On the dimensions of LDPC codes defined by equations over finite fields

Peter Sin

USM, Penang, June 2009.
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We’ll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into *random* and *structured* types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We’ll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We’ll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.
LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.

A main division is into random and structured types.

One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)

They conjectured the dimensions of the codes.

We’ll describe the conjecture and its proof (with Q. Xiang).

The proof involves the geometry of generalized quadrangles and the representation theory of $\text{Sp}(4, q)$.
LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.

A main division is into random and structured types.

One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)

They conjectured the dimensions of the codes.

We’ll describe the conjecture and its proof (with Q. Xiang).

The proof involves the geometry of generalized quadrangles and the representation theory of $Sp(4, q)$.
Overview

- LDPC (low density parity check) codes have attracted much attention recently, due to their good performance in theory and practice.
- A main division is into random and structured types.
- One structured family, constructed using certain bipartite graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland (2004)
- They conjectured the dimensions of the codes.
- We’ll describe the conjecture and its proof (with Q. Xiang).
- The proof involves the geometry of generalized quadrangles and the representation theory of $Sp(4, q)$.
The codes $LU(3, q)$

- q, any prime power
- P^*, L^* be two sets in bijection with \mathbb{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[y = ax + b \quad \text{and} \quad z = ay + c. \] (1)
- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:
 \[\dim LU(3, q) = q^3 - \text{rank} M_2(P^*, L^*). \]
The codes $LU(3, q)$

- q, any prime power
- P^*, L^* be two sets in bijection with F_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[y = ax + b \quad \text{and} \quad z = ay + c. \]

- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:
 \[\dim LU(3, q) = q^3 - \text{rank} M_2(P^*, L^*). \]
The codes $LU(3, q)$

- q, any prime power
- P^*, L^* be two sets in bijection with \mathbb{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[y = ax + b \quad \text{and} \quad z = ay + c. \] (1)

- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:
 \[\dim LU(3, q) = q^3 - \text{rank} M_2(P^*, L^*). \]
The codes $LU(3, q)$

- q, any prime power
- P^*, L^* be two sets in bijection with \mathbb{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[y = ax + b \quad \text{and} \quad z = ay + c. \]
 (1)
- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:
 \[\dim LU(3, q) = q^3 - \text{rank}M_2(P^*, L^*). \]
The codes $LU(3, q)$

- q, any prime power
- P^*, L^* be two sets in bijection with \mathbb{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ if and only if
 \[
 y = ax + b \quad \text{and} \quad z = ay + c. \tag{1}
 \]
- The binary incidence matrix $M_2(P^*, L^*)$ and its transpose can be taken as parity check matrices of two codes.
- These codes are designated $LU(3, q)$. We have:
 \[
 \dim LU(3, q) = q^3 - \text{rank} M_2(P^*, L^*).
 \]
Conjecture: If q is odd, the dimension of $\text{LU}(3, q)$ is
$$(q^3 - 2q^2 + 3q - 2)/2.$$
This number was known to be a lower bound when q is an odd prime.
Conjecture: If q is odd, the dimension of $LU(3, q)$ is $(q^3 - 2q^2 + 3q - 2)/2$.

This number was known to be a lower bound when q is an odd prime.
The symplectic generalized quadrangle

- q, any prime power
- $(V, \langle \cdot, \cdot \rangle)$, a 4-dimensional F_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = P(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the *symplectic generalized quadrangle*.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (\cdot, \cdot))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = \mathbb{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the symplectic generalized quadrangle.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (., .))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = \mathbb{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the symplectic generalized quadrangle.
The symplectic generalized quadrangle

- q, any prime power
- $(V,(.,.))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = P(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the *symplectic generalized quadrangle*.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (., .))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = P(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the symplectic generalized quadrangle.
The symplectic generalized quadrangle

- \(q \), any prime power
- \((V, \langle ., . \rangle)\), a 4-dimensional \(\mathbb{F}_q \)-vector space with a nonsingular alternating bilinear form
- \(e_0, e_1, e_2, e_3 \), a symplectic basis such that \(\langle e_0, e_3 \rangle = \langle e_1, e_2 \rangle = 1 \)
- \(x_0, x_1, x_2, x_3 \), coordinates for basis
- \(P = \mathbb{P}(V) \), the set of points of the projective space of \(V \)
- \(L \), the set of totally isotropic 2-dimensional subspaces of \(V \), considered as lines in \(P \)
- \((P, L)\) is called the *symplectic generalized quadrangle*.
The symplectic generalized quadrangle

- q, any prime power
- $(V, (., .))$, a 4-dimensional \mathbb{F}_q-vector space with a nonsingular alternating bilinear form
- e_0, e_1, e_2, e_3, a symplectic basis such that $(e_0, e_3) = (e_1, e_2) = 1$
- x_0, x_1, x_2, x_3, coordinates for basis
- $P = \mathbb{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P
- (P, L) is called the symplectic generalized quadrangle.
Quadrangle property

Given any line and any point not on the line, there is a unique line which passes though the given point and meets the given line.
\(p_0 = \langle e_0 \rangle \) and \(\ell_0 = \langle e_0, e_1 \rangle \).

\(p^\perp \), the set of points on lines through the point \(p \)

\(P_1 = P \setminus p_0^\perp \)

\(L_1 \), the set of lines in \(L \) which do not meet \(\ell_0 \)

We have new incidence systems \((P_1, L_1), (P, L_1), (P_1, L)\).
\(p_0 = \langle e_0 \rangle \) and \(\ell_0 = \langle e_0, e_1 \rangle \).

\(p_\perp \), the set of points on lines through the point \(p \)

\(P_1 = P \setminus p_0 \)

\(L_1 \), the set of lines in \(L \) which do not meet \(\ell_0 \)

We have new incidence systems \((P_1, L_1) \), \((P, L_1) \), \((P_1, L) \).
$p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.

$P_1 = P \setminus p_0^\perp$,

L_1, the set of lines in L which do not meet ℓ_0.

We have new incidence systems (P_1, L_1), (P, L_1), (P_1, L).
- \(p_0 = \langle e_0 \rangle \) and \(\ell_0 = \langle e_0, e_1 \rangle \).
- \(p^\perp \), the set of points on lines through the point \(p \)
- \(P_1 = P \setminus p_0^\perp \)
- \(L_1 \), the set of lines in \(L \) which do not meet \(\ell_0 \)
- We have new incidence systems \((P_1, L_1), (P, L_1), (P_1, L)\).
- $p_0 = \langle e_0 \rangle$ and $\ell_0 = \langle e_0, e_1 \rangle$.
- p^\perp, the set of points on lines through the point p
- $P_1 = P \setminus p^\perp$
- L_1, the set of lines in L which do not meet ℓ_0
- We have new incidence systems $(P_1, L_1), (P, L_1), (P_1, L)$.
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem
Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals \((q^3 + 2q^2 - 3q + 2)/2\).

A known result is:

Theorem
(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is \((q^3 + 2q^2 + q + 2)/2\).

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem
Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals
\[
(q^3 + 2q^2 - 3q + 2)/2.
\]

A known result is:

Theorem
(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is
\[
(q^3 + 2q^2 + q + 2)/2.
\]

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem

Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals
\[
\frac{q^3 + 2q^2 - 3q + 2}{2}.
\]

A known result is:

Theorem

Bagchi-Brouwer-Wilbrink Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is
\[
\frac{q^3 + 2q^2 + q + 2}{2}.
\]

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem

Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals \((q^3 + 2q^2 - 3q + 2)/2\).

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is \((q^3 + 2q^2 + q + 2)/2\).

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem
Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals \((q^3 + 2q^2 - 3q + 2)/2\).

A known result is:

Theorem
(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is \((q^3 + 2q^2 + q + 2)/2\).

Note that the difference in ranks is \(2q\).
We will see below that \((P_1, L_1)\) is equivalent to the system \((P^*, L^*)\).

So we want to prove:

Theorem

Assume \(q\) is odd. The rank of \(M_2(P_1, L_1)\) equals \((q^3 + 2q^2 - 3q + 2)/2\).

A known result is:

Theorem

(Bagchi-Brouwer-Wilbrink) Assume \(q\) is a power of an odd prime. Then the rank of \(M_2(P, L)\) is \((q^3 + 2q^2 + q + 2)/2\).

Note that the difference in ranks is \(2q\).
Next, see $(P_1, L_1) \cong (P^*, L^*)$, for q any prime power.
Coordinates of P_1

- x_0, x_1, x_2, x_3 be homogeneous coordinates of P
- $p_0 = \langle e_0 \rangle$
- $P_1 = \{(x_0 : x_1 : x_2 : x_3) \mid x_3 \neq 0\}$
 $= \{(a : b : c : 1) \mid a, b, c \in F_q\} \cong F_q^3$. (2)
Coordinates of P_1

- x_0, x_1, x_2, x_3 be homogeneous coordinates of P
- $p_0 = \langle e_0 \rangle$

$$P_1 = \{(x_0 : x_1 : x_2 : x_3) \mid x_3 \neq 0\}$$
$$= \{(a : b : c : 1) \mid a, b, c \in \mathbb{F}_q\} \cong \mathbb{F}_q^3.$$ (2)
Coordinates of P_1

- x_0, x_1, x_2, x_3 be homogeneous coordinates of P
- $p_0 = \langle e_0 \rangle$

$$
P_1 = \{(x_0 : x_1 : x_2 : x_3) \mid x_3 \neq 0\}
= \{(a : b : c : 1) \mid a, b, c \in \mathbb{F}_q\} \cong \mathbb{F}_q^3.
$$
Coordinates of lines in $P(V)$

- $e_i \wedge e_j, \ 0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $P(\wedge^2(V))$
- If W is a 2-dimensional subspace of V then $\wedge^2(W) \in P(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j - a_j b_i$, its Grassmann-Plücker coordinates.
- The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$, called the Klein Quadric.
Coordinates of lines in $P(V)$

- $e_i \wedge e_j, 0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $P(\wedge^2(V))$
- If W is a 2-dimensional subspace of V then $\wedge^2(W) \in P(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j - a_j b_i$, its Grassmann-Plücker coordinates.
- The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$, called the Klein Quadric.
Coordinates of lines in \(P(V) \)

- \(e_i \wedge e_j, 0 \leq i < j \leq 3 \), basis of the exterior square \(\wedge^2(V) \)
- \(p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23} \), homogeneous coordinates for \(P(\wedge^2(V)) \)
- If \(W \) is a 2-dimensional subspace of \(V \) then \(\wedge^2(W) \in P(\wedge^2(V)) \).
- If \(W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle \) then \(\wedge^2(W) \) has coordinates \(p_{ij} = a_i b_j - a_j b_i \), its Grassmann-Plücker coordinates.
- The totality of points of \(P(\wedge^2(V)) \) obtained from all \(W \) forms the set with equation \(p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0 \), called the *Klein Quadric*.
Coordinates of lines in $P(V)$

- $e_i \wedge e_j$, $0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $P(\wedge^2(V))$
- If W is a 2-dimensional subspace of V then $\wedge^2(W) \in P(\wedge^2(V))$.
- If $W = \langle(a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3)\rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j - a_j b_i$, its Grassmann-Plücker coordinates.
- The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$, called the Klein Quadric.
Coordinates of lines in $P(V)$

- $e_i \wedge e_j, 0 \leq i < j \leq 3$, basis of the exterior square $\wedge^2(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $P(\wedge^2(V))$
- If W is a 2-dimensional subspace of V then $\wedge^2(W) \in P(\wedge^2(V))$.
- If $W = \langle (a_0 : a_1 : a_2 : a_3), (b_0 : b_1 : b_2 : b_3) \rangle$ then $\wedge^2(W)$ has coordinates $p_{ij} = a_i b_j - a_j b_i$, its Grassmann-Plücker coordinates.
- The totality of points of $P(\wedge^2(V))$ obtained from all W forms the set with equation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$, called the *Klein Quadric*.
Coordinates of L and L_1

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1 : 0 : 0 : 0), (0 : 1 : 0 : 0) \rangle$
- L_1 is the subset of L given by $p_{23} \neq 0$.
- The quadratic relation yields

\[
L_1 \cong \{(z^2 + xy : x : z : -z : y : 1) \mid x, y, z \in \mathbf{F}_q\}
\cong \mathbf{F}_q^3.
\]
Coordinates of L and L_1

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\mathcal{L}_0 = \langle (1:0:0:0), (0:1:0:0) \rangle$
- L_1 is the subset of L given by $p_{23} \neq 0$.
- The quadratic relation yields

$$L_1 \cong \{ (z^2 + xy : x : z : -z : y : 1) \mid x, y, z \in \mathbb{F}_q \}$$

$$\cong \mathbb{F}_q^3.$$ (3)
Coordinates of L and L_1

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03} = -p_{12}$.
- $\ell_0 = \langle (1 : 0 : 0 : 0), (0 : 1 : 0 : 0) \rangle$
- L_1 is the subset of L given by $p_{23} \neq 0$.
- The quadratic relation yields

$$L_1 \cong \{(z^2 + xy : x : z : -z : y : 1) \mid x, y, z \in F_q\} \cong F_q^3.$$

(3)
Coordinates of \(L \) and \(L_1 \)

- \(L \) corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation \(p_{03} = -p_{12} \).
- \(\ell_0 = \langle (1 : 0 : 0 : 0), (0 : 1 : 0 : 0) \rangle \)
- \(L_1 \) is the subset of \(L \) given by \(p_{23} \neq 0 \).
- The quadratic relation yields

\[
L_1 \cong \{(z^2 + xy : x : z : -z : y : 1) \mid x, y, z \in \mathbf{F}_q\} \\
\cong \mathbf{F}_q^3.
\]

(3)
Incidence equations

- When is \((a : b : c : 1) \in P_1\) on \((z^2 + xy : x : z : -z : y : 1) \in L_1\)?

- If the line is spanned by points with homogeneous coordinates \((a_0 : a_1 : a_2 : a_3)\) and \((b_0 : b_1 : b_2 : b_3)\). The given point and line are incident if and only if all \(3 \times 3\) minors of the matrix

\[
\begin{pmatrix}
a & b & c & 1 \\ a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3
\end{pmatrix}
\]

are zero.
Incidence equations

When is \((a : b : c : 1) \in P_1\) on \((z^2 + xy : x : z : -z : y : 1) \in L_1\)?

If the line is spanned by points with homogeneous coordinates \((a_0 : a_1 : a_2 : a_3)\) and \((b_0 : b_1 : b_2 : b_3)\). The given point and line are incident if and only if all 3 \(\times\) 3 minors of the matrix

\[
\begin{pmatrix}
a & b & c & 1 \\
a_0 & a_1 & a_2 & a_3 \\
b_0 & b_1 & b_2 & b_3
\end{pmatrix}
\]

are zero.
The four equations which result reduce to the two equations

\[z = -cy + b, \quad x = cz - a. \] \hspace{1cm} (5)

Hence \((P_1, L_1)\) and \((P^*, L^*)\) are equivalent.
The four equations which result reduce to the two equations
\[z = -cy + b, \quad x = cz - a. \] \hspace{1cm} (5)

Hence \((P_1, L_1)\) and \((P^*, L^*)\) are equivalent.
Relative dimensions and a bound

q is any prime power.

- $\mathbb{F}_2[P]$, the vector space of all \mathbb{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbb{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbb{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1}: \mathbb{F}_2[P] \to \mathbb{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
Relative dimensions and a bound

q is any prime power.

- $\mathbf{F}_2[P]$, the vector space of all \mathbf{F}_2-valued functions on P.
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbf{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1.
- $\pi_{P_1}: \mathbf{F}_2[P] \rightarrow \mathbf{F}_2[P_1]$, natural projection map.
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$.
Relative dimensions and a bound

q is any prime power.

- $\mathbf{F}_2[P]$, the vector space of all \mathbf{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbf{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbf{F}_2[P] \to \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
q is any prime power.

- $\mathbb{F}_2[P]$, the vector space of all \mathbb{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbb{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbb{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbb{F}_2[P] \rightarrow \mathbb{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
q is any prime power.

- $\mathbf{F}_2[P]$, the vector space of all \mathbf{F}_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $\mathbf{F}_2[P]$.
- $C(P, L)$, the subspace of $\mathbf{F}_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : \mathbf{F}_2[P] \rightarrow \mathbf{F}_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
Relative dimensions and a bound

q is any prime power.

- $F_2[P]$, the vector space of all F_2-valued functions on P
- Abuse notation slightly, identify points and lines with their characteristic functions in $F_2[P]$.
- $C(P, L)$, the subspace of $F_2[P]$ spanned by the $\ell \in L$.
- $C(P, L_1)$, the subspace generated by lines in L_1
- $\pi_{P_1} : F_2[P] \rightarrow F_2[P_1]$, natural projection map
- $\pi_{P_1} : F_2[P] \rightarrow F_2[P_1]$, natural projection map
- $C(P_1, L) = \pi_{P_1}(C(P, L))$, $C(P_1, L_1) = \pi_{P_1}(C(P, L_1))$
- $Z \subset C(P, L_1)$, a set of lines in L_1 which maps bijectively under π_{P_1} to a basis of $C(P_1, L_1)$
- X, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$
- Y be any q lines which meet ℓ_0 in the q distinct points other than p_0
- $|X_0 \cup Y| = 2q$ (cf. Theorem 1).
\(Z \subset C(P, L_1) \), a set of lines in \(L_1 \) which maps bijectively under \(\pi_{P_1} \) to a basis of \(C(P_1, L_1) \)

\(X \), the set of the lines through \(p_0 \) and let \(X_0 = X \setminus \{ \ell_0 \} \)

\(Y \) be any \(q \) lines which meet \(\ell_0 \) in the \(q \) distinct points other than \(p_0 \)

\(|X_0 \cup Y| = 2q \) (cf. Theorem 1).
- $Z \subset C(P, L_1)$, a set of lines in L_1 which maps bijectively under π_{P_1} to a basis of $C(P_1, L_1)$
- X, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$
- Y be any q lines which meet ℓ_0 in the q distinct points other than p_0
- $|X_0 \cup Y| = 2q$ (cf. Theorem 1).
- $Z \subset C(P, L_1)$, a set of lines in L_1 which maps bijectively under π_{P_1} to a basis of $C(P_1, L_1)$
- X, the set of the lines through p_0 and let $X_0 = X \setminus \{\ell_0\}$
- Y be any q lines which meet ℓ_0 in the q distinct points other than p_0
- $|X_0 \cup Y| = 2q$ (cf. Theorem 1).
Lemma

$Z \cup X_0 \cup Y$ is linearly independent over F_2.

Corollary

$$\dim_{F_2} LU(3, q) \geq q^3 - \dim_{F_2} C(P, L) + 2q.$$ (6)
Lemma

$Z \cup X_0 \cup Y$ is linearly independent over F_2.

Corollary

$$\dim_{F_2} LU(3, q) \geq q^3 - \dim_{F_2} C(P, L) + 2q.$$ \hspace{1cm} (6)
Proof of Theorem 1

Assume that q is odd. By Corollary 4 the proof of Theorem 1 will be completed if we can show that $Z \cup X_0 \cup Y$ spans $C(P, L)$ as a vector space over F_2.
Lemma

Let $\ell \in L$. Then the sum of all lines which meet ℓ (excluding ℓ itself) is the constant function 1.

Proof.
The function given by the sum takes the value $q \equiv 1$ at any point of ℓ and value 1 at any point off ℓ, by the quadrangle property.
Lemma
Let \(\ell \in L \). Then the sum of all lines which meet \(\ell \) (excluding \(\ell \) itself) is the constant function 1.

Proof.
The function given by the sum takes the value \(q \equiv 1 \) at any point of \(\ell \) and value 1 at any point off \(\ell \), by the quadrangle property.
Similarly:

Lemma
Let $\ell \neq \ell_0$ be a line which meets ℓ_0 at a point p. Let Φ_ℓ be the sum of all lines in L_1 which meet ℓ. Then

$$\Phi_\ell(p') = \begin{cases}
0, & \text{if } p' = p; \\
q, & \text{if } p' \in \ell \setminus \{p\}; \\
0, & \text{if } p' \in p^\perp \setminus \ell; \\
1, & \text{if } p' \in P \setminus p^\perp.
\end{cases} \quad (7)$$

Corollary
Let $p \in \ell_0$ and let ℓ, ℓ' be two lines through p, neither equal to ℓ_0. Then $\ell - \ell' \in C(P, L_1)$.
Similarly:

Lemma
Let \(\ell \neq \ell_0 \) be a line which meets \(\ell_0 \) at a point \(p \). Let \(\Phi_\ell \) be the sum of all lines in \(L_1 \) which meet \(\ell \). Then

\[
\Phi_\ell(p') = \begin{cases}
0, & \text{if } p' = p; \\
q, & \text{if } p' \in \ell \setminus \{p\}; \\
0, & \text{if } p' \in p^\perp \setminus \ell; \\
1, & \text{if } p' \in P \setminus p^\perp.
\end{cases}
\] (7)

Corollary
Let \(p \in \ell_0 \) and let \(\ell, \ell' \) be two lines through \(p \), neither equal to \(\ell_0 \). Then \(\ell - \ell' \in C(P, L_1) \).
Lemma
\[\ker \pi_{p_1} \cap C(P, L) \text{ has dimension } q + 1, \text{ with basis } X. \]

Proof:

- Let \(G_{p_0} \) be the stabilizer in \(\text{Sp}(V) \) of \(p_0 \).

\[
\ker \pi_{p_1} = F_2[p_0^\perp] = F_2[\{p_0\}] \oplus F_2[p_0^\perp \setminus \{p_0\}] \quad (8)
\]

as an \(F_2 G_{p_0} \)-module. Clearly \(F_2[\{p_0\}] \) is a one-dimensional trivial \(F_2 G_{p_0} \)-module.
Lemma

\(\ker \pi_{P_1} \cap C(P, L) \) has dimension \(q + 1 \), with basis \(X \).

Proof:

Let \(G_{p_0} \) be the stabilizer in \(S_p(V) \) of \(p_0 \).

\[
\ker \pi_{P_1} = F_2[p_0^\perp] = F_2[\{p_0\}] \oplus F_2[p_0^\perp \setminus \{p_0\}] \quad (8)
\]

as an \(F_2 G_{p_0} \)-module. Clearly \(F_2[\{p_0\}] \) is a one-dimensional trivial \(F_2 G_{p_0} \)-module.
Lemma
\(\ker \pi_{P_1} \cap C(P, L) \) has dimension \(q + 1 \), with basis \(X \).
Proof:
- Let \(G_{p_0} \) be the stabilizer in \(S_p(V) \) of \(p_0 \).

\[
\ker \pi_{P_1} = F_2[p_0^\perp] = F_2[\{p_0\}] \oplus F_2[p_0^\perp \setminus \{p_0\}] \tag{8}
\] as an \(F_2 G_{p_0} \)-module. Clearly \(F_2[\{p_0\}] \) is a one-dimensional trivial \(F_2 G_{p_0} \)-module.
We consider the following subgroups of G_{p_0}.

$$Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in F_q \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid c \in F_q \right\}$$

(9)

$Q \triangleleft G_{p_0}$, $Q/Z(Q)$ is elementary abelian of order q^2 and $Z(Q)$ acts trivially on p_0^\perp.

Since Q has odd order, it acts semisimply on $F_2[p_0^{\perp}]$ and we can compute the decomposition.
We consider the following subgroups of G_{p_0}.

$$Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in F_q \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid c \in F_q \right\}$$

$Q \triangleleft G_{p_0}$, $Q/Z(Q)$ is elementary abelian of order q^2 and $Z(Q)$ acts trivially on p_0^\perp.

Since Q has odd order, it acts semisimply on $F_2[p_0^\perp]$ and we can compute the decomposition.
We consider the following subgroups of G_{p_0}.

$$Q = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbf{F}_q \right\}, \quad Z(Q) = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid c \in \mathbf{F}_q \right\}$$

$Q \triangleleft G_{p_0}$, $Q/Z(Q)$ is elementary abelian of order q^2 and $Z(Q)$ acts trivially on p_0^\perp.

Since Q has odd order, it acts semisimply on $\mathbf{F}_2[p_0^\perp]$ and we can compute the decomposition.
Applying Clifford’s Theorem, we have a $\mathbb{F}_2 G_{p_0}$-module decomposition
\[\mathbb{F}_2[p_{0}^\perp] = T \oplus W, \tag{10} \]
where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection
\[\ker \pi_{P_1} \cap C(P, L) = \mathbb{F}_2[p_{0}^\perp] \cap C(P, L), \tag{11} \]
is an $\mathbb{F}_2 G_{p_0}$-submodule of $\mathbb{F}_2[p_{0}^\perp]$.

The $q + 1$ lines through p_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathbb{F}_2[p_{0}^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $\mathbb{F}_2[p_{0}^\perp]$.

Both possibilities lead immediately to contradictions.
Applying Clifford’s Theorem, we have a $\mathbb{F}_2 G_{\rho_0}$-module decomposition

$$\mathbb{F}_2[\rho_0^\perp] = T \oplus W,$$ \hspace{1cm} (10)

where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection

$$\ker \pi_{P_1} \cap C(P, L) = \mathbb{F}_2[\rho_0^\perp] \cap C(P, L),$$ \hspace{1cm} (11)

is an $\mathbb{F}_2 G_{\rho_0}$-submodule of $\mathbb{F}_2[\rho_0^\perp]$.

The $q + 1$ lines through ρ_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathbb{F}_2[\rho_0^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $\mathbb{F}_2[\rho_0^\perp]$.

Both possibilities lead immediately to contradictions.
Applying Clifford’s Theorem, we have a $\mathbb{F}_2 G_{P_0}$-module decomposition

$$\mathbb{F}_2[p_0^\perp] = T \oplus W,$$

where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection

$$\ker \pi_{P_0} \cap C(P, L) = \mathbb{F}_2[p_0^\perp] \cap C(P, L),$$

is an $\mathbb{F}_2 G_{P_0}$-submodule of $\mathbb{F}_2[p_0^\perp]$.

The $q + 1$ lines through p_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathbb{F}_2[p_0^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $\mathbb{F}_2[p_0^\perp]$.

Both possibilities lead immediately to contradictions.
Applying Clifford’s Theorem, we have a $\mathbb{F}_2 G_{p_0}$-module decomposition

$$\mathbb{F}_2[p_{0}^\perp] = T \oplus W,$$

(10)

where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection

$$\ker \pi_{P_1} \cap C(P, L) = \mathbb{F}_2[p_{0}^\perp] \cap C(P, L),$$

(11)

is an $\mathbb{F}_2 G_{p_0}$-submodule of $\mathbb{F}_2[p_{0}^\perp]$.

The $q + 1$ lines through p_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $\mathbb{F}_2[p_{0}^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $\mathbb{F}_2[p_{0}^\perp]$.

Both possibilities lead immediately to contradictions.
Applying Clifford’s Theorem, we have a $F_2G_{p_0}$-module decomposition

$$F_2[p_0^\perp] = T \oplus W,$$

where T is the $q + 2$-dimensional space of Q-fixed points and W is simple of dimension $q^2 - 1$.

The intersection

$$\ker \pi_{P_1} \cap C(P, L) = F_2[p_0^\perp] \cap C(P, L),$$

is an $F_2G_{p_0}$-submodule of $F_2[p_0^\perp]$.

The $q + 1$ lines through p_0 lie in the intersection, accounting for $q + 1$ dimensions of T.

We must argue that the intersection is no bigger than their span. If it were, then by (10), $F_2[p_0^\perp] \cap C(P, L)$ must contain either W or all the Q-fixed points on $F_2[p_0^\perp]$.

Both possibilities lead immediately to contradictions.
Lemma

$\ker \pi_{P_1} \cap C(P, L_1)$ has dimension $q - 1$, and basis the set of functions $\ell - \ell'$, where $\ell \neq \ell_0$ is an arbitrary but fixed line through p_0 and ℓ' varies over the $q - 1$ lines through p_0 different from ℓ_0 and ℓ.
Lemma

$Z \cup X_0 \cup Y$ spans $C(P, L)$ as a vector space over F_2.

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1, since $\ker \pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0.
- We must show that the span of $X_0 \cup L_1 \cup Y$ contains all lines through ℓ_0, including ℓ_0.
- First, consider a line $\ell \neq \ell_0$ through ℓ_0. We can assume that ℓ meets ℓ_0 at a point other than p_0, since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1.
Lemma

$Z \cup X_0 \cup Y$ spans $C(P, L)$ as a vector space over F_2.

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1, since $\ker \pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0.

- We must show that the span of $X_0 \cup L_1 \cup Y$ contains all lines through ℓ_0, including ℓ_0.

- First, consider a line $\ell \neq \ell_0$ through ℓ_0. We can assume that ℓ meets ℓ_0 at a point other than p_0, since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1.
Lemma

$Z \cup X_0 \cup Y$ spans $C(P, L)$ as a vector space over F_2.

Proof:

- By Lemma 9, the span of X_0 and Z is equal to the span of X_0 and L_1, since $\ker \pi_{P_1} \cap C(P, L_1)$ is contained in the span of X_0.

- We must show that the span of $X_0 \cup L_1 \cup Y$ contains all lines through ℓ_0, including ℓ_0.

- First, consider a line $\ell \neq \ell_0$ through ℓ_0. We can assume that ℓ meets ℓ_0 at a point other than p_0, since otherwise $\ell \in X_0$. Therefore ℓ meets ℓ_0 in the same point p as some element $\ell' \in Y$. Then Corollary 7 shows that ℓ lies in the span of Y and L_1.
Lemma

\[Z \cup X_0 \cup Y \text{ spans } C(P, L) \text{ as a vector space over } \mathbb{F}_2. \]

Proof:

- By Lemma 9, the span of \(X_0 \) and \(Z \) is equal to the span of \(X_0 \) and \(L_1 \), since \(\ker \pi_{P_1} \cap C(P, L_1) \) is contained in the span of \(X_0 \).

- We must show that the span of \(X_0 \cup L_1 \cup Y \) contains all lines through \(\ell_0 \), including \(\ell_0 \).

- First, consider a line \(\ell \neq \ell_0 \) through \(\ell_0 \). We can assume that \(\ell \) meets \(\ell_0 \) at a point other than \(p_0 \), since otherwise \(\ell \in X_0 \). Therefore \(\ell \) meets \(\ell_0 \) in the same point \(p \) as some element \(\ell' \in Y \). Then Corollary 7 shows that \(\ell \) lies in the span of \(Y \) and \(L_1 \).
The only line still missing is ℓ_0.

By Lemma 5 applied to ℓ_0, we see that the constant function 1 is in the span.

Finally, we see from Lemma 6 that

$$\sum_{\ell \in X_0} \Phi_{\ell} = 1 - \ell_0,$$

so we are done.
The only line still missing is ℓ_0.

By Lemma 5 applied to ℓ_0, we see that the constant function 1 is in the span.

Finally, we see from Lemma 6 that

$$\sum_{\ell \in \chi_0} \Phi_\ell = 1 - \ell_0,$$

so we are done.
The only line still missing is ℓ_0.

By Lemma 5 applied to ℓ_0, we see that the constant function 1 is in the span.

Finally, we see from Lemma 6 that

$$\sum_{\ell \in \mathcal{X}_0} \Phi_\ell = 1 - \ell_0,$$

so we are done.
Further research

- Consider the binary code $LU(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{\mathbb{F}_2} C(P, L)$ is quite different:

Theorem (Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$ (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code $LU(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{F_2} C(P, L)$ is quite different:

Theorem
(Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}. \quad (13)$$

Nevertheless:
- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code $\text{LU}(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{F_2} C(P, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$ \hspace{1cm} (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code $LU(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{F_2} C(P, L)$ is quite different:

Theorem

(Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$ \hspace{1cm} (13)

Nevertheless:

- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).
Further research

▶ Consider the binary code $LU(3, q)$ when $q = 2^t$, $t \geq 1$.
▶ Corollary 4 provides a lower bound for the dimension.
▶ Note, however, that $\dim_{\mathbb{F}_2} C(P, L)$ is quite different:

Theorem
(Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$ (13)

Nevertheless:
▶ Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
▶ Ogul Arslan has found a proof (2007).
Further research

- Consider the binary code $LU(3, q)$ when $q = 2^t$, $t \geq 1$.
- Corollary 4 provides a lower bound for the dimension.
- Note, however, that $\dim_{F_2} C(P, L)$ is quite different:

Theorem
(Sastry-Sin) Assume $q = 2^t$. Then the rank of $M_2(P, L)$ is

$$1 + \left(\frac{1 + \sqrt{17}}{2} \right)^{2t} + \left(\frac{1 - \sqrt{17}}{2} \right)^{2t}. \quad (13)$$

Nevertheless:
- Computer calculations of J.-L. Kim (up to $q = 16$) suggested that the inequality (6) is equality for even q as well.
- Ogul Arslan has found a proof (2007).