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Overview

I LDPC (low density parity check) codes have attracted
much attention recently, due to their good performance in
theory and practice.

I A main division is into random and structured types.
I One structured family, constructed using certain bipartite

graphs was studied by: J.-L. Kim, U. Peled, I. Perepelitsa,
V. Pless, and S. Friedland (2004)

I They conjectured the dimensions of the codes.
I We’ll describe the conjecture and its proof (with Q. Xiang).
I The proof involves the geometry of generalized

quadrangles and the representation theory of Sp(4, q).
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The codes LU(3, q)

I q, any prime power
I P∗, L∗ be two sets in bijection with Fq

3

I (a, b, c) ∈ P∗ is incident with [x , y , z] ∈ L∗ if and only if

y = ax + b and z = ay + c. (1)

I The binary incidence matrix M2(P∗, L∗) and its transpose
can be taken as parity check matrices of two codes.

I These codes are designated LU(3, q). We have:

dim LU(3, q) = q3 − rankM2(P∗, L∗).
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I Conjecture: If q is odd, the dimension of LU(3, q) is
(q3 − 2q2 + 3q − 2)/2.

I This number was known to be a lower bound when q is an
odd prime.
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The symplectic generalized quadrangle

I q, any prime power
I (V , (., .)), a 4-dimensional Fq-vector space with a

nonsingular alternating bilinear form
I e0,e1, e2, e3, a symplectic basis such that

(e0, e3) = (e1, e2) = 1
I x0, x1, x2, x3, coordinates for basis
I P = P(V ), the set of points of the projective space of V
I L, the set of totally isotropic 2-dimensional subspaces of V ,

considered as lines in P
I (P, L) is called the symplectic generalized quadrangle.
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Quadrangle property

Given any line and any point not on the line, there is a unique
line which passes though the given point and meets the given
line.
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I p0 = 〈e0〉 and `0 = 〈e0, e1〉.
I p⊥, the set of points on lines through the point p
I P1 = P \ p⊥0
I L1, the set of lines in L which do not meet `0

I We have new incidence systems (P1, L1), (P, L1), (P1, L).
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I We will see below that (P1, L1) is equivalent to the system
(P∗, L∗).

I So we want to prove:

Theorem
Assume q is odd. The rank of M2(P1, L1) equals
(q3 + 2q2 − 3q + 2)/2.

I A known result is:

Theorem
(Bagchi-Brouwer-Wilbrink) Assume q is a power of an odd
prime. Then the rank of M2(P, L) is (q3 + 2q2 + q + 2)/2.

I Note that the difference in ranks is 2q.
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Next, see (P1, L1) ∼= (P∗, L∗), for q any prime power.



Coordinates of P1

I x0, x1, x2, x3 be homogeneous coordinates of P
I p0 = 〈e0〉
I

P1 = {(x0 : x1 : x2 : x3) | x3 6= 0}
= {(a : b : c : 1) |, a, b, c ∈ Fq} ∼= Fq

3.
(2)
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Coordinates of lines in P(V )

I ei ∧ ej , 0 ≤ i < j ≤ 3, basis of the exterior square ∧2(V )

I p01, p02, p03, p12, p13, p23, homogeneous coordinates for
P(∧2(V ))

I If W is a 2-dimensional subspace of V then
∧2(W ) ∈ P(∧2(V )).

I If W = 〈(a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3)〉 then ∧2(W )
has coordinates pij = aibj − ajbi , its Grassmann-Plücker
coordinates.

I The totality of points of P(∧2(V )) obtained from all W
forms the set with equation p01p23 − p02p13 + p03p12 = 0,
called the Klein Quadric.
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Coordinates of L and L1

I L corresponds to the subset of points of the Klein quadric
which satisfy the additional linear equation p03 = −p12.

I `0 = 〈(1 : 0 : 0 : 0), (0 : 1 : 0 : 0)〉
I L1 is the subset of L given by p23 6= 0.
I The quadratic relation yields

L1
∼= {(z2 + xy : x : z : −z : y : 1) | x , y , z ∈ Fq}
∼= Fq

3.
(3)
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Incidence equations

I When is (a : b : c : 1) ∈ P1 on
(z2 + xy : x : z : −z : y : 1) ∈ L1?

I If the line is spanned by points with homogeneous
coordinates (a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3). The
given point and line are incident if and only if all 3× 3
minors of the matrix a b c 1

a0 a1 a2 a3
b0 b1 b2 b3

 (4)

are zero.
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I The four equations which result reduce to the two
equations

z = −cy + b, x = cz − a. (5)

I Hence (P1, L1) and (P∗, L∗) are equivalent.
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Relative dimensions and a bound

q is any prime power.
I F2[P], the vector space of all F2-valued functions on P
I Abuse notation slightly, identify points and lines with their

characteristic functions in F2[P].
I C(P, L), the subspace of F2[P] spanned by the ` ∈ L.
I C(P, L1), the subspace generated by lines in L1

I πP1 : F2[P] → F2[P1], natural projection map
I C(P1, L) = πP1(C(P, L)), C(P1, L1) = πP1(C(P, L1))



Relative dimensions and a bound

q is any prime power.
I F2[P], the vector space of all F2-valued functions on P
I Abuse notation slightly, identify points and lines with their

characteristic functions in F2[P].
I C(P, L), the subspace of F2[P] spanned by the ` ∈ L.
I C(P, L1), the subspace generated by lines in L1

I πP1 : F2[P] → F2[P1], natural projection map
I C(P1, L) = πP1(C(P, L)), C(P1, L1) = πP1(C(P, L1))



Relative dimensions and a bound

q is any prime power.
I F2[P], the vector space of all F2-valued functions on P
I Abuse notation slightly, identify points and lines with their

characteristic functions in F2[P].
I C(P, L), the subspace of F2[P] spanned by the ` ∈ L.
I C(P, L1), the subspace generated by lines in L1

I πP1 : F2[P] → F2[P1], natural projection map
I C(P1, L) = πP1(C(P, L)), C(P1, L1) = πP1(C(P, L1))



Relative dimensions and a bound

q is any prime power.
I F2[P], the vector space of all F2-valued functions on P
I Abuse notation slightly, identify points and lines with their

characteristic functions in F2[P].
I C(P, L), the subspace of F2[P] spanned by the ` ∈ L.
I C(P, L1), the subspace generated by lines in L1

I πP1 : F2[P] → F2[P1], natural projection map
I C(P1, L) = πP1(C(P, L)), C(P1, L1) = πP1(C(P, L1))



Relative dimensions and a bound

q is any prime power.
I F2[P], the vector space of all F2-valued functions on P
I Abuse notation slightly, identify points and lines with their

characteristic functions in F2[P].
I C(P, L), the subspace of F2[P] spanned by the ` ∈ L.
I C(P, L1), the subspace generated by lines in L1

I πP1 : F2[P] → F2[P1], natural projection map
I C(P1, L) = πP1(C(P, L)), C(P1, L1) = πP1(C(P, L1))



Relative dimensions and a bound

q is any prime power.
I F2[P], the vector space of all F2-valued functions on P
I Abuse notation slightly, identify points and lines with their

characteristic functions in F2[P].
I C(P, L), the subspace of F2[P] spanned by the ` ∈ L.
I C(P, L1), the subspace generated by lines in L1

I πP1 : F2[P] → F2[P1], natural projection map
I C(P1, L) = πP1(C(P, L)), C(P1, L1) = πP1(C(P, L1))



I Z ⊂ C(P, L1), a set of lines in L1 which maps bijectively
under πP1 to a basis of C(P1, L1)

I X , the set of the lines through p0 and let X0 = X \ {`0}
I Y be any q lines which meet `0 in the q distinct points

other than p0
I |X0 ∪ Y | = 2q (cf. Theorem 1).
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I X , the set of the lines through p0 and let X0 = X \ {`0}
I Y be any q lines which meet `0 in the q distinct points

other than p0
I |X0 ∪ Y | = 2q (cf. Theorem 1).
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Lemma
Z ∪ X0 ∪ Y is linearly independent over F2.

Corollary

dimF2 LU(3, q) ≥ q3 − dimF2 C(P, L) + 2q. (6)
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Proof of Theorem 1

Assume that q is odd. By Corollary 4 the proof of Theorem 1
will be completed if we can show that Z ∪ X0 ∪ Y spans C(P, L)
as a vector space over F2.



Geometric arguments

Lemma
Let ` ∈ L. Then the sum of all lines which meet ` (excluding `
itself) is the constant function 1.

Proof.
The function given by the sum takes the value q ≡ 1 at any
point of ` and value 1 at any point off `, by the quadrangle
property.
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Similarly:

Lemma
Let ` 6= `0 be a line which meets `0 at a point p. Let Φ` be the
sum of all lines in L1 which meet `. Then

Φ`(p′) =


0, if p′ = p;

q, if p′ ∈ ` \ {p};
0, if p′ ∈ p⊥ \ `;

1, if p′ ∈ P \ p⊥.

(7)

Corollary
Let p ∈ `0 and let `, `′ be two lines through p, neither equal to
`0. Then `− `′ ∈ C(P, L1).
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Some representation theory

Lemma
ker πP1 ∩ C(P, L) has dimension q + 1, with basis X.
Proof:

I Let Gp0 be the stabilizer in Sp(V ) of p0.
I

ker πP1 = F2[p⊥0 ] = F2[{p0}]⊕ F2[p0
⊥ \ {p0}] (8)

as an F2Gp0-module. Clearly F2[{p0}] is a one-dimensional
trivial F2Gp0-module.
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I We consider the following subgroups of Gp0 .

Q =

{( 1 a b c
0 1 0 b
0 0 1 −a
0 0 0 1

)
| a, b, c ∈ Fq

}
, Z (Q) =

{( 1 0 0 c
0 1 0 0
0 0 1 0
0 0 0 1

)
| c ∈ Fq

}
.

(9)
I Q C Gp0 , Q/Z (Q) is elementary abelian of order q2 and

Z (Q) acts trivially on p⊥0 .
I Since Q has odd order, it acts semisimply on F2[p⊥0 ] and

we can compute the decomposition.



I We consider the following subgroups of Gp0 .

Q =

{( 1 a b c
0 1 0 b
0 0 1 −a
0 0 0 1

)
| a, b, c ∈ Fq

}
, Z (Q) =

{( 1 0 0 c
0 1 0 0
0 0 1 0
0 0 0 1

)
| c ∈ Fq

}
.

(9)
I Q C Gp0 , Q/Z (Q) is elementary abelian of order q2 and

Z (Q) acts trivially on p⊥0 .
I Since Q has odd order, it acts semisimply on F2[p⊥0 ] and

we can compute the decomposition.



I We consider the following subgroups of Gp0 .

Q =

{( 1 a b c
0 1 0 b
0 0 1 −a
0 0 0 1

)
| a, b, c ∈ Fq

}
, Z (Q) =

{( 1 0 0 c
0 1 0 0
0 0 1 0
0 0 0 1

)
| c ∈ Fq

}
.

(9)
I Q C Gp0 , Q/Z (Q) is elementary abelian of order q2 and

Z (Q) acts trivially on p⊥0 .
I Since Q has odd order, it acts semisimply on F2[p⊥0 ] and

we can compute the decomposition.



I Applying Clifford’s Theorem, we have a F2Gp0-module
decomposition

F2[p⊥0 ] = T ⊕W , (10)

where T is the q + 2-dimensional space of Q-fixed points
and W is simple of dimension q2 − 1.

I The intersection

ker πP1 ∩ C(P, L) = F2[p⊥0 ] ∩ C(P, L), (11)

is an F2Gp0-submodule of F2[p⊥0 ].
I The q + 1 lines through p0 lie in the intersection,

accounting for q + 1 dimensions of T .
I We must argue that the intersection is no bigger than their

span. If it were, then by (10), F2[p⊥0 ]∩C(P, L) must contain
either W or all the Q-fixed points on F2[p⊥0 ].

I Both possibilities lead immediately to contradictions.
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Lemma
ker πP1 ∩ C(P, L1) has dimension q − 1, and basis the set of
functions `− `′, where ` 6= `0 is an arbitrary but fixed line
through p0 and `′ varies over the q − 1 lines through p0 different
from `0 and `.



Lemma
Z ∪ X0 ∪ Y spans C(P, L) as a vector space over F2.
Proof:

I By Lemma 9, the span of X0 and Z is equal to the span of
X0 and L1, since ker πP1 ∩C(P, L1) is contained in the span
of X0.

I We must show that the span of X0 ∪ L1 ∪ Y contains all
lines through `0, including `0.

I First, consider a line ` 6= `0 through `0. We can assume
that ` meets `0 at a point other than p0, since otherwise
` ∈ X0. Therefore ` meets `0 in the same point p as some
element `′ ∈ Y . Then Corollary 7 shows that ` lies in the
span of Y and L1.
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I The only line still missing is `0.
I By Lemma 5 applied to `0, we see that the constant

function 1 is in the span.
I Finally, we see from Lemma 6 that∑

`∈X0

Φ` = 1− `0, (12)

so we are done.
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Further research

I Consider the binary code LU(3, q) when q = 2t , t ≥ 1.
I Corollary 4 provides a lower bound for the dimension.
I Note, however, that dimF2 C(P, L) is quite different:

Theorem
(Sastry-Sin) Assume q = 2t . Then then the rank of M2(P, L) is

1 +

(
1 +

√
17

2

)2t

+

(
1−

√
17

2

)2t

. (13)

Nevertheless:
I Computer calculations of J.-L. Kim (up to q = 16)

suggested that the inequality (6) is equality for even q as
well.

I Ogul Arslan has found a proof (2007).
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