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1. Introduction

ek=F,qg=p
e /. a 4-dimensional vector space over k with a nonsingu-
lar alternating bilinear form.

e P = P(V), the set of points of the projective space of V

e [, the set of totally isotropic 2-dimensional subspaces of
V', considered as lines in P.

The sets P and L form the points and lines of the symplectic
generalized quadrangle. Let A be the incidence matrix of
(P, L), considered as a matrix over k. We would like to
know the rank of A.
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p=2
( Sastry-Sin, 1997 [10]):
Theorem 1.1.

2 2
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rank(A) =1+ (




We can now solve the general case.

Theorem 1.2. Let p be an odd prime.
The rank of A is equal to 1+ of + o, where

O, Qg =

Note: The same formula also holds for p = 2.

plp+1)°  plp+1)(p—1)
T = V1T,

Introduction




1.1. Historical notes

When g = p, the rank was first found by De Caen and

Moorhouse (unpublished), ¢f.[11]. Machine computations for
the case ¢ = 9 and the case ¢ = 27 done by Eric Moorhouse
and Dave Saunders respectively were helpful in the early
stages of our investigations.
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2. Representation-theoretic for-
mulation

We consider the incidence map

n: k[L] — k[P],

sending an isotropic 2-subspace to its characteristic function.
This is a map of kSp(V')-modules, and the p-rank of the
incidence matrix is the dimension of Imn.
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Theorem 1.2 is deduced from a stronger result describing the
complete submodule lattice of the kSp(V')-module Imn. To
explain this deeper result we need some more notation.

Let

H:{S:(So,sl,...,st_1)|].SSjSS,(OSjSt—].)}.

‘H has the natural product partial order.
Let Hy C H be the those tuples < (2,2,...2).
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Theorem 2.1. (i) Imn = k & M, where M is a T heorem 21—

multiplicity-free module with 2' composition factors KIP) as a kGL(V)-...
L+(S)7 S 6 HQ Action of Sp(V)
Proof of Theorem 2.1
(7/7,) dim L+( ) Ht 1 dpS]H 5 where Related results and. . .
Pt D+
p—1 — 6 )
g - Upp+1)
p—2 — 6 )
g _2p—=Dplp+1)
2p—1 — 3 5
L _pptDEp+ )
2p—2 — 6 c

(i1i) The submodule lattice of M is isomorphic to the lat-
tice of ideals of Hy under the map taking a submodule
to its set of composition factors.




3. Theorem 2.1 — Theorem 1.2 | lmete=
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We show that dim M = rankA — 1 satisfies a quadratic KIP] a5 2 KGL(V)-...
recursion in . Action of Sp(V/)

Proof of Theorem 2.1
e dim M (t) is a sum over H(t), of t-fold products of the Related results and. .
d,.

o Let ry,(t) = contribution to dim M (t) from those s €
H(t)g with So = a, S¢4_1 = b.

dp—2d2p—1
d2p72 .

ng(t — 1) = T21<t — 2)d2p_2 I ng(t — 2)d2p_2.
These imply

7“21(75) = 7”21(t == 1)dp_1 -+ ng(t == 1)

ro1(t) = ror(t—=1)(dp-1+dyp—2)+ra(t—2)(dp_adzy1+d,_1dyy_2).

® 11, 719 and 7oy satisfy the same recursion. Theorem 1.2
now follows, using the known cases t = 1 and ¢t = 2.



4. k|P] as a kGL(V)-module

From (Bardoe-Sin, 2000 [1]) we recall the following facts.

e k[P] = k@Y, where Y is a multiplicity-free, indecom-
posable module.

e The composition factors of Y are parametrized by H.

e Given any kGL(V')-submodule of Y, the set of its com-
position factors is an ideal in the partially ordered set
‘H and that this correspondence is an order isomorphism
from the submodule lattice of Y to the lattice of ideals
in ‘H.

elet s € H and let \; = ps;.; — s;. Let S* be the
degree A component in the truncated polynomial ring
klxy, 2o, 23, 24)/(27;1 < i < 4). Then

L(S) ~ Gl R (SM)(p) Q- ® (S)\tfl)(pt_l).
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4.1. The submodule of all lines

e Let C' = submodule of k[P] generated by the character-
istic functions of all 2-dimensional subspaces of V.

o C = k& Y.y, where Y, is the submodule of of Y given
by the set Hy of H-tuples < (2,2, ...2).

e The possible A\; are p —2, p—1,2p — 1 and 2(p — 1).
e Clearly, Imn < C'.




5. Action of Sp(V)

We now consider the submodule structure of k[P] and C
under the action of Sp(V).

e The composition factors are known by work of
Suprunenko-Zalesskii [12] and Lahtonen [7].

e How does a GL(V') composition factor L(s) decompose
upon restriction to Sp(V')?

e The modules S* all remain simple except when A =
2(p — 1), in which case we have

S2r-) — gt gy 5

where S* and S~ are simple kSp(V')-modules of dimen-

sions w and % respectively.
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e The simple kGL(V')-module

Proof of Theorem 2.1

L(S> ~ S/\o ® (S)\l)(p) ® .. ® (S)\t—l)(pt_l). <1) Related results and. . .

decomposes as a direct sum of 2" nonisomorphic simple
modules, if  of the \; equal 2(p — 1).

e Thus, the kSp(V')-composition factors of k[P] are given
by types, or H-types, together with the additional choice
of r signs.

Definition 5.1. Fix s € H. L*(s) := the simple £Sp(V)-
submodule of L(s) where all signs are chosen to be +, that
is, we choose the S* summands of each S~ appearing in

(1)-




6. Proof of Theorem 2.1

e We construct a kSp(V)-submodule £ < C' which con-

tains Imn and which has the correct composition factors.

e Then we show that E = Imn.




6.1. Upper bound: the module £
e Let C; be the quotient of C' corresponding to

{seH|(d,...,1,2,2,1,...,1)<s<(2,...,2)},
where the first of the two 2s occurs in the j-th position.

Theorem 6.1. There exists a kGL(V)-module D; such
that

D, 050" =7,

Theorem 6.1 stems from the natural as a GL(V')-algebra
structure of k[V].




Corollary 6.2. As kSp(V')-modules, we have
C; = (D;0 (SN @ (D; ® (57)7).
o Let C’f be the preimage of the + component of C; in
Corollary 6.2.
e Define E := N/ C.

e By construction, the kSp(V')-composition factors of F
are precisely the modules L*(s), one for each s € H.,.

e F contains the characteristic function of an isotropic 2-
subspace, so £ O Imn.
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6.2. Lower bound: submodule structure of F Representation- ..

Theorem 2.1 — ...

e Fach ideal I of H,, defines a submodule of C. whose [P) as a kGL(V)-...
intersection with E is a kSp(V')-submodule of C' whose
composition factors are precisely the modules L*(s) for Related results and...

sel.

e Similarly, each coideal of H, defines quotients of £ and
intersections of ideals with coideals correspond to sub-
quotients of £.

e For any s, 8’ € 'H,, with s’ immediately below s, there
is a subquotient U of E giving a short exact sequence of
kSp(V')-modules

0— L*(s') = U — L*(s) — 0. (2)

e Since F is multiplicity-free as a kSp(V')-module, this
subquotient U is the unique one with these two com-
position factors.




Theorem 6.3. The exact sequence (2) does not split.

e This implies that any submodule which has L*(s) as a
composition factor must also have L*(s').

e Since Imn has L*(2,...,2) as a composition factor, it
follows that all L™ (s) with s € H, are composition fac-
tors of Imn, forcing Imn = E.

e This completes the proof of Theorem 2.1 []

e Theorem 6.3 is proved by explicit computations with
a monomial basis. Certain shift operators defined in
David Chandler’s thesis [] are crucial.
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7.

Related results and work 1in
progress

e When ¢ = p, the £Sp(V )-submodule structure of k[V]

for arbitrary dimension was worked out in [!1].

o Jeff Lataille [4],[9] worked out the kSp(V')-module struc-

ture over for F'[V] when ¢ = p # 2 and arbitrary dimen-
sion, for I of characteristic # p. He also computed the
integral invariants of the incidence maps from isotropic
subspaces (and their perps) to points.

In the case ¢ = p = 2, the kSp(V')-submodule structure
is not completely known, but there are several ways to
describe it in terms of nice filtrations. The composition
factors are known.

CSX are currently trying to work out the submodule
structure of k[V] for arbitrary odd ¢ and the integral
invariants of the incidence map from isotropic subspaces
(and their perps) to points. The invariants for arbitrary
subspaces were computed in [
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