The p-rank of the $\operatorname{Sp}(4, q)$ generalized quadrangle

David Chandler, Academia Sinica

Introduction

Representation-
Theorem $2.1 \Longrightarrow$ $k[P]$ as a $k G L(V)-$

Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and

Peter Sin, U. Florida
Qing Xiang, U. Delaware

AMS special session on Designs, Delaware, April 2nd, 2005

1. Introduction

- $k=\mathbf{F}_{q}, q=p^{t}$
- V, a 4-dimensional vector space over k with a nonsingular alternating bilinear form.
- $P=\mathbf{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2 -dimensional subspaces of

Introduction

Representation-
Theorem $2.1 \Longrightarrow$
$k[P]$ as a $k G L(V)-$
Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and.
 V, considered as lines in P.

The sets P and L form the points and lines of the symplectic generalized quadrangle. Let A be the incidence matrix of (P, L), considered as a matrix over k. We would like to know the rank of A.
$p=2$
(Sastry-Sin, 1997 [10]):

Theorem 1.1.

$$
\operatorname{rank}(A)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}
$$

Introduction

Representation-
Theorem $2.1 \Longrightarrow$ $k[P]$ as a $k G L(V)-$

Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and.

```
|||
```

We can now solve the general case.
Theorem 1.2. Let p be an odd prime.
The rank of A is equal to $1+\alpha_{1}^{t}+\alpha_{2}^{t}$, where

$$
\alpha_{1}, \alpha_{2}=\frac{p(p+1)^{2}}{4} \pm \frac{p(p+1)(p-1)}{12} \sqrt{17} .
$$

Note: The same formula also holds for $p=2$.

Introduction

Representation-
Theorem $2.1 \Longrightarrow$ $k[P]$ as a $k G L(V)-$

Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and.

1.1. Historical notes

When $q=p$, the rank was first found by De Caen and Moorhouse (unpublished), cf.[11]. Machine computations for the case $q=9$ and the case $q=27$ done by Eric Moorhouse and Dave Saunders respectively were helpful in the early stages of our investigations.

2. Representation-theoretic formulation

Introduction

Representation-

Theorem $2.1 \Longrightarrow$
$k[P]$ as a $k G L(V)-$
Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and

We consider the incidence map

$$
\eta: k[L] \rightarrow k[P],
$$

sending an isotropic 2-subspace to its characteristic function. This is a map of $k \operatorname{Sp}(V)$-modules, and the p-rank of the incidence matrix is the dimension of $\operatorname{Im} \eta$.

Theorem 1.2 is deduced from a stronger result describing the complete submodule lattice of the $k \operatorname{Sp}(V)$-module $\operatorname{Im} \eta$. To explain this deeper result we need some more notation. Let

$$
\mathcal{H}=\left\{\mathbf{s}=\left(s_{0}, s_{1}, \ldots, s_{t-1}\right) \mid 1 \leq s_{j} \leq 3,(0 \leq j \leq t-1)\right\}
$$

\mathcal{H} has the natural product partial order. Let $\mathcal{H}_{2} \subset \mathcal{H}$ be the those tuples $\leq(2,2, \ldots 2)$.

Introduction

Representation-

Theorem $2.1 \Longrightarrow$
$k[P]$ as a $k G L(V)-$
Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and.

Theorem 2.1. (i) $\operatorname{Im} \eta \cong k \oplus M$, where M is a multiplicity-free module with 2^{t} composition factors $L^{+}(\mathbf{s}), \mathbf{s} \in \mathcal{H}_{2}$.
(ii) $\operatorname{dim} L^{+}(\mathbf{s})=\prod_{j=0}^{t-1} d_{p s_{j+1}-s_{j}}$, where

$$
\begin{aligned}
d_{p-1} & =\frac{p(p+1)(p+2)}{6} \\
d_{p-2} & =\frac{(p-1) p(p+1)}{6} \\
d_{2 p-1} & =\frac{2(p-1) p(p+1)}{3}, \\
d_{2 p-2} & =\frac{p(p+1)(2 p+1)}{6} .
\end{aligned}
$$

Theorem $2.1 \Longrightarrow$ $k[P]$ as a $k G L(V)-$ Action of $S p(V)$
Proof of Theorem 2.1
Related results and .

4	4	\bullet	\bullet

(iii) The submodule lattice of M is isomorphic to the lattice of ideals of \mathcal{H}_{2} under the map taking a submodule

3. Theorem $2.1 \Longrightarrow$ Theorem 1.2

We show that $\operatorname{dim} M=\operatorname{rank} A-1$ satisfies a quadratic recursion in t.

- $\operatorname{dim} M(t)$ is a sum over $\mathcal{H}(t)_{2}$ of t-fold products of the d_{λ}.
- Let $r_{a b}(t)=$ contribution to $\operatorname{dim} M(t)$ from those $\mathbf{s} \in$ $\mathcal{H}(t)_{2}$ with $s_{0}=a, s_{t-1}=b$.

$$
\begin{aligned}
& r_{21}(t)=r_{21}(t-1) d_{p-1}+r_{22}(t-1) \frac{d_{p-2} d_{2 p-1}}{d_{2 p-2}} \\
& r_{22}(t-1)=r_{21}(t-2) d_{2 p-2}+r_{22}(t-2) d_{2 p-2}
\end{aligned}
$$

Introduction

$k[P]$ as a $k G L(V)-$
Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and

These imply
$r_{21}(t)=r_{21}(t-1)\left(d_{p-1}+d_{2 p-2}\right)+r_{21}(t-2)\left(d_{p-2} d_{2 p-1}+d_{p-1} d_{2 p-2}\right)$.

- r_{11}, r_{12} and r_{22} satisfy the same recursion. Theorem 1.2 now follows, using the known cases $t=1$ and $t=2$.

4. $k[P]$ as a $k \mathbf{G L}(V)$-module

From (Bardoe-Sin, 2000 [1]) we recall the following facts.

- $k[P]=k \oplus Y$, where Y is a multiplicity-free, indecomposable module.
- The composition factors of Y are parametrized by \mathcal{H}.
- Given any $k \mathrm{GL}(V)$-submodule of Y, the set of its composition factors is an ideal in the partially ordered set \mathcal{H} and that this correspondence is an order isomorphism from the submodule lattice of Y to the lattice of ideals in \mathcal{H}.
- Let $\mathbf{s} \in \mathcal{H}$ and let $\lambda_{j}=p s_{j+1}-s_{j}$. Let S^{λ} be the degree λ component in the truncated polynomial ring $k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{i}^{p} ; 1 \leq i \leq 4\right)$. Then

$$
L(\mathbf{s}) \cong S^{\lambda_{0}} \otimes\left(S^{\lambda_{1}}\right)^{(p)} \otimes \cdots \otimes\left(S^{\lambda_{t-1}}\right)^{\left(p^{t-1}\right)}
$$

Introduction

Theorem $2.1 \Longrightarrow$

4.1. The submodule of all lines

- Let $C=$ submodule of $k[P]$ generated by the characteristic functions of all 2-dimensional subspaces of V.

- $C=k \oplus Y_{\leq 2}$, where $Y_{\leq 2}$ is the submodule of of Y given by the set \mathcal{H}_{2} of \mathcal{H}-tuples $\leq(2,2, \ldots 2)$.
- The possible λ_{j} are $p-2, p-1,2 p-1$ and $2(p-1)$.
- Clearly, $\operatorname{Im} \eta \leq C$.

Introduction

Representation-
Theorem $2.1 \Longrightarrow$

5. Action of $\operatorname{Sp}(V)$

We now consider the submodule structure of $k[P]$ and C under the action of $\operatorname{Sp}(V)$.

- The composition factors are known by work of Suprunenko-Zalesskii [12] and Lahtonen [7].
- How does a GL(V) composition factor $L(\mathbf{s})$ decompose upon restriction to $\operatorname{Sp}(V)$?
- The modules S^{λ} all remain simple except when $\lambda=$ $2(p-1)$, in which case we have

$$
S^{2(p-1)}=S^{+} \oplus S^{-}
$$

where S^{+}and S^{-}are simple $k \mathrm{Sp}(V)$-modules of dimensions $\frac{p(p+1)(2 p+1)}{6}$ and $\frac{p(p-1)(2 p-1)}{6}$ respectively.

Introduction

Theorem $2.1 \Longrightarrow$

- The simple $k \mathrm{GL}(V)$-module

$$
\begin{equation*}
L(\mathbf{s}) \cong S^{\lambda_{0}} \otimes\left(S^{\lambda_{1}}\right)^{(p)} \otimes \cdots \otimes\left(S^{\lambda_{t-1}}\right)^{\left(p^{t-1}\right)} \tag{1}
\end{equation*}
$$

decomposes as a direct sum of 2^{r} nonisomorphic simple modules, if r of the λ_{j} equal $2(p-1)$.

- Thus, the $k \mathrm{Sp}(V)$-composition factors of $k[P]$ are given by types, or \mathcal{H}-types, together with the additional choice

Introduction
Representation-
Theorem $2.1 \Longrightarrow$
$k[P]$ as a $k G L(V)-$
Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and
 of r signs.

Definition 5.1. Fix $\mathbf{s} \in \mathcal{H} . L^{+}(\mathbf{s}):=$ the simple $k \operatorname{Sp}(V)-$ submodule of $L(\mathbf{s})$ where all signs are chosen to be + , that is, we choose the S^{+}summands of each $S^{2(p-1)}$ appearing in (1).

6. Proof of Theorem 2.1

- We construct a $k \operatorname{Sp}(V)$-submodule $E \leq C$ which contains $\operatorname{Im} \eta$ and which has the correct composition factors.

- Then we show that $E=\operatorname{Im} \eta$.

6.1. Upper bound: the module E

- Let \bar{C}_{j} be the quotient of C corresponding to

$$
\{\mathbf{s} \in \mathcal{H} \mid(1, \ldots, 1,2,2,1, \ldots, 1) \leq \mathbf{s} \leq(2, \ldots, 2)\}
$$

where the first of the two 2 s occurs in the j-th position.
Theorem 6.1. There exists a $k \mathrm{GL}(V)$-module D_{j} such

Introduction
Representation-
Theorem $2.1 \Longrightarrow$
$k[P]$ as a $k G L(V)-$
Action of $S_{p}(V)$
Proof of Theorem
Related results and. that

$$
\bar{D}_{j} \otimes S^{2(p-1)\left(p^{j}\right)} \cong \bar{C}_{j} .
$$

Theorem 6.1 stems from the natural as a GL (V)-algebra structure of $k[V]$.

Corollary 6.2. As $k \operatorname{Sp}(V)$-modules, we have

$$
\bar{C}_{j} \cong\left(\bar{D}_{j} \otimes\left(S^{+}\right)^{\left(p^{j}\right)}\right) \oplus\left(\bar{D}_{j} \otimes\left(S^{-}\right)^{\left(p^{j}\right)}\right) .
$$

- Let C_{j}^{+}be the preimage of the + component of \bar{C}_{j} in Corollary 6.2.
- Define $E:=\cap_{j=0}^{t-1} C_{j}^{+}$.
- By construction, the $k \operatorname{Sp}(V)$-composition factors of E are precisely the modules $L^{+}(\mathbf{s})$, one for each $\mathbf{s} \in \mathcal{H}_{2}$.
- E contains the characteristic function of an isotropic 2subspace, so $E \supseteq \operatorname{Im} \eta$.
6.2. Lower bound: submodule structure of E
- Each ideal I of \mathcal{H}_{2}, defines a submodule of C. whose intersection with E is a $k \operatorname{Sp}(V)$-submodule of C whose composition factors are precisely the modules $L^{+}(\mathbf{s})$ for $\mathbf{s} \in I$.
- Similarly, each coideal of \mathcal{H}_{2} defines quotients of E and intersections of ideals with coideals correspond to subquotients of E.
- For any $\mathbf{s}, \mathbf{s}^{\prime} \in \mathcal{H}_{2}$, with \mathbf{s}^{\prime} immediately below \mathbf{s}, there is a subquotient U of E giving a short exact sequence of $k \mathrm{Sp}(V)$-modules

$$
\begin{equation*}
0 \rightarrow L^{+}\left(\mathbf{s}^{\prime}\right) \rightarrow U \rightarrow L^{+}(\mathbf{s}) \rightarrow 0 \tag{2}
\end{equation*}
$$

- Since E is multiplicity-free as a $k \operatorname{Sp}(V)$-module, this subquotient U is the unique one with these two composition factors.

Theorem 6.3. The exact sequence (2) does not split.

- This implies that any submodule which has $L^{+}(\mathbf{s})$ as a

Introduction

 composition factor must also have $L^{+}\left(\mathbf{s}^{\prime}\right)$.- Since $\operatorname{Im} \eta$ has $L^{+}(2, \ldots, 2)$ as a composition factor, it follows that all $L^{+}(\mathbf{s})$ with $\mathbf{s} \in \mathcal{H}_{2}$ are composition factors of $\operatorname{Im} \eta$, forcing $\operatorname{Im} \eta=E$.
- This completes the proof of Theorem 2.1
- Theorem 6.3 is proved by explicit computations with a monomial basis. Certain shift operators defined in David Chandler's thesis [2] are crucial.

7. Related results and work in

 progress- When $q=p$, the $k \operatorname{Sp}(V)$-submodule structure of $k[V]$ for arbitrary dimension was worked out in [11].
- Jeff Lataille [8],[9] worked out the $k \mathrm{Sp}(V)$-module structure over for $F[V]$ when $q=p \neq 2$ and arbitrary dimension, for F of characteristic $\neq p$. He also computed the integral invariants of the incidence maps from isotropic subspaces (and their perps) to points.
- In the case $q=p=2$, the $k \operatorname{Sp}(V)$-submodule structure is not completely known, but there are several ways to describe it in terms of nice filtrations. The composition factors are known.
- CSX are currently trying to work out the submodule structure of $k[V]$ for arbitrary odd q and the integral invariants of the incidence map from isotropic subspaces (and their perps) to points. The invariants for arbitrary subspaces were computed in [3]

References

[1] M. Bardoe, P. Sin, The permutation modules for $\operatorname{GL}\left(n+1, \mathbb{F}_{q}\right)$ acting on $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ and $\mathbb{F}_{q}{ }^{n+1}$, J. Lond. Math. Soc. 61 (2000) 58-80.
[2] D. B. Chandler, Ph.D Thesis, U. of Delaware (2004).
[3] D. B. Chandler, Q. Xiang, P. Sin, The Invariant Factors of the Incidence Matrices of points and subspaces in $P G(n, q)$ and $A G(n, q)$, To appear in Trans. Amer. Math. Soc. (2005)
[4] C. W. Curtis, Modular representations of finite groups with split BN-pairs, pages 57-95 in Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, Springer, Berlin (1969).
[5] D. de Caen, E. Moorhouse, The p-rank of the $\operatorname{Sp}(4, p)$ generalized quadrangle, Unpublished (1998)
[6] N. Hamada, The rank of the incidence matrix of points and d-flats in finite geometries, J. Sci. Hiroshima Univ. Ser. A-I 32 (1968), 381-396.
[7] J. Lahtonen, On the submodules and composition factors of certain induced modules for groups of type C_{n}, J. Algebra 140 (1991), 415-425.
[8] J. M. Lataille, The elementary divisors of the incidence matrices between certain
Theorem $2.1 \Longrightarrow$ subspaces of a finite symplectic space, J. Algebra 268 (2003), 444-462.
[9] J. M. Lataille, P. Sin, P. H. Tiep, The modulo 2 structure of rank 3 permutation modules for odd characteristic symplectic groups, J. Algebra 268 (2003), 463-483.
[10] N. S. N. Sastry, P. Sin, The code of a regular generalized quadrangle of even order, Proc. Symposia in Pure Mathematics 63 (1998), 485-496.
[11] P. Sin, The permutation representation of $\operatorname{Sp}\left(2 m, \mathbb{F}_{p}\right)$ acting on the vectors of its standard module, J. Algebra 241, (2001), 578-591.
[12] I. D. Suprunenko, A. E. Zalesskii, Reduced symmetric powers of natural realizations of the groups $\mathrm{SL}_{m}(P)$ and $\mathrm{Sp}_{m}(P)$ and their restrictions to subgroups, Siberian Mathematical Journal (4) 31, (1990), 33-46.

Introduction

Representation-.
Theorem $2.1 \Longrightarrow$.. $k[P]$ as a $k G L(V)$-.
Action of $\operatorname{Sp}(V)$
Proof of Theorem 2.1
Related results and.

