# The p-rank of the Sp(4, q) generalized quadrangle

David Chandler, Academia Sinica Peter Sin, U. Florida Qing Xiang, U. Delaware

AMS special session on Designs, Delaware, April 2nd, 2005

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

## 1. Introduction

- $\bullet k = \mathbf{F}_q, q = p^t$
- V, a 4-dimensional vector space over k with a nonsingular alternating bilinear form.
- $P = \mathbf{P}(V)$ , the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P.

The sets P and L form the points and lines of the symplectic generalized quadrangle. Let A be the incidence matrix of (P, L), considered as a matrix over k. We would like to know the rank of A.

#### Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{\mathsf{GL}}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

$$p=2$$

(Sastry-Sin, 1997 [10]):

### Theorem 1.1.

$$\operatorname{rank}(A) = 1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2t} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2t}.$$

#### Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

We can now solve the general case.

**Theorem 1.2.** Let p be an odd prime.

The rank of A is equal to  $1 + \alpha_1^t + \alpha_2^t$ , where

$$\alpha_1, \alpha_2 = \frac{p(p+1)^2}{4} \pm \frac{p(p+1)(p-1)}{12} \sqrt{17}.$$

Note: The same formula also holds for p = 2.

#### Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

## 1.1. Historical notes

When q = p, the rank was first found by De Caen and Moorhouse (unpublished), cf.[11]. Machine computations for the case q = 9 and the case q = 27 done by Eric Moorhouse and Dave Saunders respectively were helpful in the early stages of our investigations.

#### Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\mathsf{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

# 2. Representation-theoretic formulation

We consider the incidence map

$$\eta: k[L] \to k[P],$$

sending an isotropic 2-subspace to its characteristic function. This is a map of  $k\mathrm{Sp}(V)$ -modules, and the p-rank of the incidence matrix is the dimension of  $\mathrm{Im}\eta$ .

Introduction

Representation- . . .

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{\mathsf{GL}}(V)$ - . . .

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

Theorem 1.2 is deduced from a stronger result describing the complete submodule lattice of the  $k\mathrm{Sp}(V)$ -module  $\mathrm{Im}\eta$ . To explain this deeper result we need some more notation. Let

$$\mathcal{H} = \{ \mathbf{s} = (s_0, s_1, \dots, s_{t-1}) \mid 1 \le s_j \le 3, (0 \le j \le t - 1) \}.$$

 $\mathcal{H}$  has the natural product partial order. Let  $\mathcal{H}_2 \subset \mathcal{H}$  be the those tuples  $\leq (2, 2, ...2)$ .

#### Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a kGL(V)-...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

**Theorem 2.1.** (i) Im $\eta \cong k \oplus M$ , where M is a multiplicity-free module with  $2^t$  composition factors  $L^+(\mathbf{s}), \mathbf{s} \in \mathcal{H}_2$ .

(ii) dim  $L^+(\mathbf{s}) = \prod_{j=0}^{t-1} d_{ps_{j+1}-s_j}$ , where

$$d_{p-1} = \frac{p(p+1)(p+2)}{6},$$

$$d_{p-2} = \frac{(p-1)p(p+1)}{6},$$

$$d_{2p-1} = \frac{2(p-1)p(p+1)}{3},$$

$$d_{2p-2} = \frac{p(p+1)(2p+1)}{6}.$$

(iii) The submodule lattice of M is isomorphic to the lattice of ideals of  $\mathcal{H}_2$  under the map taking a submodule to its set of composition factors.

Introduction

Representation- . . .

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a kGL(V)-...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

## 3. Theorem $2.1 \Longrightarrow \text{Theorem } 1.2$

We show that  $\dim M = \operatorname{rank} A - 1$  satisfies a quadratic recursion in t.

- dim M(t) is a sum over  $\mathcal{H}(t)_2$  of t-fold products of the  $d_{\lambda}$ .
- Let  $r_{ab}(t) = \text{contribution to dim } M(t) \text{ from those } \mathbf{s} \in \mathcal{H}(t)_2 \text{ with } s_0 = a, s_{t-1} = b.$

$$r_{21}(t) = r_{21}(t-1)d_{p-1} + r_{22}(t-1)\frac{d_{p-2}d_{2p-1}}{d_{2p-2}}.$$

$$r_{22}(t-1) = r_{21}(t-2)d_{2p-2} + r_{22}(t-2)d_{2p-2}.$$

These imply

$$r_{21}(t) = r_{21}(t-1)(d_{p-1}+d_{2p-2}) + r_{21}(t-2)(d_{p-2}d_{2p-1}+d_{p-1}d_{2p-2}).$$

•  $r_{11}$ ,  $r_{12}$  and  $r_{22}$  satisfy the same recursion. Theorem 1.2 now follows, using the known cases t = 1 and t = 2.

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

# 4. k[P] as a kGL(V)-module

From (Bardoe-Sin, 2000 [1]) we recall the following facts.

- $k[P] = k \oplus Y$ , where Y is a multiplicity-free, indecomposable module.
- The composition factors of Y are parametrized by  $\mathcal{H}$ .
- Given any kGL(V)-submodule of Y, the set of its composition factors is an ideal in the partially ordered set  $\mathcal{H}$  and that this correspondence is an order isomorphism from the submodule lattice of Y to the lattice of ideals in  $\mathcal{H}$ .
- Let  $\mathbf{s} \in \mathcal{H}$  and let  $\lambda_j = ps_{j+1} s_j$ . Let  $S^{\lambda}$  be the degree  $\lambda$  component in the truncated polynomial ring  $k[x_1, x_2, x_3, x_4]/(x_i^p; 1 \le i \le 4)$ . Then

$$L(\mathbf{s}) \cong S^{\lambda_0} \otimes (S^{\lambda_1})^{(p)} \otimes \cdots \otimes (S^{\lambda_{t-1}})^{(p^{t-1})}.$$

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\mathsf{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1
Related results and ...



Back

Full Screen

Close

## 4.1. The submodule of all lines

- Let C = submodule of k[P] generated by the characteristic functions of all 2-dimensional subspaces of V.
- $C = k \oplus Y_{\leq 2}$ , where  $Y_{\leq 2}$  is the submodule of Y given by the set  $\mathcal{H}_2$  of  $\mathcal{H}$ -tuples  $\leq (2, 2, ...2)$ .
- The possible  $\lambda_j$  are p-2, p-1, 2p-1 and 2(p-1).
- Clearly,  $\text{Im}\eta \leq C$ .

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\mathsf{GL}(V)$ - . . .

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

# 5. Action of Sp(V)

We now consider the submodule structure of k[P] and C under the action of Sp(V).

- The composition factors are known by work of Suprunenko-Zalesskii [12] and Lahtonen [7].
- How does a GL(V) composition factor  $L(\mathbf{s})$  decompose upon restriction to Sp(V)?
- The modules  $S^{\lambda}$  all remain simple except when  $\lambda = 2(p-1)$ , in which case we have

$$S^{2(p-1)} = S^+ \oplus S^-,$$

where  $S^+$  and  $S^-$  are simple  $k\operatorname{Sp}(V)$ -modules of dimensions  $\frac{p(p+1)(2p+1)}{6}$  and  $\frac{p(p-1)(2p-1)}{6}$  respectively.

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

• The simple kGL(V)-module

$$L(\mathbf{s}) \cong S^{\lambda_0} \otimes (S^{\lambda_1})^{(p)} \otimes \cdots \otimes (S^{\lambda_{t-1}})^{(p^{t-1})}. \tag{1}$$

decomposes as a direct sum of  $2^r$  nonisomorphic simple modules, if r of the  $\lambda_j$  equal 2(p-1).

• Thus, the  $k\operatorname{Sp}(V)$ -composition factors of k[P] are given by types, or  $\mathcal{H}$ -types, together with the additional choice of r signs.

**Definition 5.1.** Fix  $\mathbf{s} \in \mathcal{H}$ .  $L^+(\mathbf{s}) :=$  the simple  $k\mathrm{Sp}(V)$ -submodule of  $L(\mathbf{s})$  where all signs are chosen to be +, that is, we choose the  $S^+$  summands of each  $S^{2(p-1)}$  appearing in (1).

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a kGL(V)-...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

## 6. Proof of Theorem 2.1

- We construct a  $k\operatorname{Sp}(V)$ -submodule  $E \leq C$  which contains  $\operatorname{Im} \eta$  and which has the correct composition factors.
- Then we show that  $E = \text{Im}\eta$ .

Introduction
Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\mathit{GL}(V)$ - . . .

Action of Sp(V)

Proof of Theorem 2.

Related results and . . .



Back

Full Screen

Close

## 6.1. Upper bound: the module E

• Let  $\overline{C}_i$  be the quotient of C corresponding to

$$\{ \mathbf{s} \in \mathcal{H} \mid (1, \dots, 1, 2, 2, 1, \dots, 1) \le \mathbf{s} \le (2, \dots, 2) \},$$

where the first of the two 2s occurs in the j-th position.

**Theorem 6.1.** There exists a kGL(V)-module  $D_j$  such that

$$\overline{D}_j \otimes S^{2(p-1)^{(p^j)}} \cong \overline{C}_j.$$

Theorem 6.1 stems from the natural as a GL(V)-algebra structure of k[V].

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a kGL(V)-...

Action of Sp(V)

Proof of Theorem 2

Related results and . . .



Back

Full Screen

Close

Corollary 6.2. As kSp(V)-modules, we have

$$\overline{C}_j \cong (\overline{D}_j \otimes (S^+)^{(p^j)}) \oplus (\overline{D}_j \otimes (S^-)^{(p^j)}).$$

- Let  $C_j^+$  be the preimage of the + component of  $\overline{C}_j$  in Corollary 6.2.
- Define  $E := \bigcap_{j=0}^{t-1} C_j^+$ .
- By construction, the  $k\mathrm{Sp}(V)$ -composition factors of E are precisely the modules  $L^+(\mathbf{s})$ , one for each  $\mathbf{s} \in \mathcal{H}_2$ .
- E contains the characteristic function of an isotropic 2-subspace, so  $E \supseteq \text{Im}\eta$ .

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2

Related results and . .



Back

Full Screen

Close

## **6.2.** Lower bound: submodule structure of E

- Each ideal I of  $\mathcal{H}_2$ , defines a submodule of C. whose intersection with E is a  $k\mathrm{Sp}(V)$ -submodule of C whose composition factors are precisely the modules  $L^+(\mathbf{s})$  for  $\mathbf{s} \in I$ .
- Similarly, each coideal of  $\mathcal{H}_2$  defines quotients of E and intersections of ideals with coideals correspond to subquotients of E.
- For any  $\mathbf{s}, \mathbf{s}' \in \mathcal{H}_2$ , with  $\mathbf{s}'$  immediately below  $\mathbf{s}$ , there is a subquotient U of E giving a short exact sequence of  $k\mathrm{Sp}(V)$ -modules

$$0 \to L^+(\mathbf{s}') \to U \to L^+(\mathbf{s}) \to 0. \tag{2}$$

• Since E is multiplicity-free as a  $k\operatorname{Sp}(V)$ -module, this subquotient U is the unique one with these two composition factors.

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a kGL(V)-...

Action of Sp(V)

Proof of Theorem

Related results and . .



Back

Full Screen

Close

**Theorem 6.3.** The exact sequence (2) does not split.

- This implies that any submodule which has  $L^+(\mathbf{s})$  as a composition factor must also have  $L^+(\mathbf{s}')$ .
- Since  $\operatorname{Im} \eta$  has  $L^+(2, \ldots, 2)$  as a composition factor, it follows that all  $L^+(\mathbf{s})$  with  $\mathbf{s} \in \mathcal{H}_2$  are composition factors of  $\operatorname{Im} \eta$ , forcing  $\operatorname{Im} \eta = E$ .
- This completes the proof of Theorem 2.1

• Theorem 6.3 is proved by explicit computations with a monomial basis. Certain *shift operators* defined in David Chandler's thesis [2] are crucial. Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a kGL(V)-...

Action of Sp(V)

Proof of Theorem

Related results and . .



Back

Full Screen

Close

# 7. Related results and work in progress

- When q = p, the  $k\operatorname{Sp}(V)$ -submodule structure of k[V] for arbitrary dimension was worked out in [11].
- Jeff Lataille [8],[9] worked out the  $k\mathrm{Sp}(V)$ -module structure over for F[V] when  $q=p\neq 2$  and arbitrary dimension, for F of characteristic  $\neq p$ . He also computed the integral invariants of the incidence maps from isotropic subspaces (and their perps) to points.
- In the case q = p = 2, the kSp(V)-submodule structure is not completely known, but there are several ways to describe it in terms of nice filtrations. The composition factors are known.
- CSX are currently trying to work out the submodule structure of k[V] for arbitrary odd q and the integral invariants of the incidence map from isotropic subspaces (and their perps) to points. The invariants for arbitrary subspaces were computed in [3]

Introduction

Representation- . . .

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{GL}(V)$ -...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close

#### References

- [1] M. Bardoe, P. Sin, The permutation modules for  $GL(n+1, \mathbb{F}_q)$  acting on  $\mathbb{P}^n(\mathbb{F}_q)$  and  $\mathbb{F}_q^{n+1}$ , J. Lond. Math. Soc. **61** (2000) 58–80.
- [2] D. B. Chandler, Ph.D Thesis, U. of Delaware (2004).
- [3] D. B. Chandler, Q. Xiang, P. Sin, The Invariant Factors of the Incidence Matrices of points and subspaces in PG(n,q) and AG(n,q), To appear in *Trans. Amer. Math. Soc.* (2005)
- [4] C. W. Curtis, Modular representations of finite groups with split BN-pairs, pages 57-95 in Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, Springer, Berlin (1969).
- [5] D. de Caen, E. Moorhouse, The p-rank of the  $\mathrm{Sp}(4,p)$  generalized quadrangle, Unpublished (1998)
- [6] N. Hamada, The rank of the incidence matrix of points and d-flats in finite geometries, J. Sci. Hiroshima Univ. Ser. A-I **32** (1968), 381–396.
- [7] J. Lahtonen, On the submodules and composition factors of certain induced modules for groups of type  $C_n$ , J. Algebra **140** (1991), 415–425.
- [8] J. M. Lataille, The elementary divisors of the incidence matrices between certain subspaces of a finite symplectic space, J. Algebra **268** (2003), 444–462.
- [9] J. M. Lataille, P. Sin, P. H. Tiep, The modulo 2 structure of rank 3 permutation modules for odd characteristic symplectic groups, J. Algebra **268** (2003), 463–483.
- [10] N. S. N. Sastry, P. Sin, The code of a regular generalized quadrangle of even order, Proc. Symposia in Pure Mathematics **63** (1998), 485–496.

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a kGL(V)-...

Action of Sp(V)

Proof of Theorem 2.1

Related results and . .



Back

Full Screen

Close

- [11] P. Sin, The permutation representation of  $\operatorname{Sp}(2m, \mathbb{F}_p)$  acting on the vectors of its standard module, J. Algebra **241**, (2001), 578–591.
- [12] I. D. Suprunenko, A. E. Zalesskii, Reduced symmetric powers of natural realizations of the groups  $SL_m(P)$  and  $Sp_m(P)$  and their restrictions to subgroups, Siberian Mathematical Journal (4) **31**, (1990), 33–46.

Introduction

Representation-...

Theorem  $2.1 \Longrightarrow \dots$ 

k[P] as a  $k\operatorname{\mathsf{GL}}(V)$ - . . .

Action of Sp(V)

Proof of Theorem 2.1

Related results and . . .



Back

Full Screen

Close