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1. INTR~DuCTI~N 

In [ 11, Alperin showed that the Green correspondence may be used to 
give a short proof of Brauer’s theorem on induced characters, thus 
establishing a connection between the elementary subgroups of that 
theorem and the vertices in the modular theory. In this paper we use 
similar reductions to prove an analogue (Theorem A) of Brauer’s result, 
valid in the integral Green ring, which may be seen as an attempt to make 
this connection more precise. Section 2 will be devoted to a proof of this 
result and a discussion of some of its implications. In Section 3 we prove a 
kind of converse to Theorem A, namely that the set 8(P) of subgroups, 
which is defined below, is the defect base for the G-functor a(OG), in the 
terminology of [7]. This generalises the corresponding result of Green [6], 
which shows that the set of elementary subgroups is minimal for Brauer’s 
theorem. 

2. THE INDUCTION THEOREM 

Let G be a finite group and p a prime. Choose a finite extension R, of 
Z,, the ring of p-adic integers, whose field of quotients is a splitting field 
for all subgroups of G, and let R be the completion of the maximal 
unramified extension of R,, and S the field of quotients of R. Let (rr) be the 
maximal ideal of R. Then the residue field i? := R/(n) is algebraically closed 
of characteristic p. Let 0 E {R, R}. We shall be concerned with OG-modules 
which are finitely generated and free over 0. Our choice of 0 means that 
every indecomposable BG-module is absolutely indecomposable. We shall 
use the following notation: 
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atOG) the integral Green ring of OG; 

4W H) the H-projective ideal in a( COG), for H < G; 

G,(@G) the Grothendieck ring of COG; 
Char,(G) the (ordinary) character ring of G. 

Variations of the above may be used but their meanings should be clear. 
We use the symbol “0” for multiplication in the Green ring. No confusion 
results since this product extends the usual tensor product of modules over 
0. As this tensor product preserves exactness it induces a product on 
G,(OG). We also abuse notation by identifying a module with the class of 
a(0G) which it represents. 

If H< G and N is a OH-module, the mapping NH NC extends to a 
linear map u(LDH) + u(CoG). Moreover, induction preserves exactness so we 
have an induced induction map G,(OH) -+ G,(OG). Thus for any collection 
of subgroups of G, we may define in an obvious way a linear map, which 
we shall also call induction, from the disjoint sums of their Green rings to 
u(CoG). The same applies to Grothendieck rings and in both cases the 
image of the induction map is an ideal. 

Let V be a fixed p-subgroup of G and define J?(V) to be the set 

{H<GIH= WX E, W dc V, E is an elementary $-subgroup}. 

Clearly, if HE a(V) then the image of u(OH) under the induction map lies 
in u(OG, V). Our main result can now be stated. 

THEOREM A. The induction map 

c 4OW * u(OG, V) 
HEI 

is surjective. 

Remark. Theorem A can be obtained via results of A. Dress on relative 
Grothendieck rings [5]. We shall present a direct proof. 

Before starting on the proof of Theorem A we state a reformulation in 
terms of modules, and some familiar facts which can be read off from the 
theorem. 

THEOREM A’. Let M be a V-projective OG-module. Then there exist 
modules N, and N, which are sums of modules induced from subgroups in 
a(V) such that 
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In fact, it will be evident from the proof of Theorem A that given M, one 
can find a finite extension of Z, for which this holds. 

COROLLARY 1. Let 0’ E 0 be an extension (of fields or local principal 
ideal domains) and let M be a V-projective Lo’G-module. Then rank,. A4 is 
divisible by 1 P : VI, where V< P E SylJG). 

Proof All summands of M @,, 8 are V-projective and 

rank&M 0,. 0) = rank,. M. 

COROLLARY 2. Let 1 be the character afforded by a V-projective 
R’G-module (R’ s R an extension of local p.i.d.s). Then x(x) = 0 unless the 
p-part of x is conjugate to an element of V. 

Proof: We may assume that R’ = R without loss of generality, and 
apply Theorem A’. 

COROLLARY 3. The Brauer character of a V-projective RG-module is the 
restriction to the p-regular elements of the difference of two (ordinary) 
characters afforded by V-projective RG-modules. 

Proof For HE a(V) it is clear that the Brauer characters are restric- 
tions of ordinary characters, automatically V-projective. 

Corollary 3 generalises the Brauer lifting and was first proved by 
M. Broue in [2]. 

COROLLARY 4. Let 1 be the character afforded by a V-projective 
RG-module. Then x E CH ind,,,(Char,( H)), where the sum runs over elemen- 
tary subgroups H with cO,( H) < V. 

Proof. By Theorem A we are reduced to the case GE &‘(V). In this case 
every elementary subgroup satisfies or(H) < V so Brauer’s theorem gives 
the result. 

We remark that the hypotheses of Corollary 4 hold when x lies in a 
p-block with defect group V. 

Of course, these corollaries may be proved separately by much quicker 
methods. In fact we shall need to prove Corollary 4 in the case V= 1 in 
Lemma 1. This result is the first step in the proof of Theorem A by induc- 
tion on [VI and 1GI. 

LEMMA 1. 

is surjective. 

c 48H) ind a(LoG, V) 
HEB(I) 
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ProoJ: It suffices to prove the corresponding statement for the charac- 
ters of projective &G-modules, since all projective indecomposable 
EC-modules lift uniquely to these. We must show that for any projective 
character @, we have 

@= 1 AHG, (1) 
HE&(l) 

where ,IH E Char,(H). By Brauer’s theorem, 

LY=C PHG? pH E Char,(H), 
H 

where the summation is over all elementary subgroups. Thus 

@=@.l.=C(@,p,)G. 
H 

This is not yet in the form of (1 ), since we still have to eliminate those sub- 
groups H for which t!&(H) # 1. However, QH pH is a projective character of 
H, and H = OP( H) x Q for some $-subgroup Q. Thus all projective charac- 
ters are induced from Q, which permits the desired elimination and com- 
pletes the proof of the lemma. 

Next we state two well-known results which we shall use to prove 
Theorem A. 

LEMMA 2 (see [4], p. 448). Let d denote the set of elementary subgroups 
of G. Then 

is surjective. 

1 Go(-) 3 G,(RG) 
HE& 

LEMMA 3 ( [3], Lemma 1). Suppose H u G and let x E a(LoG, H). If y 
and z are elements of a(O(G/H)), regarded as elements of a(OG) by injlation, 
which both represent the same element of G,(OG), then 

x.y=x.z. 

We may now prove Theorem A, arguing by induction on ) VI and ICI. 
The case 1 T/J = 1 is Lemma 1. Suppose then that M is an indecomposable 
OG-module with nontrivial vertex V, and let f(M) be its Green correspon- 
dent with respect to NJ V). Then 
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where Ni has vertices properly contained in V. By induction, we may 
therefore assume that V Q G. Now regard the trivial module I, as a 
O(G/V)-module. By Lemma 2 in the case 0 = R, and by Brauer’s theorem if 
0 = R, both applied to G/V, there exists an element j~a(O(G/v)) which 
represents the identity element of G,(B(G/V)) and which is virtually 
induced from elementary subgroups of G/V. Inflating to a(OG) we have an 
element j virtually induced from the inverse images in G of elementary 
subgroups of G/V which represents the identity element of G,(O(G)). By 
Lemma 3 we have 

so we conclude that M is virtually induced from the subgroups described 
above. Therefore, by induction, we may assume that G is itself one of these 
subgroups, that is, that G/V is elementary. Let C be a p-complement in G. 
Then VC a G and GIVC is a p-group. Theorem A is now a consequence of 
Green’s indecomposability theorem. 

Remark. It is only in applying Green’s indecomposability theorem that 
we have used the full strength of the hypothesis on Lo. Thus, it is possible to 
obtain analogous induction theorems over arbitrary fields K by replacing 
the set b(V) by a suitable set J?J V) of subgroups which are “K-elementary 
modulo V,” though one may no longer insist that the Sylow p-subgroups of 
elements of E’(V) be contained in a conjugate of V. 

3. MINIMALITY OF cF'( V) 

The classical case. Green [6] has observed that a set 9 of subgroups of 
G such that 

(a) 9 is closed under taking subgroups and conjugates; 
(b) zHE 9 Char,(H) jind Char,(G) is surjective 

necessarily contains all elementary subgroups of G. We investigate the 
analogous question for a(OG, V) and the set a(V). 

DEFINITION. Let E be a set of subgroups of G. Define j,(X) to be the 
collection of all subgroups of all conjugates of subgroups in x. We say that 
X is j,-closed if X =j,(%). 

Suppose that for each p-subgroup V of G, Q(G, V) is a set of subgroups 
of G, minimal subject to 

(a) 9(G, V) is j,-closed; 

(b) C HE9(G,YJ a(OH, Hn V) +i”d a(CoG, V) is surjective; 
(c) W< V implies Q(G, W) s 9(G, V). 
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We notice immediately that we have 9(G, V) E a(V), because 
9(G, V) n E(V) clearly satisfies (a) and (c) and if HE 9(G, V), then by 
Theorem A, a(OH, Hn V) is the image of the induction map from those 
subgroups of H lying in d(H n V) E b(V). In particular the Sylow 
p-subgroup of H is contained in a conjugate of V, for each HE 9(G, V). 

LEMMA 4. 9(G, 1) = a( 1) 

Sketch of proof: First we observe that B( 1) satisfies (a)-(c). We now 
follow Green’s argument [6]; it is clear that 9(G, 1) must contain all cyclic 
@-subgroups. One then shows that if a p’-elementary subgroup (x) x Q is 
not in 9(G, 1 ), where Q is a nontrivial q-subgroup, then for every projec- 
tive character @, we have @(x)/q is an algebraic integer, which is contrary 
to the fact that the span of the projective characters over the algebraic 
integers contains a function which has p-power value on every p-regular 
element. 

LEMMA 5. Suppose V 4 G and 9F is a j,-closed set of subgroups of G 
satisfying: 

(a) Zf HE 57 then the Sylow p-subgroups of H are contained in V; 

(b) Every indecomposable OG-module M with vertex V and V con- 
tained in its kernel may be written as 

where yH E a( OH) and HE %. 

Then 97 2 &(V). In particular 9(G, V) = d(V). 
. 

ProoJ: The indecomposable OG-modules with vertex V and V in their 
kernels are precisely the projective indecomposable O( G/ V)-modules. By 
Lemma 4, for each subgroup XE 8( V/V), there is a subgroup HE ST such 
that HV/V= X. We show that in fact H may be chosen to contain V. Let 
M be a projective indecomposable B(G/V)-module, regarded as a 
OG-module, and suppose we have 

MO C 1 aiNi,H’ z C 1 bjLj,KG, 
H i K i 

(2) 

where the ai and bi are natural numbers, the groups H, K run through X, 
and Ni,H, Lj,K are indecomposable OH- and OK-modules, respectively. NOW 
Ni,HG has a summand which has vertex V and V in its kernel if and only if 
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N,,, has both these properties, because Vd G. Therefore, V< H in this 
case. Thus, we must have 

MO c’ c’ a, N,,HG g 1’ c’ b, Lj,KG, 
H i K i 

where the primes indicate that we omit from (2) those subgroups which do 
not contain V and those modules not having V as vertex and V in their 
kernels. This shows that X must contain all the inverse images of sub- 
groups in a( V/V). Let W >Q EE &?‘( V). Then VE/VE b( V/V), so VEE .!Z, and 
then WEE % by j,-closure, which proves the main statement. The other 
statement is immediate since a(V) satisfies (ak(c). 

THEOREM B. 9(G, V) = a( V). 

Proof We argue by induction on 1 VI, using Lemma 4 to start. By con- 
dition (c) and the inductive hypothesis, it will suffice to show that 9(G, V) 
contains all subgroups of the form V>a E, where E is an elementary 
$-subgroup of G. Now all these subgroups lie in NJ V), so by Lemma 5, 
we are reduced to showing that for any OG-module A4 with vertex V, the 
Green correspondent f(M) with respect to NJ V) can be written as an 
integral linear combination of modules induced from subgroups of NJ V) 
which belong to 9(G, V). By (b), we have 

h4= c YHG, 
HE~(G,Y) 

for some y, E a(OH). We split this sum as 

kf= 1 z,G+&G, (3) 
H2GV K 

where zH is the part of y, involving indecomposable modules with vertex 
V. Every indecomposable module occurring in the second term has a vertex 
properly contained in V. By replacing the subgroups in the first term by 
suitable conjugates, we may assume that they are contained in NJ V). We 
consider the element 

N= c zHNG(“) 
H 

of a(ON,( V), V) obtained from the subgroups and modules in the first 
term of (3). Each indecomposable module occurring with nonzero coef- 
ficient in N has vertex V, since Va NG( V). Therefore by (3) and the Green 
correspondence, we must have N =J(M), which completes the proof of 
Theorem B. 
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Remark. Our definition of 9(G, V) differs from Green’s definition of a 
defect base in the addition of condition (c). If V is a Sylow p-pubgroup 
then Theorem B can be proved using only (a) and (b): Let IV< V. Com- 
posing the map of (b) with restriction to NJ IV) and applying Mackey 
decomposition, we see that the unit of a(0N,( IV)) is in the image of the 
induction map from subgroups in 9( G, I’). By Theorem A, a( LoiV,( IV), IV) 
is the image of the induction map from subgroups in 8( IV). Thus, multiply- 
ing the images of these two maps and applying the Mackey tensor identity, 
we see that a(ON,( IV), IV) is in the image of the induction map from 
a( IV) n 9(G, V). Then by Lemma 5, every subgroup of NJ IV) which 
belongs to b( IV) also belongs to 9(G, V). Since every subgroup in &p(V) is 
conjugate to one of this form for a suitable choice of W < P’, this shows 
that a(V) z 9(G, V). 
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