The p-rank of the $\text{Sp}(4, q)$ generalized quadrangle

David Chandler, Academia Sinica
Peter Sin, U. Florida
Qing Xiang, U. Delaware

AMS special session on Designs, Delaware, April 2nd, 2005
1. Introduction

- $k = \mathbf{F}_q$, $q = p^t$
- V, a 4-dimensional vector space over k with a nonsingular alternating bilinear form.
- $P = \mathbf{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2-dimensional subspaces of V, considered as lines in P.

The sets P and L form the points and lines of the symplectic generalized quadrangle. Let A be the incidence matrix of (P, L), considered as a matrix over k. We would like to know the rank of A.
\(p = 2 \)

(Sastry-Sin, 1997 [10]):

Theorem 1.1.

\[
\text{rank}(A) = 1 + \left(\frac{1 + \sqrt{17}}{2} \right)^{2t} + \left(\frac{1 - \sqrt{17}}{2} \right)^{2t}.
\]
We can now solve the general case.

Theorem 1.2. Let p be an odd prime.

The rank of A is equal to $1 + \alpha_1^t + \alpha_2^t$, where

$$\alpha_1, \alpha_2 = \frac{p(p+1)^2}{4} \pm \frac{p(p+1)(p-1)}{12} \sqrt{17}.$$

Note: The same formula also holds for $p = 2$.
1.1. Historical notes

When $q = p$, the rank was first found by De Caen and Moorhouse (unpublished), cf.[11]. Machine computations for the case $q = 9$ and the case $q = 27$ done by Eric Moorhouse and Dave Saunders respectively were helpful in the early stages of our investigations.
2. Representation-theoretic formulation

We consider the incidence map

\[\eta : k[L] \rightarrow k[P], \]

sending an isotropic 2-subspace to its characteristic function. This is a map of \(k\text{Sp}(V) \)-modules, and the \(p \)-rank of the incidence matrix is the dimension of \(\text{Im}\eta \).
Theorem 1.2 is deduced from a stronger result describing the complete submodule lattice of the \(k\text{Sp}(V) \)-module \(\text{Im} \eta \). To explain this deeper result we need some more notation. Let

\[
\mathcal{H} = \{ \mathbf{s} = (s_0, s_1, \ldots, s_{t-1}) \mid 1 \leq s_j \leq 3, (0 \leq j \leq t - 1) \}.
\]

\(\mathcal{H} \) has the natural product partial order. Let \(\mathcal{H}_2 \subset \mathcal{H} \) be the those tuples \(\leq (2, 2, \ldots 2) \).
Theorem 2.1. (i) \(\text{Im} \eta \cong k \oplus M \), where \(M \) is a multiplicity-free module with \(2^t \) composition factors \(L^+(s), s \in \mathcal{H}_2 \).

(ii) \(\dim L^+(s) = \prod_{j=0}^{t-1} d_{ps_j+1-s_j} \), where

\[
\begin{align*}
 d_{p-1} &= \frac{p(p+1)(p+2)}{6}, \\
 d_{p-2} &= \frac{(p-1)p(p+1)}{6}, \\
 d_{2p-1} &= \frac{2(p-1)p(p+1)}{3}, \\
 d_{2p-2} &= \frac{p(p+1)(2p+1)}{6}.
\end{align*}
\]

(iii) The submodule lattice of \(M \) is isomorphic to the lattice of ideals of \(\mathcal{H}_2 \) under the map taking a submodule to its set of composition factors.
3. Theorem 2.1 \implies Theorem 1.2

We show that \(\dim M = \text{rank}A - 1 \) satisfies a quadratic recursion in \(t \).

- \(\dim M(t) \) is a sum over \(\mathcal{H}(t)_2 \) of \(t \)-fold products of the \(d_\lambda \).
- Let \(r_{ab}(t) \) = contribution to \(\dim M(t) \) from those \(s \in \mathcal{H}(t)_2 \) with \(s_0 = a, s_{t-1} = b \).

\[
\begin{align*}
\quad r_{21}(t) &= r_{21}(t - 1)d_{p-1} + r_{22}(t - 1)\frac{d_{p-2}d_{2p-1}}{d_{2p-2}}. \\
\quad r_{22}(t - 1) &= r_{21}(t - 2)d_{2p-2} + r_{22}(t - 2)d_{2p-2}.
\end{align*}
\]

These imply

\[
r_{21}(t) = r_{21}(t-1)(d_{p-1}+d_{2p-2}) + r_{21}(t-2)(d_{p-2}d_{2p-1}+d_{p-1}d_{2p-2}).
\]

- \(r_{11}, r_{12} \) and \(r_{22} \) satisfy the same recursion. Theorem 1.2 now follows, using the known cases \(t = 1 \) and \(t = 2 \).
4. $k[P]$ as a $k\text{GL}(V)$-module

From (Bardoe-Sin, 2000 [1]) we recall the following facts.

- $k[P] = k \oplus Y$, where Y is a multiplicity-free, indecomposable module.
- The composition factors of Y are parametrized by \mathcal{H}.
- Given any $k\text{GL}(V)$-submodule of Y, the set of its composition factors is an ideal in the partially ordered set \mathcal{H} and that this correspondence is an order isomorphism from the submodule lattice of Y to the lattice of ideals in \mathcal{H}.
- Let $s \in \mathcal{H}$ and let $\lambda_j = ps_{j+1} - s_j$. Let S^λ be the degree λ component in the truncated polynomial ring $k[x_1, x_2, x_3, x_4]/(x_i^p; 1 \leq i \leq 4)$. Then

$$L(s) \cong S^{\lambda_0} \otimes (S^{\lambda_1}(p) \otimes \ldots \otimes (S^{\lambda_{t-1}}(p^{t-1})).$$
4.1. The submodule of all lines

- Let $C = \text{submodule of } k[P]$ generated by the characteristic functions of all 2-dimensional subspaces of V.
- $C = k \oplus Y_{\leq 2}$, where $Y_{\leq 2}$ is the submodule of Y given by the set \mathcal{H}_2 of \mathcal{H}-tuples $\leq (2, 2, \ldots 2)$.
- The possible λ_j are $p - 2$, $p - 1$, $2p - 1$ and $2(p - 1)$.
- Clearly, $\text{Im} \eta \leq C$.
5. Action of $\text{Sp}(V)$

We now consider the submodule structure of $k[P]$ and C under the action of $\text{Sp}(V)$.

- The composition factors are known by work of Suprunenko-Zalesskii [12] and Lahtonen [7].
- How does a $\text{GL}(V)$ composition factor $L(s)$ decompose upon restriction to $\text{Sp}(V)$?
- The modules S^λ all remain simple except when $\lambda = 2(p - 1)$, in which case we have

$$S^{2(p-1)} = S^+ \oplus S^-,$$

where S^+ and S^- are simple $k\text{Sp}(V)$-modules of dimensions $\frac{p(p+1)(2p+1)}{6}$ and $\frac{p(p-1)(2p-1)}{6}$ respectively.
• The simple \(k\text{GL}(V) \)-module

\[
L(s) \cong S^{\lambda_0} \otimes (S^{\lambda_1}(p)) \otimes \ldots \otimes (S^{\lambda_{t-1}}(p^{t-1})).
\] (1)

decomposes as a direct sum of \(2^r \) nonisomorphic simple modules, if \(r \) of the \(\lambda_j \) equal \(2(p - 1) \).

• Thus, the \(k\text{Sp}(V) \)-composition factors of \(k[P] \) are given by types, or \(\mathcal{H} \)-types, together with the additional choice of \(r \) signs.

Definition 5.1. Fix \(s \in \mathcal{H} \). \(L^+(s) := \) the simple \(k\text{Sp}(V) \)-submodule of \(L(s) \) where all signs are chosen to be +, that is, we choose the \(S^+ \) summands of each \(S^{2(p-1)} \) appearing in (1).
6. **Proof of Theorem 2.1**

- We construct a $k\text{Sp}(V)$-submodule $E \leq C$ which contains $\text{Im} \eta$ and which has the correct composition factors.
- Then we show that $E = \text{Im} \eta$.
6.1. Upper bound: the module E

- Let \overline{C}_j be the quotient of C corresponding to
 \[
 \{ s \in \mathcal{H} \mid (1, \ldots, 1, 2, 2, 1, \ldots, 1) \leq s \leq (2, \ldots, 2) \},
 \]
 where the first of the two 2s occurs in the j-th position.

Theorem 6.1. There exists a $k\text{GL}(V)$-module D_j such that

\[
\overline{D}_j \otimes S^{2(p-1)p^j} \cong \overline{C}_j.
\]

Theorem 6.1 stems from the natural as a $\text{GL}(V)$-algebra structure of $k[V]$.
Corollary 6.2. As $k\text{Sp}(V)$-modules, we have

$$
\overline{C}_j \cong (D_j \otimes (S^+)^{(p^j)}) \oplus (D_j \otimes (S^-)^{(p^j)}).
$$

- Let C_j^+ be the preimage of the $+$ component of \overline{C}_j in Corollary 6.2.
- Define $E := \cap_{j=0}^{t-1} C_j^+$.
- By construction, the $k\text{Sp}(V)$-composition factors of E are precisely the modules $L^+(s)$, one for each $s \in \mathcal{H}_2$.
- E contains the characteristic function of an isotropic 2-subspace, so $E \supseteq \text{Im} \eta$.
6.2. Lower bound: submodule structure of E

- Each ideal I of \mathcal{H}_2, defines a submodule of C. whose intersection with E is a $k\text{Sp}(V)$-submodule of C whose composition factors are precisely the modules $L^+(s)$ for $s \in I$.

- Similarly, each coideal of \mathcal{H}_2 defines quotients of E and intersections of ideals with coideals correspond to subquotients of E.

- For any $s, s' \in \mathcal{H}_2$, with s' immediately below s, there is a subquotient U of E giving a short exact sequence of $k\text{Sp}(V)$-modules

$$0 \to L^+(s') \to U \to L^+(s) \to 0. \quad (2)$$

- Since E is multiplicity-free as a $k\text{Sp}(V)$-module, this subquotient U is the unique one with these two composition factors.
Theorem 6.3. The exact sequence (2) does not split.

- This implies that any submodule which has $L^+(s)$ as a composition factor must also have $L^+(s')$.
- Since $\text{Im} \eta$ has $L^+(2, \ldots, 2)$ as a composition factor, it follows that all $L^+(s)$ with $s \in \mathcal{H}_2$ are composition factors of $\text{Im} \eta$, forcing $\text{Im} \eta = E$.
- This completes the proof of Theorem 2.1

- Theorem 6.3 is proved by explicit computations with a monomial basis. Certain shift operators defined in David Chandler’s thesis [2] are crucial.
7. Related results and work in progress

- When $q = p$, the $k\text{Sp}(V)$-submodule structure of $k[V]$ for arbitrary dimension was worked out in [11].

- Jeff Lataille [8],[9] worked out the $k\text{Sp}(V)$-module structure over for $F[V]$ when $q = p \neq 2$ and arbitrary dimension, for F of characteristic $\neq p$. He also computed the integral invariants of the incidence maps from isotropic subspaces (and their perps) to points.

- In the case $q = p = 2$, the $k\text{Sp}(V)$-submodule structure is not completely known, but there are several ways to describe it in terms of nice filtrations. The composition factors are known.

- CSX are currently trying to work out the submodule structure of $k[V]$ for arbitrary odd q and the integral invariants of the incidence map from isotropic subspaces (and their perps) to points. The invariants for arbitrary subspaces were computed in [3].
References

[12] I. D. Suprunenko, A. E. Zalesskii, Reduced symmetric powers of natural realizations of the groups $\text{SL}_m(P)$ and $\text{Sp}_m(P)$ and their restrictions to subgroups, Siberian Mathematical Journal (4) 31, (1990), 33–46.