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Let G be a semisimple algebraic group in characteristic p > 0.
For each of the types and weights considered below we find:

I The character of the simple module L(λ)

I The characters (and multiplicities) of the simple
composition factors of V (λ)

I The submodule lattice of V (λ)



Groups and weights considered

(B) G of type B`, (` ≥ 2) λ = r(ω1), 0 ≤ r ≤ p − 1;
(D) G of type D`, (` ≥ 3) λ = r(ω1), 0 ≤ r ≤ p − 1;
(A) G of type A`, (` ≥ 3) λ = r(ω1 + ω`), 0 ≤ r ≤ p − 1;

Note: For type A and type C, the Weyl modules V (rω1) are
simple.



Theorem B
Let G be of type B`, ` ≥ 2. Let ω1 be the highest weight of the
standard orthogonal module of dimension 2`+ 1. Assume
0 ≤ r ≤ p − 1. Then the following hold.
(a) H0(rω1) is simple unless (i) p = 2 and r = 1 or (ii) p > 2

and there exists a positive odd integer m such that

r + 2`− 1 ≤ mp ≤ 2r + 2`− 2.

(b) If (i) holds then the quotient H0(ω1)/L(ω1) is the
one-dimensional trivial module.

(c) If (ii) holds then m is unique and

H0(rω1)/L(rω1) ∼= H0(r1ω1),

where r1 = mp − 2`+ 1− r . Furthermore the module
H0(r1ω1) is simple.



Theorem D
Let G be of type D`, ` ≥ 3. Let ω1 be the highest weight of the
standard orthogonal module of dimension 2`. Assume
0 ≤ r ≤ p − 1. Then the following hold.
(a) Suppose that there exists a positive even integer m such

that
r + 2`− 2 ≤ mp ≤ 2r + 2`− 3.

Then m is unique and

H0(rω1)/L(rω1) ∼= H0(r1ω1),

where r1 = mp − 2`+ 2− r . Furthermore the module
H0(r1ω1) is simple.

(b) Otherwise, H0(rω1) is simple.



Theorem A
Let G be of type A`, ` ≥ 3. Assume 0 ≤ r ≤ p − 1. Then the
following hold.
(a) Suppose that here exists a positive integer m such that

r + ` ≤ mp ≤ 2r + `− 1.

Then m is unique and

H0(r(ω1 + ω`))/L(r(ω1 + ω`)) ∼= H0(r1(ω1 + ω`)),

where r1 = mp − `− r . Furthermore the module
H0(r1(ω1 + ω`)) is simple.

(b) Otherwise, H0(r(ω1 + ω`)) is simple.
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Sum Formula

The Jantzen filtration V (λ)i , i > 0, of V (λ) satisfies

V (λ)1 = rad V (λ), so V (λ)/V (λ)1 ∼= L(λ).

and∑
i>0

Ch(V (λ)i) = −
∑
α>0

∑
{m:0<mp<〈λ+ρ,α∨〉}

vp(mp)χ(λ−mpα)



Keeping control

I The main challenge lies in trying to do infinitely many Sum
Formula computations at once. For fixed type the
parameters of the problem are p, r and the rank `.

I Use coordinate descriptions of root systems.
I If R is of type B` or D` and λ+ ρ−mpα has two

coordinates with the same absolute value then the pair
(α,m) contributes nothing to the final sum.

I If R is of type A` and λ+ ρ−mpα has two equal
coordinates, then the pair (α,m) contributes nothing to the
final sum.
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Eliminating multiplicities

I The Sum Formula overestimates the character of rad V (λ)
and multiplicities of composition factors may be greater
than the actual composition multiplicity.

I Example. Type D`.
I For r ≤ p − 1, Sr (V ∗) has a good filtration . with

subquotients of the form H0(sω1), s < r .
I Then for r1 < r ,

dim HomG(V (r1ω1),V (rω1)) = dim HomG(H0(rω1),H0(r1ω1))

≤ dim HomG(Sr (V ∗),H0(r1ω1))

= dim HomG(V (r1ω1),Sr (V ∗))

(by self-duality of Sr (V ∗))

= multiplicity of H0(r1ω1)

in a good filtration of Sr (V ∗)
≤ 1.
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Incidence of points and polar hyperplanes

I V vector space over Fq with nonsingular form b(−,−).
I b may be alternating or symmetric or hermitian.
I P̂ = {all 1-dimensional subspaces of V}
⊇ P = {singular 1-dimensional subspaces},

I P̂∗ = {hyperplanes of V} ⊇ P∗ = {p⊥ | p ∈ P}, polar
hyperplanes.

I G(q) = group of linear transformations preserving b(−,−).
I A = incidence matrix of (P̂∗, P̂)

A =

[
A1
A2

]
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p-ranks

I Problem is to find the p-ranks, where q = pt .
I The p-rank of A is well known (Goethals-Delsarte,

MacWilliams-Mann, Smith), and the p-rank of A1 was
found by Blokhuis and Moorhouse.

I Moorhouse (Linz, 2006): What is the p-rank of A11?

A =

[
A1
A2

]
=

[
A11 A12
A21 A22
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Permutation module structure

I P and P∗ are isomorphic G(q)-sets, k [P] := permutation
module.

I k [P] ∼= k .1⊕ Y ,
I head(Y ) ∼= soc(Y ), a simple module L.
I Incidence map induces

φ ∈ EndkG(q)(k [P]), φ(p) =
∑

p′∈p⊥
p′.

I

Imφ = k .1⊕ L.

I Outcome: rankp A11 = 1 + dim L.
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Identifying the simple module L

I

L ∼= L((q − 1)ω),

where ω = ω1 in the orthogonal and symplectic cases, and
ω1 + ω` in the unitary case.

I By Steinberg’s Tensor Product Theorem,

L((q−1)ω) = L((p−1)ω)⊗L((p−1)ω)(p) · · ·⊗L((p−1)ω)(p
t−1)

I Conclusion: rankp A11 = 1 + (dim L((p − 1)ω))t .
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Oppositeness

I Let (∆(q),S) be the spherical Tits building of a finite group
of Lie type.

I Two types I, J ⊆ S are opposite if Iw0 = J.
I Assume I and J are opposite types. We say the cosets gPI

and hPJ of the parabolic subgroups are opposite iff
PIg−1hPJ = PIw0PJ .

I Oppositeness map:

η : indG(q)
PI

(k)→ indG(q)
PJ

(k), gPI 7→
∑

hPJ⊆gPIw0PJ

hPJ

I Im η is a simple module (follows from Carter and Lusztig
(1976, PLMS))

I The incidences we looked at above can be described in
terms of oppositeness.
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Skew lines

I We consider the relation of skewness between lines in
PG(3,q), q = pt .

I This is another instance of oppositeness (Type A3,
I = J = {1,3}).



Skew lines

I We consider the relation of skewness between lines in
PG(3,q), q = pt .

I This is another instance of oppositeness (Type A3,
I = J = {1,3}).



Notation

I V , a 4-dimensional vector space over Fq

I A incidence matrix of skewness between lines in P(V )

I A is square of size (q2 + q + 1)(q2 + 1).
I For any matrix M, let ei(M) = number of invariant factors in

the Smith Normal Form of M which are exactly divisible by
pi .

I Problem: Compute ei(A)
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p-filtrations

I R = Zp[ζ], ζq4−1 = 1, F = R/pR.
I For L ≤ R`, set L = (L + pR`)/pR`.
I η : Rm → Rn.
I Mi(η) = {x ∈ Rm | η(x) ∈ piRn}
I Rm = M0(η) ⊇ M1(η) ⊇ · · · ⊇ ker η
I F m = M0(η) ⊇ M1(η) ⊇ · · ·
I Ni(η) = {p−iη(x) | x ∈ Mi(η)} (and N−1(η) = {0})
I N0(η) ⊆ N1(η) ⊆ · · · ⊆ purification(Im η)

I N0(η) ⊆ N1(η) ⊆ · · ·

ei(η) = dimF

(
Mi(η)/Mi+1(η)

)
= dimF

(
Ni(η)/Ni−1(η)

)
.
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Left and right SNF Bases

I For a given homomorphism η : Rm → Rn, we will be
interested in pairs of bases (B, C) with respect to which the
matrix of η is in Smith normal form.

I We define a left SNF basis for η to be any basis of Rm that
belongs to such a pair. Similarly, a right SNF basis for η is
any basis of Rn belonging to such a pair.

I A left SNF basis can be constructed by lifting a basis of F m

compatible with the descending p-filtration {Mi(η)}.
I A right SNF basis can be constructed by lifting a basis of

F n compatible with the ascending p-filtration {Ni(η)}.
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The equation of a strongly regular graph

I A2 = q4I + (q4 − q3 − q2 + q)A + (q4 − q3)(J − A− I)
I Eigenvalues of A are q, −q2, and q4 with respective

multiplicities q4 + q2, q3 + q2 + q, and 1.
I The elementary divisors of A are all powers of p.
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Theorem 1
Let ei = ei(A).

1. ei = e3t−i for 0 ≤ i < t .

2. ei = 0 for t < i < 2t , 3t < i < 4t , and i > 4t .

3.
∑t

i=0 ei = q4 + q2.

4.
∑3t

i=2t ei = q3 + q2 + q.

5. e4t = 1.

Thus we get all the elementary divisor multiplicities once we
know t of the numbers e0, . . . ,et (or the numbers e2t , . . . ,e3t ).



More notation

I [3]t = {(s0, . . . , st−1) | si ∈ {1,2,3} for all i}
I H(i) =

{
(s0, . . . , st−1) ∈ [3]t

∣∣#{j |sj = 2} = i
}

I For ~s = (s0, . . . , st−1) ∈ [3]t

λi = psi+1 − si ,

(subscripts mod t) and

~λ = (λ0, . . . , λt−1)

I For an integer k , set dk to be the coefficient of xk in the
expansion of (1 + x + · · ·+ xp−1)4. Set d(~s) =

∏t−1
i=0 dλi .



I Theorem 2
Let ei = ei(A) denote the multiplicity of pi as an elementary
divisor of A. Then, for 0 ≤ i ≤ t ,

e2t+i =
∑

~s∈H(i)

d(~s).



Example, q = 9

I (1 + x + x2)4 =
1 + 4x + 10x2 + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8

I H(0) = {(11), (13), (31), (33)},
H(1) = {(21), (23), (12), (32)}, H(2) = {(22)}.

I e4 = d(11) + d(13) + d(31) + d(33) = 202
I e5 = d(21) + d(23) + d(12) + d(32) = 256
I e6 = d(22) = 361



Table: The elementary divisors of the incidence matrix of lines vs.
lines in PG(3,9), where two lines are incident when skew.

Elem. Div. 1 3 32 34 35 36 38

Multiplicity 361 256 6025 202 256 361 1
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I Let Lr = {r -diml subspaces of V}
I B denote the incidence matrix with rows indexed by L1 and

columns indexed by L2, where incidence again means
zero intersection.

I Bt denotes the transpose of B, and is just the incidence
matrix of lines vs. points.

I

BtB = (q3+q2)I+(q3+q2−q−1)A+(q3+q2−q)(J−A−I).
(1)

I (1)BtB = q4(q2 + q + 1)(q + 1)1,
I BtB = −[A + (q2 − q)I] + q2I + (q3 + q2 − q)J
I ei(BtB) = ei(A + (q2 − q)I) for 0 ≤ i ≤ t .
I e2t+i(A) = et−i(BtB), for 0 ≤ i ≤ t .
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Proof of Theorem 2

I Suppose we can obtain the SNF of Bt and B by:

PBtE−1 = D2,1

and
EBQ−1 = D1,2

where E is the same matrix in both equations
I Then we can find the SNF of the product:

PBtBQ−1 = Dr ,1D1,s,

I E exists iff there is basis of RL1 which is simultaneously a
right SNF basis for Bt and a left SNF basis for B

I In general such as basis does not exist, but we get it here
from RL1 being multiplicity-free.

I Finally, we know the elementary divisors of Bt and B from
[D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006)
3537-3559].
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Recapitulation

I In both problems we considered p-filtrations with gaps.
I elementary divisors with multiplicity zero ≡ empty layers in

the p-filtration =⇒ excessive multiplicities in the Jantzen
Sum formula.

I Is there a way to predict these gaps?
I Even when such gaps, exact results can still be obtained.
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Thank you for your attention!
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