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1. Introduction

• k = Fq, q = pt

• V , a 4-dimensional vector space over k with a nonsingu-
lar alternating bilinear form.

• P = P(V ), the set of points of the projective space of V

• L, the set of totally isotropic 2-dimensional subspaces of
V , considered as lines in P .

The sets P and L form the points and lines of the symplectic
generalized quadrangle. Let A be the incidence matrix of
(P, L), considered as a matrix over k. We would like to
know the rank of A.
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p = 2

( Sastry-Sin, 1997 [10]):

Theorem 1.1.

rank(A) = 1 +

(
1 +

√
17

2

)2t

+

(
1−

√
17

2

)2t

.
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We can now solve the general case.

Theorem 1.2. Let p be an odd prime.

The rank of A is equal to 1 + αt
1 + αt

2, where

α1, α2 =
p(p + 1)2

4
± p(p + 1)(p− 1)

12

√
17.

Note: The same formula also holds for p = 2.
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1.1. Historical notes

When q = p, the rank was first found by De Caen and
Moorhouse (unpublished), cf.[11]. Machine computations for
the case q = 9 and the case q = 27 done by Eric Moorhouse
and Dave Saunders respectively were helpful in the early
stages of our investigations.
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2. Representation-theoretic for-
mulation

We consider the incidence map

η : k[L] → k[P ],

sending an isotropic 2-subspace to its characteristic function.
This is a map of kSp(V )-modules, and the p-rank of the
incidence matrix is the dimension of Imη.
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Theorem 1.2 is deduced from a stronger result describing the
complete submodule lattice of the kSp(V )-module Imη. To
explain this deeper result we need some more notation.
Let

H = {s = (s0, s1, . . . , st−1) | 1 ≤ sj ≤ 3, (0 ≤ j ≤ t− 1)}.

H has the natural product partial order.
Let H2 ⊂ H be the those tuples ≤ (2, 2, ...2).
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Theorem 2.1. (i) Imη ∼= k ⊕ M , where M is a
multiplicity-free module with 2t composition factors
L+(s), s ∈ H2.

(ii) dim L+(s) =
∏t−1

j=0 dpsj+1−sj
, where

dp−1 =
p(p + 1)(p + 2)

6
,

dp−2 =
(p− 1)p(p + 1)

6
,

d2p−1 =
2(p− 1)p(p + 1)

3
,

d2p−2 =
p(p + 1)(2p + 1)

6
.

(iii) The submodule lattice of M is isomorphic to the lat-
tice of ideals of H2 under the map taking a submodule
to its set of composition factors.
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3. Theorem 2.1 =⇒ Theorem 1.2

We show that dim M = rankA − 1 satisfies a quadratic
recursion in t.

• dim M(t) is a sum over H(t)2 of t-fold products of the
dλ.

• Let rab(t) = contribution to dim M(t) from those s ∈
H(t)2 with s0 = a, st−1 = b.

r21(t) = r21(t− 1)dp−1 + r22(t− 1)
dp−2d2p−1

d2p−2
.

r22(t− 1) = r21(t− 2)d2p−2 + r22(t− 2)d2p−2.

These imply

r21(t) = r21(t−1)(dp−1+d2p−2)+r21(t−2)(dp−2d2p−1+dp−1d2p−2).

• r11, r12 and r22 satisfy the same recursion. Theorem 1.2
now follows, using the known cases t = 1 and t = 2.
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4. k[P ] as a kGL(V )-module

From (Bardoe-Sin, 2000 [1]) we recall the following facts.

• k[P ] = k ⊕ Y , where Y is a multiplicity-free, indecom-
posable module.

• The composition factors of Y are parametrized by H.

• Given any kGL(V )-submodule of Y , the set of its com-
position factors is an ideal in the partially ordered set
H and that this correspondence is an order isomorphism
from the submodule lattice of Y to the lattice of ideals
in H.

• Let s ∈ H and let λj = psj+1 − sj. Let Sλ be the
degree λ component in the truncated polynomial ring
k[x1, x2, x3, x4]/(xp

i ; 1 ≤ i ≤ 4). Then

L(s) ∼= Sλ0 ⊗ (Sλ1)(p) ⊗ · · · ⊗ (Sλt−1)(pt−1).
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4.1. The submodule of all lines

• Let C = submodule of k[P ] generated by the character-
istic functions of all 2-dimensional subspaces of V .

• C = k ⊕ Y≤2, where Y≤2 is the submodule of of Y given
by the set H2 of H-tuples ≤ (2, 2, ...2).

• The possible λj are p− 2, p− 1, 2p− 1 and 2(p− 1).

• Clearly, Imη ≤ C.
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5. Action of Sp(V )

We now consider the submodule structure of k[P ] and C
under the action of Sp(V ).

• The composition factors are known by work of
Suprunenko-Zalesskii [12] and Lahtonen [7].

• How does a GL(V ) composition factor L(s) decompose
upon restriction to Sp(V )?

• The modules Sλ all remain simple except when λ =
2(p− 1), in which case we have

S2(p−1) = S+ ⊕ S−,

where S+ and S− are simple kSp(V )-modules of dimen-

sions p(p+1)(2p+1)
6 and p(p−1)(2p−1)

6 respectively.



Introduction

Representation- . . .

Theorem 2.1 =⇒ . . .

k[P ] as a kGL(V )- . . .

Action of Sp(V )

Proof of Theorem 2.1

Related results and . . .

JJ J I II

Back

Full Screen

Close

Quit

• The simple kGL(V )-module

L(s) ∼= Sλ0 ⊗ (Sλ1)(p) ⊗ · · · ⊗ (Sλt−1)(pt−1). (1)

decomposes as a direct sum of 2r nonisomorphic simple
modules, if r of the λj equal 2(p− 1).

• Thus, the kSp(V )-composition factors of k[P ] are given
by types, orH-types, together with the additional choice
of r signs.

Definition 5.1. Fix s ∈ H. L+(s) := the simple kSp(V )-
submodule of L(s) where all signs are chosen to be +, that
is, we choose the S+ summands of each S2(p−1) appearing in
(1).
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6. Proof of Theorem 2.1

• We construct a kSp(V )-submodule E ≤ C which con-
tains Imη and which has the correct composition factors.

• Then we show that E = Imη.
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6.1. Upper bound: the module E

• Let Cj be the quotient of C corresponding to

{s ∈ H | (1, . . . , 1, 2, 2, 1, . . . , 1) ≤ s ≤ (2, . . . , 2)},

where the first of the two 2s occurs in the j-th position.

Theorem 6.1. There exists a kGL(V )-module Dj such
that

Dj ⊗ S2(p−1)(p
j) ∼= Cj.

Theorem 6.1 stems from the natural as a GL(V )-algebra
structure of k[V ].
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Corollary 6.2. As kSp(V )-modules, we have

Cj
∼= (Dj ⊗ (S+)(pj))⊕ (Dj ⊗ (S−)(pj)).

• Let C+
j be the preimage of the + component of Cj in

Corollary 6.2.

• Define E := ∩t−1
j=0C

+
j .

• By construction, the kSp(V )-composition factors of E
are precisely the modules L+(s), one for each s ∈ H2.

• E contains the characteristic function of an isotropic 2-
subspace, so E ⊇ Imη.
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6.2. Lower bound: submodule structure of E

• Each ideal I of H2, defines a submodule of C. whose
intersection with E is a kSp(V )-submodule of C whose
composition factors are precisely the modules L+(s) for
s ∈ I .

• Similarly, each coideal of H2 defines quotients of E and
intersections of ideals with coideals correspond to sub-
quotients of E.

• For any s, s′ ∈ H2, with s′ immediately below s, there
is a subquotient U of E giving a short exact sequence of
kSp(V )-modules

0 → L+(s′) → U → L+(s) → 0. (2)

• Since E is multiplicity-free as a kSp(V )-module, this
subquotient U is the unique one with these two com-
position factors.
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Theorem 6.3. The exact sequence (2) does not split.

• This implies that any submodule which has L+(s) as a
composition factor must also have L+(s′).

• Since Imη has L+(2, . . . , 2) as a composition factor, it
follows that all L+(s) with s ∈ H2 are composition fac-
tors of Imη, forcing Imη = E.

• This completes the proof of Theorem 2.1

• Theorem 6.3 is proved by explicit computations with
a monomial basis. Certain shift operators defined in
David Chandler’s thesis [2] are crucial.
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7. Related results and work in
progress

• When q = p, the kSp(V )-submodule structure of k[V ]
for arbitrary dimension was worked out in [11].

• Jeff Lataille [8],[9] worked out the kSp(V )-module struc-
ture over for F [V ] when q = p 6= 2 and arbitrary dimen-
sion, for F of characteristic 6= p. He also computed the
integral invariants of the incidence maps from isotropic
subspaces (and their perps) to points.

• In the case q = p = 2, the kSp(V )-submodule structure
is not completely known, but there are several ways to
describe it in terms of nice filtrations. The composition
factors are known.

• CSX are currently trying to work out the submodule
structure of k[V ] for arbitrary odd q and the integral
invariants of the incidence map from isotropic subspaces
(and their perps) to points. The invariants for arbitrary
subspaces were computed in [3]
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