- $C\left(P, L_{1}\right)$, the subspace generated by lines in $L_{1}$
- $\pi_{P_{1}}: \mathbf{F}_{2}[P] \rightarrow \mathbf{F}_{2}\left[P_{1}\right]$, natural projection map
- $C\left(P_{1}, L\right)=\pi_{P_{1}}(C(P, L)), C\left(P_{1}, L_{1}\right)=\pi_{P_{1}}\left(C\left(P, L_{1}\right)\right)$
- $Z \subset C\left(P, L_{1}\right)$, a set of lines in $L_{1}$ which maps bijectively under $\pi_{P_{1}}$ to a basis of $C\left(P_{1}, L_{1}\right)$
$>X$, the set of the lines through $p_{0}$ and let $X_{0}=X \backslash\left\{l_{0}\right\}$ - $Y$ be any $q$ lines which meet $\ell_{0}$ in the $q$ distinct points other than $p_{0}$

- $Z \subset C\left(P, L_{1}\right)$, a set of lines in $L_{1}$ which maps bijectively under $\pi_{P_{1}}$ to a basis of $C\left(P_{1}, L_{1}\right)$
- $X$, the set of the lines through $p_{0}$ and let $X_{0}=X \backslash\left\{\ell_{0}\right\}$
$\checkmark Y$ be any $q$ ines which meet $\ell_{0}$ in the $q$ distinct points other than $p_{0}$
- $\left|X_{0} \cup Y\right|=2 q(c$. Theorem 1).

- $Z \subset C\left(P, L_{1}\right)$, a set of lines in $L_{1}$ which maps bijectively under $\pi_{P_{1}}$ to a basis of $C\left(P_{1}, L_{1}\right)$
- $X$, the set of the lines through $p_{0}$ and let $X_{0}=X \backslash\left\{\ell_{0}\right\}$
- $Y$ be any $q$ lines which meet $\ell_{0}$ in the $q$ distinct points other than $p_{0}$

- $Z \subset C\left(P, L_{1}\right)$, a set of lines in $L_{1}$ which maps bijectively under $\pi_{P_{1}}$ to a basis of $C\left(P_{1}, L_{1}\right)$
- $X$, the set of the lines through $p_{0}$ and let $X_{0}=X \backslash\left\{\ell_{0}\right\}$
- $Y$ be any $q$ lines which meet $\ell_{0}$ in the $q$ distinct points other than $p_{0}$
- $\left|X_{0} \cup Y\right|=2 q$ (cf. Theorem 1).


Lemma
$Z \cup X_{0} \cup Y$ is linearly independent over $\mathbf{F}_{2}$.

$$
\operatorname{dim}_{\mathrm{F}_{2}} \mathrm{LU}(3, q) \geq q^{3}-\operatorname{dim}_{\mathrm{F}_{2}} C(P, L)+2 q .
$$

Lemma
$Z \cup X_{0} \cup Y$ is linearly independent over $\mathbf{F}_{2}$.
Corollary

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{F}_{2}} \mathrm{LU}(3, q) \geq q^{3}-\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)+2 q . \tag{6}
\end{equation*}
$$

## Proof of Theorem 1

Assume that $q$ is odd. By Corollary 4 the proof of Theorem 1 will be completed if we can show that $Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over $\mathbf{F}_{2}$.

## Geometric arguments

Lemma
Let $\ell \in L$. Then the sum of all lines which meet $\ell$ (excluding $\ell$ itself) is the constant function 1.

Proof.
The function given by the sum takes the value $q \equiv 1$ at any point of $\ell$ and value 1 at any point off $\ell$, by the quadrangle property.

## Geometric arguments

Lemma
Let $\ell \in L$. Then the sum of all lines which meet $\ell$ (excluding $\ell$ itself) is the constant function 1.

## Proof.

The function given by the sum takes the value $q \equiv 1$ at any point of $\ell$ and value 1 at any point off $\ell$, by the quadrangle property.

## Similarly:

Lemma
Let $\ell \neq \ell_{0}$ be a line which meets $\ell_{0}$ at a point $p$. Let $\Phi_{\ell}$ be the sum of all lines in $L_{1}$ which meet $\ell$. Then

$$
\Phi_{\ell}\left(p^{\prime}\right)= \begin{cases}0, & \text { if } p^{\prime}=p  \tag{7}\\ q, & \text { if } p^{\prime} \in \ell \backslash\{p\} \\ 0, & \text { if } p^{\prime} \in p^{\perp} \backslash \ell \\ 1, & \text { if } p^{\prime} \in P \backslash p^{\perp}\end{cases}
$$

Corollary
Let $p \in \ell_{0}$ and let $\ell$, $\ell^{\prime}$ be two lines through $p$, neither equal to $\ell$. Then $\ell-\ell^{\prime} \in C\left(P, L_{1}\right)$.

## Similarly:

## Lemma

Let $\ell \neq \ell_{0}$ be a line which meets $\ell_{0}$ at a point $p$. Let $\Phi_{\ell}$ be the sum of all lines in $L_{1}$ which meet $\ell$. Then

$$
\Phi_{\ell}\left(p^{\prime}\right)= \begin{cases}0, & \text { if } p^{\prime}=p  \tag{7}\\ q, & \text { if } p^{\prime} \in \ell \backslash\{p\} \\ 0, & \text { if } p^{\prime} \in p^{\perp} \backslash \ell \\ 1, & \text { if } p^{\prime} \in P \backslash p^{\perp}\end{cases}
$$

Corollary
Let $p \in \ell_{0}$ and let $\ell, \ell^{\prime}$ be two lines through $p$, neither equal to $\ell_{0}$. Then $\ell-\ell^{\prime} \in C\left(P, L_{1}\right)$.

## Some representation theory

Lemma
$\operatorname{ker} \pi_{P_{1}} \cap C(P, L)$ has dimension $q+1$, with basis $X$.
Proof:

$$
\text { Let } G_{p_{0}} \text { be the stabilizer in } \operatorname{Sp}(V) \text { of } p_{0} \text {. }
$$

$$
\operatorname{ker} \pi_{P_{1}}=\mathbf{F}_{2}\left[p_{0}^{\perp}\right]=\mathbf{F}_{2}\left[\left\{p_{0}\right\}\right] \oplus \mathbf{F}_{2}\left[p_{0}^{\perp} \backslash\left\{p_{0}\right\}\right]
$$

## Some representation theory

Lemma
$\operatorname{ker} \pi_{P_{1}} \cap C(P, L)$ has dimension $q+1$, with basis $X$.
Proof:

- Let $G_{p_{0}}$ be the stabilizer in $\operatorname{Sp}(V)$ of $p_{0}$.

$$
\operatorname{ker} \pi_{P_{1}}=\boldsymbol{F}_{2}\left[p_{0}^{\perp}\right]=\boldsymbol{F}_{2}\left[\left\{p_{0}\right\}\right] \oplus \boldsymbol{F}_{2}\left[p_{0}^{\perp} \backslash\left\{p_{0}\right\}\right]
$$

as an $F_{2} G_{p_{0}}$-module. Clearly $F_{2}\left\{\left\{p_{0}\right\}\right]$ is a one-dimensional trivial $F_{2} G_{p_{0}}$-module.

## Some representation theory

Lemma
$\operatorname{ker} \pi_{P_{1}} \cap C(P, L)$ has dimension $q+1$, with basis $X$.
Proof:

- Let $G_{p_{0}}$ be the stabilizer in $\operatorname{Sp}(V)$ of $p_{0}$.

$$
\begin{equation*}
\operatorname{ker} \pi_{P_{1}}=\mathbf{F}_{2}\left[p_{0}^{\perp}\right]=\mathbf{F}_{2}\left[\left\{p_{0}\right\}\right] \oplus \mathbf{F}_{2}\left[p_{0}^{\perp} \backslash\left\{p_{0}\right\}\right] \tag{8}
\end{equation*}
$$

as an $\mathbf{F}_{2} G_{p_{0}}$-module. Clearly $\mathbf{F}_{2}\left[\left\{p_{0}\right\}\right]$ is a one-dimensional trivial $\mathbf{F}_{2} G_{p_{0}}$-module.

- We consider the following subgroups of $G_{p_{0}}$.

$$
Q=\left\{\left.\left(\begin{array}{cccc}
1 & a & b & c  \tag{9}\\
0 & 1 & 0 & b \\
0 & 0 & 1 & -a \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbf{F}_{q}\right\}, \quad Z(Q)=\left\{\left.\left(\begin{array}{cccc}
1 & 0 & 0 & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, c \in \mathbf{F}_{q}\right\}
$$

$\Rightarrow Q \triangleleft G_{p_{0}}, Q / Z(Q)$ is elementary abelian of order $q^{2}$ and $Z(Q)$ acts trivially on $p_{0}^{\perp}$.

- Since $Q$ has odd order, it acts semisimply on $F_{2}\left[p_{0}^{\perp}\right]$ and we can compute the decomposition.
- We consider the following subgroups of $G_{p_{0}}$.

$$
Q=\left\{\left.\left(\begin{array}{llll}
1 & a & b & c  \tag{9}\\
0 & 1 & 0 & b \\
0 & 0 & 1 & -a \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbf{F}_{q}\right\}, \quad Z(Q)=\left\{\left.\left(\begin{array}{lllll}
1 & 0 & 0 & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, c \in \mathbf{F}_{q}\right\}
$$

- $Q \triangleleft G_{p_{0}}, Q / Z(Q)$ is elementary abelian of order $q^{2}$ and $Z(Q)$ acts trivially on $p_{0}^{\perp}$.
- Since $Q$ has odd order, it acts semisimply on $F_{2}\left[p_{0}^{\perp}\right]$ and we can compute the decomposition.
- We consider the following subgroups of $G_{p_{0}}$.

$$
Q=\left\{\left.\left(\begin{array}{cccc}
1 & a & b & c \\
0 & 1 & 0 & b \\
0 & 0 & 1 & -a \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbf{F}_{q}\right\}, \quad Z(Q)=\left\{\left.\left(\begin{array}{lllll}
1 & 0 & 0 & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, c \in \mathbf{F}_{q}\right\}
$$

- $Q \triangleleft G_{p_{0}}, Q / Z(Q)$ is elementary abelian of order $q^{2}$ and $Z(Q)$ acts trivially on $p_{0}^{\perp}$.
- Since $Q$ has odd order, it acts semisimply on $F_{2}\left[p_{0}^{\perp}\right]$ and we can compute the decomposition.
- Applying Clifford's Theorem, we have a $F_{2} G_{p_{0}}$-module decomposition

$$
\begin{equation*}
\mathbf{F}_{2}\left[p_{0}^{\perp}\right]=T \oplus W \tag{10}
\end{equation*}
$$

where $T$ is the $q+2$-dimensional space of $Q$-fixed points and $W$ is simple of dimension $q^{2}-1$.

$$
\operatorname{ker} \pi_{P_{1}} \cap C(P, L)=F_{2}\left[p_{0}^{\perp}\right] \cap C(P, L)
$$

- The $q+1$ lines through $p_{0}$ lie in the intersection, accounting for $q+1$ dimensions of $T$.
- We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathrm{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L)$ must contain either $W$ or all the $Q$-fixed points on $F_{2}\left[p_{0}^{\perp}\right]$.
- Both possibilities lead immediately to contradictions.
- Applying Clifford's Theorem, we have a $F_{2} G_{p_{0}}$-module decomposition

$$
\begin{equation*}
\mathbf{F}_{2}\left[p_{0}^{\perp}\right]=T \oplus W \tag{10}
\end{equation*}
$$

where $T$ is the $q+2$-dimensional space of $Q$-fixed points and $W$ is simple of dimension $q^{2}-1$.

- The intersection

$$
\begin{equation*}
\operatorname{ker} \pi_{P_{1}} \cap C(P, L)=\mathbf{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L) \tag{11}
\end{equation*}
$$

is an $F_{2} G_{p_{0}}$-submodule of $F_{2}\left[p_{0}^{\perp}\right]$.
$\Rightarrow$ The $q+1$ lines through $p_{0}$ lie in the intersection, accounting for $q+1$ dimensions of $T$.

- We must argue that the intersection is no bigger than their span. If it were, then by (10), $F_{2}\left[p_{0}^{\perp}\right] \cap C(P, L)$ must contain either $W$ or all the $Q$-fixed points on $F_{2}\left[p_{0}^{\perp}\right]$.
- Both possibilities lead immediately to contradictions.
- Applying Clifford's Theorem, we have a $F_{2} G_{p_{0}}$-module decomposition

$$
\begin{equation*}
\mathbf{F}_{2}\left[p_{0}^{\perp}\right]=T \oplus W, \tag{10}
\end{equation*}
$$

where $T$ is the $q+2$-dimensional space of $Q$-fixed points and $W$ is simple of dimension $q^{2}-1$.

- The intersection

$$
\begin{equation*}
\operatorname{ker} \pi_{P_{1}} \cap C(P, L)=\mathbf{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L), \tag{11}
\end{equation*}
$$

is an $F_{2} G_{p_{0}}$-submodule of $\mathbf{F}_{2}\left[p_{0}^{\perp}\right]$.

- The $q+1$ lines through $p_{0}$ lie in the intersection, accounting for $q+1$ dimensions of $T$.
- We must argue that the intersection is no bigger than their span. If it were, then by $(10), \mathrm{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L)$ must contain either $W$ or all the $Q$-fixed points on $F_{2}\left[p_{0}^{\perp}\right]$.
- Both possibilities lead immediately to contradictions.
- Applying Clifford's Theorem, we have a $F_{2} G_{p_{0}}$-module decomposition

$$
\begin{equation*}
\mathbf{F}_{2}\left[p_{0}^{\perp}\right]=T \oplus W \tag{10}
\end{equation*}
$$

where $T$ is the $q+2$-dimensional space of $Q$-fixed points and $W$ is simple of dimension $q^{2}-1$.

- The intersection

$$
\begin{equation*}
\operatorname{ker} \pi_{P_{1}} \cap C(P, L)=\mathbf{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L) \tag{11}
\end{equation*}
$$

is an $F_{2} G_{p_{0}}$-submodule of $F_{2}\left[p_{0}^{\perp}\right]$.

- The $q+1$ lines through $p_{0}$ lie in the intersection, accounting for $q+1$ dimensions of $T$.
- We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathrm{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L)$ must contain either $W$ or all the $Q$-fixed points on $F_{2}\left[p_{0}^{\perp}\right]$.
- Both possibilities lead immediately to contradictions.
- Applying Clifford's Theorem, we have a $F_{2} G_{p_{0}}$-module decomposition

$$
\begin{equation*}
\mathbf{F}_{2}\left[p_{0}^{\perp}\right]=T \oplus W \tag{10}
\end{equation*}
$$

where $T$ is the $q+2$-dimensional space of $Q$-fixed points and $W$ is simple of dimension $q^{2}-1$.

- The intersection

$$
\begin{equation*}
\operatorname{ker} \pi_{P_{1}} \cap C(P, L)=\mathbf{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L) \tag{11}
\end{equation*}
$$

is an $F_{2} G_{p_{0}}$-submodule of $F_{2}\left[p_{0}^{\perp}\right]$.

- The $q+1$ lines through $p_{0}$ lie in the intersection, accounting for $q+1$ dimensions of $T$.
- We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathrm{F}_{2}\left[p_{0}^{\perp}\right] \cap C(P, L)$ must contain either $W$ or all the $Q$-fixed points on $F_{2}\left[p_{0}^{\perp}\right]$.
- Both possibilities lead immediately to contradictions.

Lemma
ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ has dimension $q-1$, and basis the set of functions $\ell-\ell^{\prime}$, where $\ell \neq \ell_{0}$ is an arbitrary but fixed line through $p_{0}$ and $\ell^{\prime}$ varies over the $q-1$ lines through $p_{0}$ different from $\ell_{0}$ and $\ell$.

Lemma
$Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over $F_{2}$. Proof:
$\Rightarrow$ By Lemma 9, the span of $X_{0}$ and $Z$ is equal to the span of $X_{0}$ and $L_{1}$, since ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ is contained in the span of $X_{0}$.

- We must show that the span of $X_{0} \cup L_{1} \cup Y$ contains all lines through $\ell_{0}$, including $\ell_{0}$.
- First, consider a line $\ell \neq \ell_{0}$ through $\ell_{0}$. We can assume that $\ell$ meets $\ell_{0}$ at a point other than $p_{0}$, since otherwise $\ell \in X_{0}$. Therefore $\ell$ meets $\ell_{0}$ in the same point $p$ as some element $\ell^{\prime} \in Y$. Then Corollary 7 shows that $\ell$ lies in the span of $Y$ and $L_{1}$.

Lemma
$Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over $\mathbf{F}_{2}$.
Proof:

- By Lemma 9, the span of $X_{0}$ and $Z$ is equal to the span of $X_{0}$ and $L_{1}$, since ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ is contained in the span of $X_{0}$.
- We must show that the span of $X_{0} \cup L_{1} \cup Y$ contains all lines through $\ell_{0}$, including $\ell_{0}$.
- First, consider a line $\ell \neq \ell_{0}$ through $\ell_{0}$. We can assume that $\ell$ meets $\ell_{0}$ at a point other than $p_{0}$, since otherwise $\ell \in X_{0}$. Therefore $\ell$ meets $\ell_{0}$ in the same point $p$ as some element $\ell^{\prime} \in Y$. Then Corollary 7 shows that $\ell$ lies in the span of $Y$ and $L_{1}$

Lemma
$Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over $\mathbf{F}_{2}$.
Proof:

- By Lemma 9, the span of $X_{0}$ and $Z$ is equal to the span of $X_{0}$ and $L_{1}$, since ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ is contained in the span of $X_{0}$.
- We must show that the span of $X_{0} \cup L_{1} \cup Y$ contains all lines through $\ell_{0}$, including $\ell_{0}$.


Lemma
$Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over $\mathbf{F}_{2}$.
Proof:

- By Lemma 9, the span of $X_{0}$ and $Z$ is equal to the span of $X_{0}$ and $L_{1}$, since ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ is contained in the span of $X_{0}$.
- We must show that the span of $X_{0} \cup L_{1} \cup Y$ contains all lines through $\ell_{0}$, including $\ell_{0}$.
- First, consider a line $\ell \neq \ell_{0}$ through $\ell_{0}$. We can assume that $\ell$ meets $\ell_{0}$ at a point other than $p_{0}$, since otherwise $\ell \in X_{0}$. Therefore $\ell$ meets $\ell_{0}$ in the same point $p$ as some element $\ell^{\prime} \in Y$. Then Corollary 7 shows that $\ell$ lies in the span of $Y$ and $L_{1}$.
- The only line still missing is $\ell_{0}$.
- By Lemma 5 applied to $\ell_{0}$, we see that the constant function 1 is in the span.
- Finally, we see from Lemma 6 that

$$
\begin{equation*}
\sum_{\ell \in X_{0}} \Phi_{\ell}=1-\ell_{0} \tag{12}
\end{equation*}
$$

so we are done.

- The only line still missing is $\ell_{0}$.
- By Lemma 5 applied to $\ell_{0}$, we see that the constant function 1 is in the span.


## - Finally, we see from Lemma 6 that


so we are done.

- The only line still missing is $\ell_{0}$.
- By Lemma 5 applied to $\ell_{0}$, we see that the constant function 1 is in the span.
- Finally, we see from Lemma 6 that

$$
\begin{equation*}
\sum_{\ell \in X_{0}} \Phi_{\ell}=1-\ell_{0} \tag{12}
\end{equation*}
$$

so we are done.

## Further research

- Consider the binary code $\operatorname{LU}(3, q)$ when $q=2^{t}, t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\operatorname{dim}_{\mathrm{F}_{2}} C(P, L)$ is quite different:

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q=16$ )
suggested that the inequality (6) is equality for even $q$ as well.
- Ogul Arslan has found a proof (2007).


## Further research

- Consider the binary code $\operatorname{LU}(3, q)$ when $q=2^{t}, t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\operatorname{dim}_{\mathrm{F}_{2}} C(P, L)$ is quite different:

Nevertheless:
> - Computer calculations of J.-L. Kim (up to $q=16$ ) suggested that the inequality (6) is equality for even $q$ as well.
> - Ogul Arslan has found a proof (2007).

## Further research

- Consider the binary code $\operatorname{LU}(3, q)$ when $q=2^{t}, t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)$ is quite different:

Theorem
(Sastry-Sin) Assume $q=2^{t}$. Then then the rank of $M_{2}(P, L)$ is

Nevertheless:
> - Computer calculations of J.-L. Kim (up to $q=16$ ) suggested that the inequality (6) is equality for even $q$ as well.
> - Ogul Arslan has found a proof (2007).

## Further research

- Consider the binary code $\operatorname{LU}(3, q)$ when $q=2^{t}, t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)$ is quite different:

Theorem
(Sastry-Sin) Assume $q=2^{t}$. Then then the rank of $M_{2}(P, L)$ is

$$
\begin{equation*}
1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t} \tag{13}
\end{equation*}
$$

Nevertheless:

$$
\begin{aligned}
& \text { Computer calculations of J.-L. Kim (up to } q=16 \text { ) } \\
& \text { suggested that the inequality (6) is equality for even } q \text { as } \\
& \text { well. } \\
& \text { Ogul Arslan has found a proof (2007). }
\end{aligned}
$$

## Further research

- Consider the binary code $\operatorname{LU}(3, q)$ when $q=2^{t}, t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)$ is quite different:

Theorem
(Sastry-Sin) Assume $q=2^{t}$. Then then the rank of $M_{2}(P, L)$ is

$$
\begin{equation*}
1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t} \tag{13}
\end{equation*}
$$

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q=16$ ) suggested that the inequality (6) is equality for even $q$ as well.
- Ogul Arslan has found a proof (2007).


## Further research

- Consider the binary code $\operatorname{LU}(3, q)$ when $q=2^{t}, t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)$ is quite different:

Theorem
(Sastry-Sin) Assume $q=2^{t}$. Then then the rank of $M_{2}(P, L)$ is

$$
\begin{equation*}
1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t} \tag{13}
\end{equation*}
$$

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q=16$ ) suggested that the inequality (6) is equality for even $q$ as well.
- Ogul Arslan has found a proof (2007).

