Weyl Modules, simple modules and invariants of incidence maps

Peter Sin
University of Florida

AMS Special Session
March 10th, 2012
University of South Florida

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part I'. Invariants of lines in space p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks
O. Arslan, P.Sin, J Alg. 327 (2011) 141-169)

Let G be a semisimple algebraic group in characteristic $p>0$. For each of the types and weights considered below we find:

- The character of the simple module $L(\lambda)$
- The characters (and multiplicities) of the simple composition factors of $V(\lambda)$
- The submodule lattice of $V(\lambda)$

Groups and weights considered

(B) G of type $B_{\ell},(\ell \geq 2) \lambda=r\left(\omega_{1}\right), 0 \leq r \leq p-1$;
(D) G of type $D_{\ell},(\ell \geq 3) \lambda=r\left(\omega_{1}\right), 0 \leq r \leq p-1$;
(A) G of type $A_{\ell},(\ell \geq 3) \lambda=r\left(\omega_{1}+\omega_{\ell}\right), 0 \leq r \leq p-1$; Note: For type A and type C, the Weyl modules $V\left(r \omega_{1}\right)$ are simple.

Theorem B

Let G be of type $B_{\ell}, \ell \geq 2$. Let ω_{1} be the highest weight of the standard orthogonal module of dimension $2 \ell+1$. Assume $0 \leq r \leq p-1$. Then the following hold.
(a) $H^{0}\left(r \omega_{1}\right)$ is simple unless (i) $p=2$ and $r=1$ or (ii) $p>2$ and there exists a positive odd integer m such that

$$
r+2 \ell-1 \leq m p \leq 2 r+2 \ell-2
$$

(b) If (i) holds then the quotient $H^{0}\left(\omega_{1}\right) / L\left(\omega_{1}\right)$ is the one-dimensional trivial module.
(c) If (ii) holds then m is unique and

$$
H^{0}\left(r \omega_{1}\right) / L\left(r \omega_{1}\right) \cong H^{0}\left(r_{1} \omega_{1}\right)
$$

where $r_{1}=m p-2 \ell+1-r$. Furthermore the module $H^{0}\left(r_{1} \omega_{1}\right)$ is simple.

Theorem D

Let G be of type $D_{\ell}, \ell \geq 3$. Let ω_{1} be the highest weight of the standard orthogonal module of dimension 2 ℓ. Assume
$0 \leq r \leq p-1$. Then the following hold.
(a) Suppose that there exists a positive even integer m such that

$$
r+2 \ell-2 \leq m p \leq 2 r+2 \ell-3 .
$$

Then m is unique and

$$
H^{0}\left(r \omega_{1}\right) / L\left(r \omega_{1}\right) \cong H^{0}\left(r_{1} \omega_{1}\right),
$$

where $r_{1}=m p-2 \ell+2-r$. Furthermore the module $H^{0}\left(r_{1} \omega_{1}\right)$ is simple.
(b) Otherwise, $H^{0}\left(r \omega_{1}\right)$ is simple.

Theorem A

Let G be of type $A_{\ell}, \ell \geq 3$. Assume $0 \leq r \leq p-1$. Then the following hold.
(a) Suppose that here exists a positive integer m such that

$$
r+\ell \leq m p \leq 2 r+\ell-1 .
$$

Then m is unique and

$$
H^{0}\left(r\left(\omega_{1}+\omega_{\ell}\right)\right) / L\left(r\left(\omega_{1}+\omega_{\ell}\right)\right) \cong H^{0}\left(r_{1}\left(\omega_{1}+\omega_{\ell}\right)\right),
$$

where $r_{1}=m p-\ell-r$. Furthermore the module $H^{0}\left(r_{1}\left(\omega_{1}+\omega_{\ell}\right)\right)$ is simple.
(b) Otherwise, $H^{0}\left(r\left(\omega_{1}+\omega_{\ell}\right)\right)$ is simple.

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space
p-filtrations and SNF bases
Special properties of A
Peduction to Point-Line Incidence
Simultaneous SNF Bases
Conciuding remarks

Sum Formula

The Jantzen filtration $V(\lambda)^{i}, i>0$, of $V(\lambda)$ satisfies

$$
V(\lambda)^{1}=\operatorname{rad} V(\lambda), \quad \text { so } \quad V(\lambda) / V(\lambda)^{1} \cong L(\lambda)
$$

and

$$
\sum_{i>0} \operatorname{Ch}\left(V(\lambda)^{i}\right)=-\sum_{\alpha>0} \sum_{\left\{m: 0<m p<\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle\right\}} v_{p}(m p) \chi(\lambda-m p \alpha)
$$

Keeping control

- The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ.
- Use coordinate descriptions of root systems.
- If R is of type B_{ℓ} or D_{ℓ} and $\lambda+\rho-m p \alpha$ has two coordinates with the same absolute value then the pair (α, m) contributes nothing to the final sum.
- If R is of type A_{ℓ} and $\lambda+\rho-m p \alpha$ has two equal coordinates, then the pair (α, m) contributes nothing to the final sum.

Keeping control

- The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ.
- Use coordinate descriptions of root systems.

```
* If R is of type B\ell or }\mp@subsup{D}{\ell}{}\mathrm{ and }\lambda+\rho-mp\alpha has tw
    coordinates with the same absolute value then the pair
    ( }\alpha,m)\mathrm{ contributes nothing to the final sum.
* If R is of type }\mp@subsup{A}{\ell}{}\mathrm{ and }\lambda+\rho-mp\alpha has two equa
    coordinates, then the pair ( }\alpha,m\mathrm{ ) contributes nothing to the
    final sum.
```


Keeping control

- The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ.
- Use coordinate descriptions of root systems.
- If R is of type B_{ℓ} or D_{ℓ} and $\lambda+\rho-m p \alpha$ has two coordinates with the same absolute value then the pair (α, m) contributes nothing to the final sum.
- If R is of type A_{ℓ} and $\lambda+\rho-m p \alpha$ has two equal coordinates, then the pair (α, m) contributes nothing to the final sum.

Keeping control

- The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ.
- Use coordinate descriptions of root systems.
- If R is of type B_{ℓ} or D_{ℓ} and $\lambda+\rho-m p \alpha$ has two coordinates with the same absolute value then the pair (α, m) contributes nothing to the final sum.
- If R is of type A_{ℓ} and $\lambda+\rho-m p \alpha$ has two equal coordinates, then the pair (α, m) contributes nothing to the final sum.

Eliminating multiplicities

- The Sum Formula overestimates the character of $\operatorname{rad} V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- Example. Type D_{ℓ}.
- For $r \leq p-1, S^{r}\left(V^{*}\right)$ has a good filtration. with subquotients of the form $H^{0}\left(s \omega_{1}\right), s<r$.
$\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), V\left(r \omega_{1}\right)\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(H^{0}\left(r \omega_{1}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)$

Eliminating multiplicities

- The Sum Formula overestimates the character of $\operatorname{rad} V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- Example. Type D_{ℓ}.

$\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), V\left(r \omega_{1}\right)\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(H^{0}\left(r \omega_{1}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)$

Eliminating multiplicities

- The Sum Formula overestimates the character of $\operatorname{rad} V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- Example. Type D_{ℓ}.
- For $r \leq p-1, S^{r}\left(V^{*}\right)$ has a good filtration. with subquotients of the form $H^{0}\left(s \omega_{1}\right), s<r$.
$\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), V\left(r \omega_{1}\right)\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(H^{0}\left(r \omega_{1}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)$

Eliminating multiplicities

- The Sum Formula overestimates the character of $\operatorname{rad} V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- Example. Type D_{ℓ}.
- For $r \leq p-1, S^{r}\left(V^{*}\right)$ has a good filtration. with subquotients of the form $H^{0}\left(s \omega_{1}\right), s<r$.
- Then for $r_{1}<r$, $\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), V\left(r \omega_{1}\right)\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(H^{0}\left(r \omega_{1}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)$
(by self-duality of $S^{r}\left(V^{*}\right)$)

in a good filtration of $S^{r}\left(V^{*}\right)$

Eliminating multiplicities

- The Sum Formula overestimates the character of $\operatorname{rad} V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- Example. Type D_{ℓ}.
- For $r \leq p-1, S^{r}\left(V^{*}\right)$ has a good filtration. with subquotients of the form $H^{0}\left(s \omega_{1}\right), s<r$.
- Then for $r_{1}<r$,

$$
\begin{aligned}
\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), V\left(r \omega_{1}\right)\right) & =\operatorname{dim} \operatorname{Hom}_{G}\left(H^{0}\left(r \omega_{1}\right), H^{0}\left(r_{1} \omega_{1}\right)\right) \\
& \leq \operatorname{dim} \operatorname{Hom}_{G}\left(S^{r}\left(V^{*}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)
\end{aligned}
$$

Eliminating multiplicities

- The Sum Formula overestimates the character of $\operatorname{rad} V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- Example. Type D_{ℓ}.
- For $r \leq p-1, S^{r}\left(V^{*}\right)$ has a good filtration. with subquotients of the form $H^{0}\left(s \omega_{1}\right), s<r$.
- Then for $r_{1}<r$,

$$
\begin{aligned}
\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), V\left(r \omega_{1}\right)\right) & =\operatorname{dim} \operatorname{Hom}_{G}\left(H^{0}\left(r \omega_{1}\right), H^{0}\left(r_{1} \omega_{1}\right)\right) \\
& \leq \operatorname{dim} \operatorname{Hom}_{G}\left(S^{r}\left(V^{*}\right), H^{0}\left(r_{1} \omega_{1}\right)\right) \\
& =\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), S^{r}\left(V^{*}\right)\right) \\
& \left(\text { by self-duality of } S^{r}\left(V^{*}\right)\right)
\end{aligned}
$$

in a good filtration of $S^{r}\left(V^{*}\right)$

Eliminating multiplicities

- The Sum Formula overestimates the character of $\operatorname{rad} V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- Example. Type D_{ℓ}.
- For $r \leq p-1, S^{r}\left(V^{*}\right)$ has a good filtration. with subquotients of the form $H^{0}\left(s \omega_{1}\right), s<r$.
- Then for $r_{1}<r$,
$\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), V\left(r \omega_{1}\right)\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(H^{0}\left(r \omega_{1}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)$
$\leq \operatorname{dim} \operatorname{Hom}_{G}\left(S^{r}\left(V^{*}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)$
$=\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), S^{r}\left(V^{*}\right)\right)$ (by self-duality of $S^{r}\left(V^{*}\right)$)
$=$ multiplicity of $H^{0}\left(r_{1} \omega_{1}\right)$
in a good filtration of $S^{r}\left(V^{*}\right)$

Eliminating multiplicities

- The Sum Formula overestimates the character of $\operatorname{rad} V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- Example. Type D_{ℓ}.
- For $r \leq p-1, S^{r}\left(V^{*}\right)$ has a good filtration. with subquotients of the form $H^{0}\left(s \omega_{1}\right), s<r$.
- Then for $r_{1}<r$,
$\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), V\left(r \omega_{1}\right)\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(H^{0}\left(r \omega_{1}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)$
$\leq \operatorname{dim} \operatorname{Hom}_{G}\left(S^{r}\left(V^{*}\right), H^{0}\left(r_{1} \omega_{1}\right)\right)$
$=\operatorname{dim} \operatorname{Hom}_{G}\left(V\left(r_{1} \omega_{1}\right), S^{r}\left(V^{*}\right)\right)$ (by self-duality of $S^{r}\left(V^{*}\right)$)
$=$ multiplicity of $H^{0}\left(r_{1} \omega_{1}\right)$
in a good filtration of $S^{r}\left(V^{*}\right)$
≤ 1.

Outline

Part I. Classical Weyl modules Jantzen Sum Formula

Applications
Part II. Invariants of lines in space
p-filtrations and SNF bases
Special properties of A
Reduction to Point-Line Incidence
Simultaneous SNF Bases
Concluding remarks

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of V \} $\supseteq P=\{$ singular 1-dimensional subspaces $\}$,
- $\widehat{P}^{*}=\{$ hyperplanes of $V\} \supseteq P^{*}=\left\{p^{\perp} \mid p \in P\right\}$, polar hyperplanes.
- $G(a)=$ group of linear transformations preserving $b(-,-)$.
- $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]
$$

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of $V\}$ $\supseteq P=\{$ singular 1-dimensional subspaces $\}$, - $\widehat{P}^{*}=\{$ hyperplanes of $V\} \supset P^{*}=\left\{p^{\perp} \mid p \in P\right\}$, polar hyperplanes.
- $G(q)=$ group of linear transformations preserving $b(-,-)$.
- $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of $V\}$
- $\widehat{P}^{*}=\{$ hyperplanes of $V\} \supseteq P^{*}=\left\{p^{\perp} \mid p \in P\right\}$, polar hyperplanes.
- $G(q)=$ group of linear transformations preserving $b(-,-)$
- $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of $V\}$ $\supseteq P=\{$ singular 1-dimensional subspaces $\}$,
- $P^{*}=\{$ hyperplanes of $V\} \supseteq P^{*}=\left\{p^{-} \mid p \in P\right\}$, polar hyperplanes.
- $G(a)=$ group of linear transformations preserving $b(-,-)$. - $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of V \} $\supseteq P=\{$ singular 1-dimensional subspaces $\}$,
- $\widehat{P}^{*}=\{$ hyperplanes of $V\}$
- $G(q)=$ group of linear transformations preserving $b(-,-)$.
- $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of V \} $\supseteq P=\{$ singular 1-dimensional subspaces $\}$,
- $\widehat{P}^{*}=\{$ hyperplanes of $V\} \supseteq P^{*}=\left\{p^{\perp} \mid p \in P\right\}$, polar hyperplanes.
- $G(q)=$ group of linear transformations preserving $b(-,-)$ - $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of $V\}$
$\supseteq P=\{$ singular 1-dimensional subspaces $\}$,
- $\widehat{P}^{*}=\{$ hyperplanes of $V\} \supseteq P^{*}=\left\{p^{\perp} \mid p \in P\right\}$, polar hyperplanes.
- $G(q)=$ group of linear transformations preserving $b(-,-)$.
- $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of $V\}$
$\supseteq P=\{$ singular 1-dimensional subspaces $\}$,
- $\widehat{P}^{*}=\{$ hyperplanes of $V\} \supseteq P^{*}=\left\{p^{\perp} \mid p \in P\right\}$, polar hyperplanes.
- $G(q)=$ group of linear transformations preserving $b(-,-)$.
- $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]
$$

Incidence of points and polar hyperplanes

- V vector space over \mathbb{F}_{q} with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $\widehat{P}=\{$ all 1-dimensional subspaces of $V\}$ $\supseteq P=\{$ singular 1-dimensional subspaces $\}$,
- $\widehat{P}^{*}=\{$ hyperplanes of $V\} \supseteq P^{*}=\left\{p^{\perp} \mid p \in P\right\}$, polar hyperplanes.
- $G(q)=$ group of linear transformations preserving $b(-,-)$.
- $A=$ incidence matrix of $\left(\widehat{P}^{*}, \widehat{P}\right)$

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

p-ranks

- Problem is to find the p-ranks, where $q=p^{t}$.
- The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A_{1} was found by Blokhuis and Moorhouse.
- Moorhouse (Linz, 2006): What is the p-rank of A_{11} ?

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

p-ranks

- Problem is to find the p-ranks, where $q=p^{t}$.
- The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A_{1} was found by Blokhuis and Moorhouse.
- Moorhouse (Linz, 2006): What is the p-rank of A_{11} ?

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

p-ranks

- Problem is to find the p-ranks, where $q=p^{t}$.
- The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A_{1} was found by Blokhuis and Moorhouse.
- Moorhouse (Linz, 2006): What is the p-rank of A_{11} ?

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Permutation module structure

- P and P^{*} are isomorphic $G(q)$-sets, $k[P]:=$ permutation module.
- $k[P] \cong k .1 \oplus Y$,
- head $(Y) \cong \operatorname{soc}(Y)$, a simple module L.
- Incidence map induces

$$
\operatorname{Im} \phi=k .1 \oplus L .
$$

- Outcome: $\operatorname{rank}_{p} A_{11}=1+\operatorname{dim} L$.

Permutation module structure

- P and P^{*} are isomorphic $G(q)$-sets, $k[P]:=$ permutation module.
- $k[P] \cong k .1 \oplus Y$,
- head $(Y) \cong \operatorname{soc}(Y)$, a simple module L.
- Incidence map induces

$$
\operatorname{Im} \phi=k .1 \oplus L .
$$

- Outcome: $\operatorname{rank}_{p} A_{11}=1+\operatorname{dim} L$.

Permutation module structure

- P and P^{*} are isomorphic $G(q)$-sets, $k[P]:=$ permutation module.
- $k[P] \cong k .1 \oplus Y$,
- head $(Y) \cong \operatorname{soc}(Y)$, a simple module L.
- Incidence map induces

$$
\phi \in \operatorname{End}_{k G(q)}(k[P]),
$$

$$
\operatorname{Im} \phi=k .1 \oplus L .
$$

- Outcome: $\operatorname{rank}_{p} A_{11}=1+\operatorname{dim} L$.

Permutation module structure

- P and P^{*} are isomorphic $G(q)$-sets, $k[P]:=$ permutation module.
- $k[P] \cong k .1 \oplus Y$,
- head $(Y) \cong \operatorname{soc}(Y)$, a simple module L.
- Incidence map induces
$\phi \in \operatorname{End}_{k G(q)}(k[P])$,

$$
\operatorname{Im} \phi=k .1 \oplus L .
$$

- Outcome: $\operatorname{rank}_{p} A_{11}=1+\operatorname{dim} L$.

Permutation module structure

- P and P^{*} are isomorphic $G(q)$-sets, $k[P]:=$ permutation module.
- $k[P] \cong k .1 \oplus Y$,
- head $(Y) \cong \operatorname{soc}(Y)$, a simple module L.
- Incidence map induces
$\phi \in \operatorname{End}_{k G(q)}(k[P])$,

$$
\operatorname{Im} \phi=k .1 \oplus L .
$$

- Outcome: $\operatorname{rank}_{p} A_{11}=1+\operatorname{dim} L$.

Permutation module structure

- P and P^{*} are isomorphic $G(q)$-sets, $k[P]:=$ permutation module.
- $k[P] \cong k .1 \oplus Y$,
- head $(Y) \cong \operatorname{soc}(Y)$, a simple module L.
- Incidence map induces

$$
\phi \in \operatorname{End}_{k G(q)}(k[P]), \quad \phi(p)=\sum_{p^{\prime} \in p^{\perp}} p^{\prime} .
$$

- Outcome: $\operatorname{rank}_{p} A_{11}=1+\operatorname{dim} L$.

Permutation module structure

- P and P^{*} are isomorphic $G(q)$-sets, $k[P]:=$ permutation module.
- $k[P] \cong k .1 \oplus Y$,
- head $(Y) \cong \operatorname{soc}(Y)$, a simple module L.
- Incidence map induces

$$
\phi \in \operatorname{End}_{k G(q)}(k[P]), \quad \phi(p)=\sum_{p^{\prime} \in p^{\perp}} p^{\prime} .
$$

$$
\operatorname{Im} \phi=k .1 \oplus L .
$$

- Outcome: $\operatorname{rank}_{p} A_{11}=1+\operatorname{dim} L$.

Permutation module structure

- P and P^{*} are isomorphic $G(q)$-sets, $k[P]:=$ permutation module.
- $k[P] \cong k .1 \oplus Y$,
- head $(Y) \cong \operatorname{soc}(Y)$, a simple module L.
- Incidence map induces

$$
\phi \in \operatorname{End}_{k G(q)}(k[P]), \quad \phi(p)=\sum_{p^{\prime} \in p^{\perp}} p^{\prime} .
$$

$$
\operatorname{Im} \phi=k .1 \oplus L
$$

- Outcome: $\operatorname{rank}_{p} A_{11}=1+\operatorname{dim} L$.

Identifying the simple module L

$$
L \cong L((q-1) \omega)
$$

where $\omega=\omega_{1}$ in the orthogonal and symplectic cases, and $\omega_{1}+\omega_{\ell}$ in the unitary case.

- By Steinberg's Tensor Product Theorem, $L((q-1) \omega)=L((p-1) \omega) \otimes L((p-1) \omega)^{(p)}$
\Rightarrow Conclusion: $\operatorname{rank}_{p} A_{11}=1+\left(\operatorname{dim} L^{\prime}((p-1) \omega)\right)^{t}$

Identifying the simple module L

$$
L \cong L((q-1) \omega)
$$

where $\omega=\omega_{1}$ in the orthogonal and symplectic cases, and $\omega_{1}+\omega_{\ell}$ in the unitary case.

- By Steinberg's Tensor Product Theorem,

$$
L((q-1) \omega)=L((p-1) \omega) \otimes L((p-1) \omega)^{(p)} \cdots \otimes L((p-1) \omega)^{\left(p^{t-1}\right)}
$$

Identifying the simple module L

$$
L \cong L((q-1) \omega)
$$

where $\omega=\omega_{1}$ in the orthogonal and symplectic cases, and $\omega_{1}+\omega_{\ell}$ in the unitary case.

- By Steinberg's Tensor Product Theorem,

$$
L((q-1) \omega)=L((p-1) \omega) \otimes L((p-1) \omega)^{(p)} \cdots \otimes L((p-1) \omega)^{\left(p^{t-1}\right)}
$$

- Conclusion: $\operatorname{rank}_{p} A_{11}=1+(\operatorname{dim} L((p-1) \omega))^{t}$.

Oppositeness

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- Two types $I, J \subseteq S$ are opposite if $I w_{0}=J$.
- Assume I and J are opposite types. We say the cosets $g P_{I}$ and $h P_{J}$ of the parabolic subgroups are opposite iff $P_{/} g^{-1} h P_{J}=P_{l} w_{0} P_{J}$.
- Oppositeness map:

- $\operatorname{Im} \eta$ is a simple module (follows from Carter and Lusztig (1976, PLMS))
- The incidences we looked at above can be described in terms of oppositeness.

Oppositeness

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- Two types $I, J \subseteq S$ are opposite if $/ w_{0}=J$.
- Assume I and J are opposite types. We say the cosets $g P_{I}$ and $h P_{J}$ of the parabolic subgroups are opposite iff $P_{l} g^{-1} h P_{J}=P_{l} w_{0} P_{j}$.
- Oppositeness map:
- $\operatorname{Im} \eta$ is a simple module (follows from Carter and Lusztig (1976, PLMS))
- The incidences we looked at above can be described in terms of oppositeness.

Oppositeness

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- Two types $I, J \subseteq S$ are opposite if $I^{w_{0}}=J$.
- Assume I and J are opposite types. We say the cosets $g P_{I}$ and $h P_{J}$ of the parabolic subgroups are opposite iff $P_{l} g^{-1} h P_{J}=P_{l} w_{0} P_{J}$.
- Oppositeness map:
- Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- The incidences we looked at above can be described in terms of oppositeness.

Oppositeness

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- Two types $I, J \subseteq S$ are opposite if $I w_{0}=J$.
- Assume I and J are opposite types. We say the cosets $g P_{I}$ and $h P_{J}$ of the parabolic subgroups are opposite iff

$$
P_{l} g^{-1} h P_{J}=P_{l} w_{0} P_{J}
$$

- Oppositeness map:
- $\operatorname{Im} \eta$ is a simple module (follows from Carter and Lusztig (1976, PLMS))
- The incidences we looked at above can be described in terms of oppositeness.

Oppositeness

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- Two types $I, J \subseteq S$ are opposite if $I^{w_{0}}=J$.
- Assume I and J are opposite types. We say the cosets $g P_{I}$ and $h P_{J}$ of the parabolic subgroups are opposite iff $P_{l} g^{-1} h P_{J}=P_{l} w_{0} P_{J}$.
- Oppositeness map:
- Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- The incidences we looked at above can be described in terms of oppositeness.

Oppositeness

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- Two types $I, J \subseteq S$ are opposite if $I w_{0}=J$.
- Assume I and J are opposite types. We say the cosets $g P_{I}$ and $h P_{J}$ of the parabolic subgroups are opposite iff $P_{l} g^{-1} h P_{J}=P_{l} w_{0} P_{J}$.
- Oppositeness map:
- Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- The incidences we looked at above can be described in terms of oppositeness.

Outline

Part I. Classical Weyl modules Jantzen Sum Formula
 Applications

Part II. Invariants of lines in space p-filtrations and SNF bases Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases
Concluding remarks
A. E. Brouwer, J. Ducey, P. Sin, To appear, Proc. AMS

Skew lines

- We consider the relation of skewness between lines in $P G(3, q), q=p^{t}$.
- This is another instance of oppositeness (Type A_{3}, $I=J=\{1,3\}$).

Skew lines

- We consider the relation of skewness between lines in $P G(3, q), q=p^{t}$.
- This is another instance of oppositeness (Type A_{3}, $I=J=\{1,3\}$).

Notation

- V, a 4-dimensional vector space over F_{q}
- A incidence matrix of skewness between lines in $\mathbb{P}(V)$
- A is square of size $\left(q^{2}+q+1\right)\left(q^{2}+1\right)$.
- For any matrix M, let $e_{i}(M)=$ number of invariant factors in the Smith Normal Form of M which are exactly divisible by p^{i}.
- Problem: Compute $e_{i}(A)$

Outline

Part I. Classical Weyl modules
Jantzen Sum Formula
Applications
Part I'. Invariants of lines in space
p-filtrations and SNF bases
Special properties of A
Reduction to Point-Line Incidence
Simultaneous SNF Bases
Concluding remarks

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{4^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $L=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}$.
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq$ ker η
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}\left(\right.$ and $\left.N_{-1}(\eta)=\{0\}\right)$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \cdots \subseteq$ purification $(\operatorname{Im} \eta)$
- $\overline{N_{0}(\eta)} \subseteq \overline{N_{1}(\eta)} \subseteq$

$$
e_{i}(\eta)=\operatorname{dim}_{F}\left(\overline{M_{i}(\eta)} / \overline{M_{i+1}(\eta)}\right)=\operatorname{dim}_{F}\left(\overline{N_{i}(\eta)} / \overline{N_{i-1}(\eta)}\right)
$$

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{q^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.

- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq$ ker η
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \cdots \subseteq$ purification $(\operatorname{Im} \eta)$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq$

$$
e_{i}(\eta)=\operatorname{dim}_{F}\left(\overline{M_{i}(\eta)} / \overline{M_{i+1}(\eta)}\right)=\operatorname{dim}_{F}\left(\overline{N_{i}(\eta)} / \overline{N_{i-1}(\eta)}\right)
$$

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{q^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}$.
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq$ ker η
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}\left(\right.$ and $\left.N_{-1}(\eta)=\{0\}\right)$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \cdots \subseteq$ purification $(\operatorname{Im} \eta)$
- $\overline{N_{0}(\eta)} \subseteq \overline{N_{1}(\eta)} \subseteq$

$$
e_{i}(\eta)=\operatorname{dim}_{F}\left(\overline{M_{i}(\eta)} / \overline{M_{i+1}(\eta)}\right)=\operatorname{dim}_{F}\left(\overline{N_{i}(\eta)} / \overline{N_{i-1}(\eta)}\right)
$$

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{q^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}$.
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{q^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}$.
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq \operatorname{ker} \eta$
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $N_{-1}(\eta)=\{0\}$)
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \cdots \subseteq$ purification $(\operatorname{Im} \eta)$
$e_{i}(\eta)=\operatorname{dim}_{F}\left(\overline{M_{i}(\eta)} / \overline{M_{i+1}(\eta)}\right)=\operatorname{dim}_{F}\left(\overline{N_{i}(\eta)} / \overline{N_{i-1}(\eta)}\right)$

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{q^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}$.
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq \operatorname{ker} \eta$
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots$
\subseteq purification (Im η)
$e_{i}(\eta)=\operatorname{dim}_{F}\left(\overline{M_{i}(\eta)} / \overline{M_{i+1}(\eta)}\right)=\operatorname{dim}_{F}\left(\overline{N_{i}(\eta)} / \overline{N_{i-1}(\eta)}\right)$

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{q^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}$.
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq \operatorname{ker} \eta$
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$

$e_{i}(\eta)=\operatorname{dim}_{F}\left(\overline{M_{i}(\eta)} / \overline{M_{i+1}(\eta)}\right)=\operatorname{dim}_{F}\left(\overline{N_{i}(\eta)} / \overline{N_{i-1}(\eta)}\right)$

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{q^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}$.
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq \operatorname{ker} \eta$
- $\mathrm{F}^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \cdots \subseteq$ purification $(\operatorname{Im} \eta)$

p-filtrations

- $R=\mathbb{Z}_{p}[\zeta], \zeta^{q^{4}-1}=1, F=R / p R$.
- For $L \leq R^{\ell}$, set $\bar{L}=\left(L+p R^{\ell}\right) / p R^{\ell}$.
- $\eta: R^{m} \rightarrow R^{n}$.
- $M_{i}(\eta)=\left\{x \in R^{m} \mid \eta(x) \in p^{i} R^{n}\right\}$
- $R^{m}=M_{0}(\eta) \supseteq M_{1}(\eta) \supseteq \cdots \supseteq$ ker η
- $F^{m}=\overline{M_{0}(\eta)} \supseteq \overline{M_{1}(\eta)} \supseteq \cdots$
- $N_{i}(\eta)=\left\{p^{-i} \eta(x) \mid x \in M_{i}(\eta)\right\}$ (and $\left.N_{-1}(\eta)=\{0\}\right)$
- $N_{0}(\eta) \subseteq N_{1}(\eta) \subseteq \cdots \subseteq$ purification $(\operatorname{Im} \eta)$
- $\overline{N_{0}(\eta)} \subseteq \overline{N_{1}(\eta)} \subseteq \cdots$

$$
e_{i}(\eta)=\operatorname{dim}_{F}\left(\overline{M_{i}(\eta)} / \overline{M_{i+1}(\eta)}\right)=\operatorname{dim}_{F}\left(\overline{N_{i}(\eta)} / \overline{N_{i-1}(\eta)}\right) .
$$

Left and right SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair.
- A left SNF basis can be constructed by lifting a basis of F^{m} compatible with the descending p-filtration $\left\{M_{i}(\eta)\right\}$
- A right SNF basis can be constructed by lifting a basis of F^{n} compatible with the ascending p-filtration $\left\{N_{i}(\eta)\right\}$

Left and right SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair.
compatible with the descending p-filtration $\left\{M_{i}(\eta)\right\}$
- A right SNF basis can be constructed by lifting a basis of F^{n} compatible with the ascending p-filtration $\left\{N_{i}(\eta)\right\}$

Left and right SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair.
- A left SNF basis can be constructed by lifting a basis of F^{m} compatible with the descending p-filtration $\left\{M_{i}(\eta)\right\}$.
- A right SNF basis can be constructed by lifting a basis of F^{n} compatible with the ascending p-filtration $\left\{N_{i}(\eta)\right\}$.

Left and right SNF Bases

- For a given homomorphism $\eta: R^{m} \rightarrow R^{n}$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- We define a left SNF basis for η to be any basis of R^{m} that belongs to such a pair. Similarly, a right SNF basis for η is any basis of R^{n} belonging to such a pair.
- A left SNF basis can be constructed by lifting a basis of F^{m} compatible with the descending p-filtration $\left\{M_{i}(\eta)\right\}$.
- A right SNF basis can be constructed by lifting a basis of F^{n} compatible with the ascending p-filtration $\left\{N_{i}(\eta)\right\}$.

Outline

Part I. Classical Weyl modules
Jantzen Sum Formula
Applications
Part I'. Invariants of lines in space
p-filtrations and SNF bases
Special properties of A
Reduction to Point-Line Incidence
Simultaneous SNF Bases
Concluding remarks

The equation of a strongly regular graph

- $A^{2}=q^{4} I+\left(q^{4}-q^{3}-q^{2}+q\right) A+\left(q^{4}-q^{3}\right)(J-A-I)$
- Eigenvalues of A are $q,-q^{2}$, and q^{4} with respective multiplicities $q^{4}+q^{2}, q^{3}+q^{2}+q$, and 1 .
- The elementary divisors of A are all powers of p.

The equation of a strongly regular graph

- $A^{2}=q^{4} I+\left(q^{4}-q^{3}-q^{2}+q\right) A+\left(q^{4}-q^{3}\right)(J-A-I)$
- Eigenvalues of A are $q,-q^{2}$, and q^{4} with respective multiplicities $q^{4}+q^{2}, q^{3}+q^{2}+q$, and 1 .

- The elementary divisors of A are all powers of p.

The equation of a strongly regular graph

- $A^{2}=q^{4} I+\left(q^{4}-q^{3}-q^{2}+q\right) A+\left(q^{4}-q^{3}\right)(J-A-I)$
- Eigenvalues of A are $q,-q^{2}$, and q^{4} with respective multiplicities $q^{4}+q^{2}, q^{3}+q^{2}+q$, and 1 .
- The elementary divisors of A are all powers of p.

Theorem 1
Let $e_{i}=e_{i}(A)$.

1. $e_{i}=e_{3 t-i}$ for $0 \leq i<t$.
2. $e_{i}=0$ for $t<i<2 t, 3 t<i<4 t$, and $i>4 t$.
3. $\sum_{i=0}^{t} e_{i}=q^{4}+q^{2}$.
4. $\sum_{i=2 t}^{3 t} e_{i}=q^{3}+q^{2}+q$.
5. $e_{4 t}=1$.

Thus we get all the elementary divisor multiplicities once we know t of the numbers e_{0}, \ldots, e_{t} (or the numbers $e_{2 t}, \ldots, e_{3 t}$).

More notation

- $[3]^{t}=\left\{\left(s_{0}, \ldots, s_{t-1}\right) \mid s_{i} \in\{1,2,3\}\right.$ for all $\left.i\right\}$
- $\mathcal{H}(i)=\left\{\left(s_{0}, \ldots, s_{t-1}\right) \in[3]^{t} \mid \#\left\{j \mid s_{j}=2\right\}=i\right\}$
- For $\vec{s}=\left(s_{0}, \ldots, s_{t-1}\right) \in[3]^{t}$

$$
\lambda_{i}=p s_{i+1}-s_{i}
$$

(subscripts mod t) and

$$
\vec{\lambda}=\left(\lambda_{0}, \ldots, \lambda_{t-1}\right)
$$

- For an integer k, set d_{k} to be the coefficient of x^{k} in the expansion of $\left(1+x+\cdots+x^{p-1}\right)^{4}$. Set $d(\vec{s})=\prod_{i=0}^{t-1} d_{\lambda_{i}}$.
- Theorem 2

Let $e_{i}=e_{i}(A)$ denote the multiplicity of p^{i} as an elementary divisor of A. Then, for $0 \leq i \leq t$,

$$
e_{2 t+i}=\sum_{\vec{s} \in \mathcal{H}(i)} d(\vec{s}) .
$$

Example, $q=9$

- $\left(1+x+x^{2}\right)^{4}=$ $1+4 x+10 x^{2}+16 x^{3}+19 x^{4}+16 x^{5}+10 x^{6}+4 x^{7}+x^{8}$
- $\mathcal{H}(0)=\{(11),(13),(31),(33)\}$, $\mathcal{H}(1)=\{(21),(23),(12),(32)\}, \mathcal{H}(2)=\{(22)\}$.
- $e_{4}=d(11)+d(13)+d(31)+d(33)=202$
- $e_{5}=d(21)+d(23)+d(12)+d(32)=256$
- $e_{6}=d(22)=361$

Table: The elementary divisors of the incidence matrix of lines vs. lines in $\mathrm{PG}(3,9)$, where two lines are incident when skew.

Elem. Div.	1	3	3^{2}	3^{4}	3^{5}	3^{6}	3^{8}
Multiplicity	361	256	6025	202	256	361	1

Outline

Part I. Classical Weyl modules
Jantzen Sum Formula
Applications
Part II. Invariants of lines in space
p-filtrations and SNF bases
Special properties of A
Reduction to Point-Line Incidence
Simultaneous SNF Bases
Concluding remarks

- Let $\mathcal{L}_{r}=\{r$-diml subspaces of $V\}$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $B^{t} B=-\left[A+\left(q^{2}-q\right) /\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- $e_{i}\left(B^{t} B\right)=e_{i}\left(A+\left(q^{2}-q\right) /\right)$ for $0 \leq i \leq t$.
- $e_{2 t+i}(A)=e_{t-i}\left(B^{t} B\right)$, for $0 \leq i \leq t$.
- Let $\mathcal{L}_{r}=\{r$-diml subspaces of $V\}$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence
matrix of lines vs. points.

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $B^{t} B=-\left[A+\left(q^{2}-q\right) I\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- $e_{i}\left(B^{t} B\right)=e_{i}\left(A+\left(q^{2}-q\right) /\right)$ for $0 \leq i \leq t$.
- $e_{2 t+i}(A)=e_{t-i}\left(B^{t} B\right)$, for $0 \leq i \leq t$.
- Let $\mathcal{L}_{r}=\{r$-diml subspaces of $V\}$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.
$B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-I)$
- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
\square

- $e_{2 t+i}(A)=e_{t-i}\left(B^{t} B\right)$, for $0 \leq i \leq t$.
- Let $\mathcal{L}_{r}=\{r$-diml subspaces of $V\}$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) . \tag{1}
\end{equation*}
$$

- Let $\mathcal{L}_{r}=\{r$-diml subspaces of $V\}$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.
-

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) . \tag{1}
\end{equation*}
$$

- $(\mathbf{1}) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) \mathbf{1}$,

- Let $\mathcal{L}_{r}=\{r$-diml subspaces of $V\}$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.
-

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) \tag{1}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $B^{t} B=-\left[A+\left(q^{2}-q\right) /\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- Let $\mathcal{L}_{r}=\{r$-diml subspaces of $V\}$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.
-

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) \tag{1}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $B^{t} B=-\left[A+\left(q^{2}-q\right) /\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- $e_{i}\left(B^{t} B\right)=e_{i}\left(A+\left(q^{2}-q\right) I\right)$ for $0 \leq i \leq t$.
- Let $\mathcal{L}_{r}=\{r$-diml subspaces of $V\}$
- B denote the incidence matrix with rows indexed by \mathcal{L}_{1} and columns indexed by \mathcal{L}_{2}, where incidence again means zero intersection.
- B^{t} denotes the transpose of B, and is just the incidence matrix of lines vs. points.
-

$$
\begin{equation*}
B^{t} B=\left(q^{3}+q^{2}\right) I+\left(q^{3}+q^{2}-q-1\right) A+\left(q^{3}+q^{2}-q\right)(J-A-l) \tag{1}
\end{equation*}
$$

- $(1) B^{t} B=q^{4}\left(q^{2}+q+1\right)(q+1) 1$,
- $B^{t} B=-\left[A+\left(q^{2}-q\right) I\right]+q^{2} I+\left(q^{3}+q^{2}-q\right) J$
- $e_{i}\left(B^{t} B\right)=e_{i}\left(A+\left(q^{2}-q\right) I\right)$ for $0 \leq i \leq t$.
- $e_{2 t+i}(A)=e_{t-i}\left(B^{t} B\right)$, for $0 \leq i \leq t$.

Outline

Part I. Classical Weyl modules
Janizen Sum Formula
Applications
Part II. Invariants of lines in space
p-filtrations and SNF bases
Special properties of A
Reduction to Point-Line Incidence
Simultaneous SNF Bases
Concluding remarks

Proof of Theorem 2

- Suppose we can obtain the SNF of B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations
Then we can find the SNF of the product:

- E exists iff there is basis of $R^{\mathcal{L}_{1}}$ which is simultaneously a right SNF basis for B^{t} and a left SNF basis for B
- In general such as basis does not exist, but we get it here from $R^{\mathcal{L}_{1}}$ being multiplicity-free.
- Finally, we know the elementary divisors of B^{t} and B from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-3559].

Proof of Theorem 2

- Suppose we can obtain the SNF of B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations

- Then we can find the SNF of the product:

$$
P B^{t} B Q^{-1}=D_{r, 1} D_{1, s},
$$

- E exists iff there is basis of $R^{\mathcal{L}_{1}}$ which is simultaneously a right SNF basis for B^{t} and a left SNF basis for B
- In general such as basis does not exist, but we get it here from $R^{\mathcal{L}_{1}}$ being multiplicity-free.
- Finally, we know the elementary divisors of B^{t} and B from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-3559].

Proof of Theorem 2

- Suppose we can obtain the SNF of B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations

- Then we can find the SNF of the product:

$$
P B^{t} B Q^{-1}=D_{r, 1} D_{1, s}
$$

- E exists iff there is basis of $R^{\mathcal{L}_{1}}$ which is simultaneously a right SNF basis for B^{t} and a left SNF basis for B
- In general such as basis does not exist, but we get it here from $R^{\mathcal{L}_{1}}$ being multiplicity-free.
- Finally, we know the elementary divisors of B^{t} and B from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-3559].

Proof of Theorem 2

- Suppose we can obtain the SNF of B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations

- Then we can find the SNF of the product:

$$
P B^{t} B Q^{-1}=D_{r, 1} D_{1, s}
$$

- E exists iff there is basis of $R^{\mathcal{L}_{1}}$ which is simultaneously a right SNF basis for B^{t} and a left SNF basis for B
- In general such as basis does not exist, but we get it here from $R^{\mathcal{L}_{1}}$ being multiplicity-free.
- Finally, we know the elementary divisors of B^{t} and B from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-3559]

Proof of Theorem 2

- Suppose we can obtain the SNF of B^{t} and B by:

$$
P B^{t} E^{-1}=D_{2,1}
$$

and

$$
E B Q^{-1}=D_{1,2}
$$

where E is the same matrix in both equations

- Then we can find the SNF of the product:

$$
P B^{t} B Q^{-1}=D_{r, 1} D_{1, s},
$$

- E exists iff there is basis of $R^{\mathcal{L}_{1}}$ which is simultaneously a right SNF basis for B^{t} and a left SNF basis for B
- In general such as basis does not exist, but we get it here from $R^{\mathcal{L}_{1}}$ being multiplicity-free.
- Finally, we know the elementary divisors of B^{t} and B from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-3559].

Outline

Part I. Classical Weyl modulesJantzen Sum Formula
Applications
Part II. Invariants of lines in space
p-filtrations and SNF bases
Special properties of A
Reduction to Point-Line Incidence
Simultaneous SNF Bases

Concluding remarks

Recapitulation

- In both problems we considered p-filtrations with gaps.
- elementary divisors with multiplicity zero \equiv empty layers in the p-filtration \Longrightarrow excessive multiplicities in the Jantzen Sum formula.
- Is there a way to predict these gaps?
- Even when such gaps, exact results can still be obtained.

Recapitulation

- In both problems we considered p-filtrations with gaps.
- elementary divisors with multiplicity zero \equiv empty layers in the p-filtration \Longrightarrow excessive multiplicities in the Jantzen Sum formula.
- Is there a way to predict these gaps?
- Even when such gaps, exact results can still be obtained.

Recapitulation

- In both problems we considered p-filtrations with gaps.
- elementary divisors with multiplicity zero \equiv empty layers in the p-filtration \Longrightarrow excessive multiplicities in the Jantzen Sum formula.
- Is there a way to predict these gaps?
- Even when such gaps, exact results can still be obtained.

Recapitulation

- In both problems we considered p-filtrations with gaps.
- elementary divisors with multiplicity zero \equiv empty layers in the p-filtration \Longrightarrow excessive multiplicities in the Jantzen Sum formula.
- Is there a way to predict these gaps?
- Even when such gaps, exact results can still be obtained.

Thank you for your attention!

