Weyl Modules, simple modules and invariants of incidence maps

Peter Sin

University of Florida

AMS Special Session March 10th, 2012 University of South Florida

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

O. Arslan, P.Sin, J Alg. 327 (2011) 141-169)

Let G be a semisimple algebraic group in characteristic p > 0. For each of the types and weights considered below we find:

- ▶ The character of the simple module $L(\lambda)$
- ► The characters (and multiplicities) of the simple composition factors of $V(\lambda)$
- ▶ The submodule lattice of $V(\lambda)$

Groups and weights considered

- (B) *G* of type B_{ℓ} , $(\ell \geq 2)$ $\lambda = r(\omega_1)$, $0 \leq r \leq p-1$;
- (D) G of type D_{ℓ} , $(\ell \geq 3)$ $\lambda = r(\omega_1)$, $0 \leq r \leq p-1$;
- (A) G of type A_{ℓ} , $(\ell \geq 3)$ $\lambda = r(\omega_1 + \omega_{\ell})$, $0 \leq r \leq p-1$; Note: For type A and type C, the Weyl modules $V(r\omega_1)$ are simple.

Theorem B

Let G be of type B_ℓ , $\ell \geq 2$. Let ω_1 be the highest weight of the standard orthogonal module of dimension $2\ell+1$. Assume $0 \leq r \leq p-1$. Then the following hold.

(a) $H^0(r\omega_1)$ is simple unless (i) p=2 and r=1 or (ii) p>2 and there exists a positive odd integer m such that

$$r + 2\ell - 1 \le mp \le 2r + 2\ell - 2$$
.

- (b) If (i) holds then the quotient $H^0(\omega_1)/L(\omega_1)$ is the one-dimensional trivial module.
- (c) If (ii) holds then m is unique and

$$H^0(r\omega_1)/L(r\omega_1)\cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 1 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

Theorem D

Let G be of type D_{ℓ} , $\ell \geq 3$. Let ω_1 be the highest weight of the standard orthogonal module of dimension 2ℓ . Assume $0 \leq r \leq p-1$. Then the following hold.

(a) Suppose that there exists a positive even integer m such that

$$r + 2\ell - 2 \le mp \le 2r + 2\ell - 3$$
.

Then m is unique and

$$H^0(r\omega_1)/L(r\omega_1)\cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 2 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

(b) Otherwise, $H^0(r\omega_1)$ is simple.

Theorem A

Let G be of type A_{ℓ} , $\ell \geq 3$. Assume $0 \leq r \leq p-1$. Then the following hold.

(a) Suppose that here exists a positive integer m such that

$$r + \ell \le mp \le 2r + \ell - 1$$
.

Then m is unique and

$$H^0(r(\omega_1 + \omega_\ell))/L(r(\omega_1 + \omega_\ell)) \cong H^0(r_1(\omega_1 + \omega_\ell)),$$

where $r_1 = mp - \ell - r$. Furthermore the module $H^0(r_1(\omega_1 + \omega_\ell))$ is simple.

(b) Otherwise, $H^0(r(\omega_1 + \omega_\ell))$ is simple.

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

Sum Formula

The *Jantzen filtration* $V(\lambda)^i$, i > 0, of $V(\lambda)$ satisfies

$$V(\lambda)^1 = \operatorname{rad} V(\lambda), \quad \text{so} \quad V(\lambda)/V(\lambda)^1 \cong L(\lambda).$$

and

$$\sum_{i>0} \operatorname{Ch}(\mathit{V}(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{\mathit{m}: 0 < \mathit{mp} < \langle \lambda + \rho, \alpha^\vee \rangle \}} \mathit{v}_\mathit{p}(\mathit{mp}) \chi(\lambda - \mathit{mp}\alpha)$$

- ▶ The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ .
- Use coordinate descriptions of root systems.
- ▶ If R is of type B_{ℓ} or D_{ℓ} and $\lambda + \rho mp\alpha$ has two coordinates with the same absolute value then the pair (α, m) contributes nothing to the final sum.
- ▶ If R is of type A_{ℓ} and $\lambda + \rho mp\alpha$ has two equal coordinates, then the pair (α, m) contributes nothing to the final sum.

- ▶ The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ .
- Use coordinate descriptions of root systems.
- ▶ If R is of type B_{ℓ} or D_{ℓ} and $\lambda + \rho mp\alpha$ has two coordinates with the same absolute value then the pair (α, m) contributes nothing to the final sum.
- ▶ If R is of type A_{ℓ} and $\lambda + \rho mp\alpha$ has two equal coordinates, then the pair (α, m) contributes nothing to the final sum.

- ▶ The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ .
- Use coordinate descriptions of root systems.
- ▶ If R is of type B_{ℓ} or D_{ℓ} and $\lambda + \rho mp\alpha$ has two coordinates with the same absolute value then the pair (α, m) contributes nothing to the final sum.
- ▶ If R is of type A_{ℓ} and $\lambda + \rho mp\alpha$ has two equal coordinates, then the pair (α, m) contributes nothing to the final sum.

- ▶ The main challenge lies in trying to do infinitely many Sum Formula computations at once. For fixed type the parameters of the problem are p, r and the rank ℓ .
- Use coordinate descriptions of root systems.
- ▶ If R is of type B_{ℓ} or D_{ℓ} and $\lambda + \rho mp\alpha$ has two coordinates with the same absolute value then the pair (α, m) contributes nothing to the final sum.
- ▶ If R is of type A_{ℓ} and $\lambda + \rho mp\alpha$ has two equal coordinates, then the pair (α, m) contributes nothing to the final sum.

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- ► Example. Type D_{ℓ} .
- ► For $r \le p-1$, $S^r(V^*)$ has a *good filtration* . with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),V(r\omega_{1})) &= \dim \operatorname{Hom}_{G}(H^{0}(r\omega_{1}),H^{0}(r_{1}\omega_{1})) \\ &\leq \dim \operatorname{Hom}_{G}(S^{r}(V^{*}),H^{0}(r_{1}\omega_{1})) \\ &= \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } H^{0}(r_{1}\omega_{1}) \\ &\text{ in a } \operatorname{good filtration} \text{ of } S^{r}(V^{*}) \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- ▶ Example. Type D_{ℓ} .
- ► For $r \le p-1$, $S^r(V^*)$ has a *good filtration* . with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),V(r\omega_{1})) &= \dim \operatorname{Hom}_{G}(H^{0}(r\omega_{1}),H^{0}(r_{1}\omega_{1})) \\ &\leq \dim \operatorname{Hom}_{G}(S^{r}(V^{*}),H^{0}(r_{1}\omega_{1})) \\ &= \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } H^{0}(r_{1}\omega_{1}) \\ &\text{ in a } \operatorname{good} \operatorname{filtration} \text{ of } S^{r}(V^{*}) \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- ▶ Example. Type D_{ℓ} .
- ▶ For $r \le p-1$, $S^r(V^*)$ has a *good filtration* . with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

$$\begin{aligned} \dim \operatorname{Hom}_{\mathcal{G}}(V(r_1\omega_1),V(r\omega_1)) &= \dim \operatorname{Hom}_{\mathcal{G}}(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_{\mathcal{G}}(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_{\mathcal{G}}(V(r_1\omega_1),S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } H^0(r_1\omega_1) \\ &= \operatorname{multiplicity} \text{ of } S^r(V^*) \end{aligned}$$

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- **Example.** Type D_{ℓ} .
- ► For $r \le p-1$, $S^r(V^*)$ has a *good filtration* . with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),V(r\omega_{1})) &= \dim \operatorname{Hom}_{G}(H^{0}(r\omega_{1}),H^{0}(r_{1}\omega_{1})) \\ &\leq \dim \operatorname{Hom}_{G}(S^{r}(V^{*}),H^{0}(r_{1}\omega_{1})) \\ &= \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } H^{0}(r_{1}\omega_{1}) \\ & \text{ in a } \operatorname{good} \operatorname{filtration} \text{ of } S^{r}(V^{*}) \\ &< 1 \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- **Example.** Type D_{ℓ} .
- ► For $r \le p-1$, $S^r(V^*)$ has a *good filtration* . with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),V(r\omega_{1})) &= \dim \operatorname{Hom}_{G}(H^{0}(r\omega_{1}),H^{0}(r_{1}\omega_{1})) \\ &\leq \dim \operatorname{Hom}_{G}(S^{r}(V^{*}),H^{0}(r_{1}\omega_{1})) \\ &= \dim \operatorname{Hom}_{G}(V(r_{1}\omega_{1}),S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } S^{r}(V^{*})) \\ &= \operatorname{multiplicity} \text{ of } H^{0}(r_{1}\omega_{1}) \\ &\text{ in a } \operatorname{good } \operatorname{filtration} \text{ of } S^{r}(V^{*}) \\ &\leq 1. \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- **Example.** Type D_{ℓ} .
- ▶ For $r \le p-1$, $S^r(V^*)$ has a *good filtration* . with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_G(V(r_1\omega_1),V(r\omega_1)) &= \dim \operatorname{Hom}_G(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_G(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_G(V(r_1\omega_1),S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } H^0(r_1\omega_1) \\ &\text{ in a } \operatorname{good} \operatorname{filtration} \text{ of } S^r(V^*) \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- **Example.** Type D_{ℓ} .
- ► For $r \le p-1$, $S^r(V^*)$ has a *good filtration* . with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_G(V(r_1\omega_1),V(r\omega_1)) &= \dim \operatorname{Hom}_G(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_G(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_G(V(r_1\omega_1),S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } S^r(V^*)) \\ &= \operatorname{multiplicity} \text{ of } H^0(r_1\omega_1) \\ &\text{ in a } \operatorname{good} \operatorname{filtration} \text{ of } S^r(V^*) \end{aligned}
```

- ▶ The Sum Formula *overestimates* the character of rad $V(\lambda)$ and multiplicities of composition factors may be greater than the actual composition multiplicity.
- **Example.** Type D_{ℓ} .
- ▶ For $r \le p-1$, $S^r(V^*)$ has a *good filtration* . with subquotients of the form $H^0(s\omega_1)$, s < r.
- ▶ Then for $r_1 < r$,

```
\begin{aligned} \dim \operatorname{Hom}_G(V(r_1\omega_1),V(r\omega_1)) &= \dim \operatorname{Hom}_G(H^0(r\omega_1),H^0(r_1\omega_1)) \\ &\leq \dim \operatorname{Hom}_G(S^r(V^*),H^0(r_1\omega_1)) \\ &= \dim \operatorname{Hom}_G(V(r_1\omega_1),S^r(V^*)) \\ &(\text{by self-duality of } S^r(V^*)) \\ &= \operatorname{multiplicity of } H^0(r_1\omega_1) \\ &\text{in a } \operatorname{good filtration of } S^r(V^*) \\ &< 1. \end{aligned}
```

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

- ▶ V vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- ▶ $\widehat{P} = \{ \text{all 1-dimensional subspaces of } V \}$ $\supseteq P = \{ \text{singular 1-dimensional subspaces} \}$
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- ▶ $\hat{P} = \{$ all 1-dimensional subspaces of $V\}$ $\supseteq P = \{$ singular 1-dimensional subspaces $\}$
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- ▶ $\hat{P} = \{$ all 1-dimensional subspaces of $V\}$
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ V vector space over \mathbb{F}_q with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ *V* vector space over \mathbb{F}_q with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- ▶ $\widehat{P} = \{ \text{all 1-dimensional subspaces of } V \}$ $\supseteq P = \{ \text{singular 1-dimensional subspaces} \},$
- → P

 ^{*} = {hyperplanes of V}
- ▶ G(q) = group of linear transformations preserving b(-,-).
- $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ V vector space over \mathbb{F}_q with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ V vector space over \mathbb{F}_q with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ V vector space over \mathbb{F}_q with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- ▶ V vector space over \mathbb{F}_q with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- P = {all 1-dimensional subspaces of V}
 P = {singular 1-dimensional subspaces},
- ▶ $\widehat{P}^* = \{\text{hyperplanes of } V\} \supseteq P^* = \{p^{\perp} \mid p \in P\}, \text{ polar hyperplanes.}$
- ▶ G(q) = group of linear transformations preserving b(-,-).
- $A = \text{incidence matrix of } (\widehat{P}^*, \widehat{P})$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

p-ranks

- ▶ Problem is to find the *p*-ranks, where $q = p^t$.
- ► The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A₁ was found by Blokhuis and Moorhouse.
- ▶ Moorhouse (Linz, 2006): What is the p-rank of A_{11} ?

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

p-ranks

- ▶ Problem is to find the *p*-ranks, where $q = p^t$.
- ► The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A₁ was found by Blokhuis and Moorhouse.
- ▶ Moorhouse (Linz, 2006): What is the p-rank of A_{11} ?

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

p-ranks

- ▶ Problem is to find the *p*-ranks, where $q = p^t$.
- ► The p-rank of A is well known (Goethals-Delsarte, MacWilliams-Mann, Smith), and the p-rank of A₁ was found by Blokhuis and Moorhouse.
- ► Moorhouse (Linz, 2006): What is the *p*-rank of A₁₁?

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Permutation module structure

- ▶ P and P* are isomorphic G(q)-sets, k[P] := permutation module.
- \triangleright $k[P] \cong k.1 \oplus Y$,
- ▶ head(Y) \cong soc(Y), a simple module L.
- Incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

▶ Outcome: $rank_p A_{11} = 1 + dim L$.

- ▶ P and P* are isomorphic G(q)-sets, k[P] := permutation module.
- \triangleright $k[P] \cong k.1 \oplus Y$,
- ▶ head(Y) \cong soc(Y), a simple module L.
- Incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

- ▶ P and P* are isomorphic G(q)-sets, k[P] := permutation module.
- $k[P] \cong k.1 \oplus Y$
- ▶ head(Y) \cong soc(Y), a simple module L.
- Incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

▶ Outcome: $rank_p A_{11} = 1 + dim L$.

- ▶ P and P* are isomorphic G(q)-sets, k[P] := permutation module.
- $k[P] \cong k.1 \oplus Y$
- ▶ head(Y) \cong soc(Y), a simple module L.
- Incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

- ▶ P and P* are isomorphic G(q)-sets, k[P] := permutation module.
- $k[P] \cong k.1 \oplus Y$
- ▶ head(Y) \cong soc(Y), a simple module L.
- Incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

- ▶ P and P* are isomorphic G(q)-sets, k[P] := permutation module.
- $\blacktriangleright k[P] \cong k.1 \oplus Y,$
- ▶ head(Y) \cong soc(Y), a simple module L.
- Incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.1 \oplus L.$$

- ▶ P and P* are isomorphic G(q)-sets, k[P] := permutation module.
- $k[P] \cong k.1 \oplus Y,$
- ▶ head(Y) \cong soc(Y), a simple module L.
- Incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

Þ

$$\operatorname{Im} \phi = k.\mathbf{1} \oplus L.$$

- ▶ P and P* are isomorphic G(q)-sets, k[P] := permutation module.
- $k[P] \cong k.1 \oplus Y,$
- ▶ head(Y) \cong soc(Y), a simple module L.
- Incidence map induces

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.\mathbf{1} \oplus L.$$

Identifying the simple module L

$$L \cong L((q-1)\omega),$$

where $\omega=\omega_1$ in the orthogonal and symplectic cases, and $\omega_1+\omega_\ell$ in the unitary case.

By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

► Conclusion: $\operatorname{rank}_p A_{11} = 1 + (\dim L((p-1)\omega))^t$.

Identifying the simple module L

 $L \cong L((q-1)\omega),$

where $\omega=\omega_1$ in the orthogonal and symplectic cases, and $\omega_1+\omega_\ell$ in the unitary case.

By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

► Conclusion: rank_p $A_{11} = 1 + (\dim L((p-1)\omega))^t$.

Identifying the simple module L

 \triangleright

$$L\cong L((q-1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

► Conclusion: $\operatorname{rank}_{p} A_{11} = 1 + (\dim L((p-1)\omega))^{t}$.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J$$

- ▶ Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J$$

- ▶ Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J$$

- ▶ Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- ▶ Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- ▶ Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

- ▶ Im η is a simple module (follows from Carter and Lusztig (1976, PLMS))
- ► The incidences we looked at above can be described in terms of oppositeness.

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

A. E. Brouwer, J. Ducey, P. Sin, To appear, Proc. AMS

Skew lines

- ▶ We consider the relation of *skewness* between lines in $PG(3, q), q = p^t$.
- ► This is another instance of oppositeness (Type A_3 , $I = J = \{1, 3\}$).

Skew lines

- ▶ We consider the relation of *skewness* between lines in PG(3, q), $q = p^t$.
- This is another instance of oppositeness (Type A₃, I = J = {1,3}).

Notation

- V, a 4-dimensional vector space over F_q
- ▶ A incidence matrix of skewness between lines in $\mathbb{P}(V)$
- A is square of size $(q^2 + q + 1)(q^2 + 1)$.
- For any matrix M, let $e_i(M)$ = number of invariant factors in the Smith Normal Form of M which are exactly divisible by p^i .
- ▶ Problem: Compute e_i(A)

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

•
$$R = \mathbb{Z}_p[\zeta], \, \zeta^{q^4-1} = 1, \, F = R/pR.$$

▶ For
$$L \leq R^{\ell}$$
, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.

$$ightharpoonup \eta: R^m o R^n.$$

$$M_i(\eta) = \{ x \in R^m \mid \eta(x) \in p^i R^n \}$$

$$R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$$

$$ightharpoonup F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$$

$$N_i(\eta) = \{p^{-i}\eta(x) \mid x \in M_i(\eta)\} \text{ (and } N_{-1}(\eta) = \{0\})$$

▶
$$N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$$

$$e_i(\eta) = \dim_F \left(\overline{M_i(\eta)} / \overline{M_{i+1}(\eta)} \right) = \dim_F \left(\overline{N_i(\eta)} / \overline{N_{i-1}(\eta)} \right)$$

- $R = \mathbb{Z}_p[\zeta], \, \zeta^{q^4-1} = 1, \, F = R/pR.$
- ▶ For $L \le R^{\ell}$, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.
- $ightharpoonup \eta: R^m o R^n.$
- $M_i(\eta) = \{ x \in R^m \mid \eta(x) \in p^i R^n \}$
- $R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$
- $F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$
- $N_i(\eta) = \{ p^{-i} \eta(x) \mid x \in M_i(\eta) \} \text{ (and } N_{-1}(\eta) = \{0\})$
- ▶ $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$

$$e_i(\eta) = \dim_F \left(\overline{M_i(\eta)} / \overline{M_{i+1}(\eta)} \right) = \dim_F \left(\overline{N_i(\eta)} / \overline{N_{i-1}(\eta)} \right)$$

- $R = \mathbb{Z}_p[\zeta], \ \zeta^{q^4-1} = 1, \ F = R/pR.$
- ▶ For $L \leq R^{\ell}$, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.
- $ightharpoonup \eta: R^m \to R^n.$
- $M_i(\eta) = \{ x \in R^m \mid \eta(x) \in p^i R^n \}$
- $R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$
- $F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$
- $N_i(\eta) = \{ p^{-i} \eta(x) \mid x \in M_i(\eta) \} \text{ (and } N_{-1}(\eta) = \{0\})$
- ▶ $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$

$$e_i(\eta) = \dim_F \left(\overline{M_i(\eta)} / \overline{M_{i+1}(\eta)} \right) = \dim_F \left(\overline{N_i(\eta)} / \overline{N_{i-1}(\eta)} \right)$$

- $R = \mathbb{Z}_p[\zeta], \, \zeta^{q^4-1} = 1, \, F = R/pR.$
- ▶ For $L \leq R^{\ell}$, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.
- $ightharpoonup \eta: R^m \to R^n.$
- $M_i(\eta) = \{ x \in R^m \mid \eta(x) \in \rho^i R^n \}$
- $R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$
- $F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$
- $N_i(\eta) = \{ p^{-i} \eta(x) \mid x \in M_i(\eta) \} \text{ (and } N_{-1}(\eta) = \{0\})$
- ▶ $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$

$$e_i(\eta) = \dim_F \left(\overline{M_i(\eta)} / \overline{M_{i+1}(\eta)} \right) = \dim_F \left(\overline{N_i(\eta)} / \overline{N_{i-1}(\eta)} \right)$$

- $R = \mathbb{Z}_p[\zeta], \ \zeta^{q^4-1} = 1, \ F = R/pR.$
- ▶ For $L \leq R^{\ell}$, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.
- $ightharpoonup \eta: R^m \to R^n.$
- $M_i(\eta) = \{ x \in R^m \mid \eta(x) \in \rho^i R^n \}$
- $R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$
- $ightharpoonup F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$
- $N_i(\eta) = \{ p^{-i} \eta(x) \mid x \in M_i(\eta) \}$ (and $N_{-1}(\eta) = \{0\}$)
- ▶ $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$

$$e_i(\eta) = \dim_F \left(\overline{M_i(\eta)} / \overline{M_{i+1}(\eta)} \right) = \dim_F \left(\overline{N_i(\eta)} / \overline{N_{i-1}(\eta)} \right)$$

- $R = \mathbb{Z}_p[\zeta], \, \zeta^{q^4-1} = 1, \, F = R/pR.$
- ▶ For $L \le R^{\ell}$, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.
- $ightharpoonup \eta: R^m \to R^n.$
- $M_i(\eta) = \{ x \in R^m \mid \eta(x) \in \rho^i R^n \}$
- $R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$
- $F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$
- $N_i(\eta) = \{ p^{-i} \eta(x) \mid x \in M_i(\eta) \} \text{ (and } N_{-1}(\eta) = \{0\})$
- ▶ $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$

$$e_i(\eta) = \dim_F \left(\overline{M_i(\eta)} / \overline{M_{i+1}(\eta)} \right) = \dim_F \left(\overline{N_i(\eta)} / \overline{N_{i-1}(\eta)} \right)$$

- $R = \mathbb{Z}_p[\zeta], \, \zeta^{q^4-1} = 1, \, F = R/pR.$
- ▶ For $L \le R^{\ell}$, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.
- $ightharpoonup \eta: R^m \to R^n.$
- $M_i(\eta) = \{ x \in R^m \mid \eta(x) \in p^i R^n \}$
- $R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$
- $F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$
- $N_i(\eta) = \{p^{-i}\eta(x) \mid x \in M_i(\eta)\} \text{ (and } N_{-1}(\eta) = \{0\})$
- ▶ $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$
- $ightharpoonup N_0(\eta) \subseteq \overline{N_1(\eta)} \subseteq \cdots$

$$e_i(\eta) = \dim_F \left(\overline{M_i(\eta)} / \overline{M_{i+1}(\eta)} \right) = \dim_F \left(\overline{N_i(\eta)} / \overline{N_{i-1}(\eta)} \right)$$

- $R = \mathbb{Z}_p[\zeta], \, \zeta^{q^4-1} = 1, \, F = R/pR.$
- ▶ For $L \le R^{\ell}$, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.
- $ightharpoonup \eta: R^m \to R^n.$
- $M_i(\eta) = \{ x \in R^m \mid \eta(x) \in p^i R^n \}$
- $R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$
- $F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$
- $N_i(\eta) = \{ p^{-i} \eta(x) \mid x \in M_i(\eta) \}$ (and $N_{-1}(\eta) = \{0\}$)
- ▶ $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$
- $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots$

$$e_i(\eta) = \dim_F \left(\overline{M_i(\eta)} / \overline{M_{i+1}(\eta)} \right) = \dim_F \left(\overline{N_i(\eta)} / \overline{N_{i-1}(\eta)} \right)$$

- $R = \mathbb{Z}_p[\zeta], \, \zeta^{q^4-1} = 1, \, F = R/pR.$
- ▶ For $L \le R^{\ell}$, set $\overline{L} = (L + pR^{\ell})/pR^{\ell}$.
- $ightharpoonup \eta: R^m \to R^n.$
- $M_i(\eta) = \{ x \in R^m \mid \eta(x) \in \rho^i R^n \}$
- ► $R^m = M_0(\eta) \supseteq M_1(\eta) \supseteq \cdots \supseteq \ker \eta$
- $F^m = \overline{M_0(\eta)} \supseteq \overline{M_1(\eta)} \supseteq \cdots$
- $N_i(\eta) = \{p^{-i}\eta(x) \mid x \in M_i(\eta)\} \text{ (and } N_{-1}(\eta) = \{0\})$
- ▶ $N_0(\eta) \subseteq N_1(\eta) \subseteq \cdots \subseteq \text{purification}(\text{Im }\eta)$

$$e_i(\eta) = \text{dim}_F\left(\overline{M_i(\eta)}/\overline{M_{i+1}(\eta)}\right) = \text{dim}_F\left(\overline{N_i(\eta)}/\overline{N_{i-1}(\eta)}\right).$$

- For a given homomorphism η: R^m → Rⁿ, we will be interested in pairs of bases (B, C) with respect to which the matrix of η is in Smith normal form.
- ▶ We define a *left* SNF basis for η to be any basis of R^m that belongs to such a pair. Similarly, a *right* SNF basis for η is any basis of R^n belonging to such a pair.
- ▶ A left SNF basis can be constructed by lifting a basis of F^m compatible with the descending p-filtration $\{M_i(\eta)\}$.
- A right SNF basis can be constructed by lifting a basis of Fⁿ compatible with the ascending p-filtration {N_i(η)}.

- ▶ For a given homomorphism $\eta: R^m \to R^n$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- ▶ We define a *left* SNF basis for η to be any basis of R^m that belongs to such a pair. Similarly, a *right* SNF basis for η is any basis of R^n belonging to such a pair.
- ▶ A left SNF basis can be constructed by lifting a basis of F^m compatible with the descending p-filtration $\{M_i(\eta)\}$.
- A right SNF basis can be constructed by lifting a basis of Fⁿ compatible with the ascending p-filtration {N_i(η)}.

- ▶ For a given homomorphism $\eta: R^m \to R^n$, we will be interested in pairs of bases $(\mathcal{B}, \mathcal{C})$ with respect to which the matrix of η is in Smith normal form.
- ▶ We define a *left* SNF basis for η to be any basis of R^m that belongs to such a pair. Similarly, a *right* SNF basis for η is any basis of R^n belonging to such a pair.
- ▶ A left SNF basis can be constructed by lifting a basis of F^m compatible with the descending p-filtration $\{M_i(\eta)\}$.
- ▶ A right SNF basis can be constructed by lifting a basis of F^n compatible with the ascending p-filtration $\{N_i(\eta)\}$.

- For a given homomorphism η: R^m → Rⁿ, we will be interested in pairs of bases (B, C) with respect to which the matrix of η is in Smith normal form.
- ▶ We define a *left* SNF basis for η to be any basis of R^m that belongs to such a pair. Similarly, a *right* SNF basis for η is any basis of R^n belonging to such a pair.
- ▶ A left SNF basis can be constructed by lifting a basis of F^m compatible with the descending p-filtration $\{M_i(\eta)\}$.
- ▶ A right SNF basis can be constructed by lifting a basis of F^n compatible with the ascending p-filtration $\{N_i(\eta)\}$.

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

The equation of a strongly regular graph

$$A^2 = q^4I + (q^4 - q^3 - q^2 + q)A + (q^4 - q^3)(J - A - I)$$

- ► Eigenvalues of *A* are q, $-q^2$, and q^4 with respective multiplicities $q^4 + q^2$, $q^3 + q^2 + q$, and 1.
- ▶ The elementary divisors of *A* are all powers of *p*.

The equation of a strongly regular graph

$$A^2 = q^4I + (q^4 - q^3 - q^2 + q)A + (q^4 - q^3)(J - A - I)$$

- ► Eigenvalues of A are q, $-q^2$, and q^4 with respective multiplicities $q^4 + q^2$, $q^3 + q^2 + q$, and 1.
- ▶ The elementary divisors of A are all powers of p.

The equation of a strongly regular graph

$$A^2 = q^4 I + (q^4 - q^3 - q^2 + q)A + (q^4 - q^3)(J - A - I)$$

- ► Eigenvalues of A are q, $-q^2$, and q^4 with respective multiplicities $q^4 + q^2$, $q^3 + q^2 + q$, and 1.
- ▶ The elementary divisors of *A* are all powers of *p*.

Theorem 1

Let $e_i = e_i(A)$.

- 1. $e_i = e_{3t-i}$ for $0 \le i < t$.
- 2. $e_i = 0$ for t < i < 2t, 3t < i < 4t, and i > 4t.
- 3. $\sum_{i=0}^{t} e_i = q^4 + q^2$.
- 4. $\sum_{i=2t}^{3t} e_i = q^3 + q^2 + q$.
- 5. $e_{4t} = 1$.

Thus we get all the elementary divisor multiplicities once we know t of the numbers e_0, \ldots, e_t (or the numbers e_{2t}, \ldots, e_{3t}).

More notation

- ▶ $[3]^t = \{(s_0, \dots, s_{t-1}) | s_i \in \{1, 2, 3\} \text{ for all } i\}$
- $ightharpoonup \mathcal{H}(i) = \{(s_0, \dots, s_{t-1}) \in [3]^t \, | \, \#\{j | s_j = 2\} = i\}$
- ▶ For $\vec{s} = (s_0, ..., s_{t-1}) \in [3]^t$

$$\lambda_i = ps_{i+1} - s_i,$$

(subscripts mod t) and

$$\vec{\lambda} = (\lambda_0, \dots, \lambda_{t-1})$$

For an integer k, set d_k to be the coefficient of x^k in the expansion of $(1 + x + \cdots + x^{p-1})^4$. Set $d(\vec{s}) = \prod_{i=0}^{t-1} d_{\lambda_i}$.

► Theorem 2

Let $e_i = e_i(A)$ denote the multiplicity of p^i as an elementary divisor of A. Then, for $0 \le i \le t$,

$$e_{2t+i} = \sum_{\vec{s} \in \mathcal{H}(i)} d(\vec{s}).$$

Example, q = 9

$$(1+x+x^2)^4 = 1+4x+10x^2+16x^3+19x^4+16x^5+10x^6+4x^7+x^8$$

$$\mathcal{H}(0) = \{(11), (13), (31), (33)\},$$

$$\mathcal{H}(1) = \{(21), (23), (12), (32)\}, \ \mathcal{H}(2) = \{(22)\}.$$

•
$$e_4 = d(11) + d(13) + d(31) + d(33) = 202$$

•
$$e_5 = d(21) + d(23) + d(12) + d(32) = 256$$

•
$$e_6 = d(22) = 361$$

Table: The elementary divisors of the incidence matrix of lines vs. lines in PG(3,9), where two lines are incident when skew.

Elem. Div.	1	3	3 ²	3 ⁴	3 ⁵	3 ⁶	3 ⁸
Multiplicity	361	256	6025	202	256	361	1

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

▶ Let $\mathcal{L}_r = \{r\text{-diml subspaces of } V\}$

- ▶ B denote the incidence matrix with rows indexed by \mathcal{L}_1 and columns indexed by \mathcal{L}_2 , where incidence again means zero intersection.
- ▶ B^t denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$B^{t}B = (q^{3} + q^{2})I + (q^{3} + q^{2} - q - 1)A + (q^{3} + q^{2} - q)(J - A - I).$$
(1)

$$(1)B^tB = q^4(q^2 + q + 1)(q + 1)\mathbf{1},$$

$$B^t B = -[A + (q^2 - q)I] + q^2 I + (q^3 + q^2 - q)J$$

•
$$e_i(B^tB) = e_i(A + (q^2 - q)I)$$
 for $0 \le i \le t$.

▶
$$e_{2t+i}(A) = e_{t-i}(B^t B)$$
, for $0 \le i \le t$.

- ▶ Let $\mathcal{L}_r = \{r\text{-diml subspaces of } V\}$
- ▶ B denote the incidence matrix with rows indexed by \mathcal{L}_1 and columns indexed by \mathcal{L}_2 , where incidence again means zero intersection.
- ▶ B^t denotes the transpose of B, and is just the incidence matrix of lines vs. points.

$$B^{t}B = (q^{3} + q^{2})I + (q^{3} + q^{2} - q - 1)A + (q^{3} + q^{2} - q)(J - A - I).$$
(1)

$$(1)B^tB = q^4(q^2 + q + 1)(q + 1)\mathbf{1},$$

$$B^t B = -[A + (q^2 - q)I] + q^2 I + (q^3 + q^2 - q)J$$

•
$$e_i(B^tB) = e_i(A + (q^2 - q)I)$$
 for $0 \le i \le t$.

•
$$e_{2t+i}(A) = e_{t-i}(B^t B)$$
, for $0 \le i \le t$.

- ▶ Let $\mathcal{L}_r = \{r\text{-diml subspaces of } V\}$
- ▶ B denote the incidence matrix with rows indexed by \mathcal{L}_1 and columns indexed by \mathcal{L}_2 , where incidence again means zero intersection.
- ▶ *B*^t denotes the transpose of *B*, and is just the incidence matrix of lines vs. points.

$$B^{t}B = (q^{3} + q^{2})I + (q^{3} + q^{2} - q - 1)A + (q^{3} + q^{2} - q)(J - A - I).$$
(1)

$$(1)B^tB = q^4(q^2 + q + 1)(q + 1)\mathbf{1},$$

$$B^t B = -[A + (q^2 - q)I] + q^2 I + (q^3 + q^2 - q)J$$

•
$$e_i(B^tB) = e_i(A + (q^2 - q)I)$$
 for $0 \le i \le t$.

▶
$$e_{2t+i}(A) = e_{t-i}(B^t B)$$
, for $0 \le i \le t$.

- ▶ Let $\mathcal{L}_r = \{r\text{-diml subspaces of } V\}$
- ▶ B denote the incidence matrix with rows indexed by \mathcal{L}_1 and columns indexed by \mathcal{L}_2 , where incidence again means zero intersection.
- ▶ *B*^t denotes the transpose of *B*, and is just the incidence matrix of lines vs. points.

Þ

$$B^{t}B = (q^{3} + q^{2})I + (q^{3} + q^{2} - q - 1)A + (q^{3} + q^{2} - q)(J - A - I).$$
(1)

$$(1)B^tB = q^4(q^2 + q + 1)(q + 1)\mathbf{1},$$

$$B^t B = -[A + (q^2 - q)I] + q^2 I + (q^3 + q^2 - q)J$$

•
$$e_i(B^tB) = e_i(A + (q^2 - q)I)$$
 for $0 \le i \le t$.

▶
$$e_{2t+i}(A) = e_{t-i}(B^t B)$$
, for $0 \le i \le t$.

- ▶ Let $\mathcal{L}_r = \{r\text{-diml subspaces of } V\}$
- ▶ B denote the incidence matrix with rows indexed by \mathcal{L}_1 and columns indexed by \mathcal{L}_2 , where incidence again means zero intersection.
- ▶ *B*^t denotes the transpose of *B*, and is just the incidence matrix of lines vs. points.

Þ

$$B^{t}B = (q^{3} + q^{2})I + (q^{3} + q^{2} - q - 1)A + (q^{3} + q^{2} - q)(J - A - I).$$
(1)

$$(1)B^tB = q^4(q^2+q+1)(q+1)1,$$

$$B^t B = -[A + (q^2 - q)I] + q^2 I + (q^3 + q^2 - q)J$$

•
$$e_i(B^tB) = e_i(A + (q^2 - q)I)$$
 for $0 \le i \le t$.

▶
$$e_{2t+i}(A) = e_{t-i}(B^t B)$$
, for $0 \le i \le t$.

- ▶ Let $\mathcal{L}_r = \{r\text{-diml subspaces of } V\}$
- ▶ B denote the incidence matrix with rows indexed by \mathcal{L}_1 and columns indexed by \mathcal{L}_2 , where incidence again means zero intersection.
- ▶ *B*^t denotes the transpose of *B*, and is just the incidence matrix of lines vs. points.

Þ

$$B^{t}B = (q^{3} + q^{2})I + (q^{3} + q^{2} - q - 1)A + (q^{3} + q^{2} - q)(J - A - I).$$
(1)

$$(1)B^tB = q^4(q^2+q+1)(q+1)1,$$

$$B^t B = -[A + (q^2 - q)I] + q^2 I + (q^3 + q^2 - q)J$$

•
$$e_i(B^tB) = e_i(A + (q^2 - q)I)$$
 for $0 \le i \le t$.

▶
$$e_{2t+i}(A) = e_{t-i}(B^t B)$$
, for $0 \le i \le t$.

- ▶ Let $\mathcal{L}_r = \{r\text{-diml subspaces of } V\}$
- ▶ B denote the incidence matrix with rows indexed by \mathcal{L}_1 and columns indexed by \mathcal{L}_2 , where incidence again means zero intersection.
- ▶ *B*^t denotes the transpose of *B*, and is just the incidence matrix of lines vs. points.

$$B^{t}B = (q^{3} + q^{2})I + (q^{3} + q^{2} - q - 1)A + (q^{3} + q^{2} - q)(J - A - I).$$
(1)

$$(1)B^tB = q^4(q^2+q+1)(q+1)1,$$

$$B^t B = -[A + (q^2 - q)I] + q^2 I + (q^3 + q^2 - q)J$$

•
$$e_i(B^tB) = e_i(A + (q^2 - q)I)$$
 for $0 \le i \le t$.

▶
$$e_{2t+i}(A) = e_{t-i}(B^t B)$$
, for $0 \le i \le t$.

- ▶ Let $\mathcal{L}_r = \{r\text{-diml subspaces of } V\}$
- ▶ B denote the incidence matrix with rows indexed by \mathcal{L}_1 and columns indexed by \mathcal{L}_2 , where incidence again means zero intersection.
- ▶ *B*^t denotes the transpose of *B*, and is just the incidence matrix of lines vs. points.

$$B^{t}B = (q^{3} + q^{2})I + (q^{3} + q^{2} - q - 1)A + (q^{3} + q^{2} - q)(J - A - I).$$
(1)

$$(1)B^tB = q^4(q^2+q+1)(q+1)1,$$

$$B^t B = -[A + (q^2 - q)I] + q^2 I + (q^3 + q^2 - q)J$$

•
$$e_i(B^tB) = e_i(A + (q^2 - q)I)$$
 for $0 \le i \le t$.

•
$$e_{2t+i}(A) = e_{t-i}(B^t B)$$
, for $0 \le i \le t$.

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

▶ Suppose we can obtain the SNF of B^t and B by:

$$PB^tE^{-1}=D_{2,1}$$

and

$$EBQ^{-1}=D_{1,2}$$

where E is the same matrix in both equations

$$PB^{t}BQ^{-1} = D_{r,1}D_{1,s},$$

- ▶ E exists iff there is basis of $R^{\mathcal{L}_1}$ which is simultaneously a right SNF basis for B^t and a left SNF basis for B
- In general such as basis does not exist, but we get it here from R^{L₁} being multiplicity-free.
- ► Finally, we know the elementary divisors of *B*^t and *B* from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-35591.

Suppose we can obtain the SNF of B^t and B by:

$$PB^tE^{-1}=D_{2,1}$$

and

$$EBQ^{-1}=D_{1,2}$$

where E is the same matrix in both equations

$$PB^{t}BQ^{-1} = D_{r,1}D_{1,s},$$

- ▶ E exists iff there is basis of $R^{\mathcal{L}_1}$ which is simultaneously a right SNF basis for B^t and a left SNF basis for B
- In general such as basis does not exist, but we get it here from R^{L₁} being multiplicity-free.
- ► Finally, we know the elementary divisors of *B*^t and *B* from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-35591.

▶ Suppose we can obtain the SNF of B^t and B by:

$$PB^tE^{-1}=D_{2,1}$$

and

$$EBQ^{-1}=D_{1,2}$$

where E is the same matrix in both equations

$$PB^{t}BQ^{-1} = D_{r,1}D_{1,s},$$

- ► E exists iff there is basis of $R^{\mathcal{L}_1}$ which is simultaneously a *right* SNF basis for B^t and a *left* SNF basis for B
- In general such as basis does not exist, but we get it here from R^{L₁} being multiplicity-free.
- ► Finally, we know the elementary divisors of *B*^t and *B* from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-3559].

▶ Suppose we can obtain the SNF of B^t and B by:

$$PB^tE^{-1}=D_{2,1}$$

and

$$EBQ^{-1}=D_{1,2}$$

where E is the same matrix in both equations

$$PB^tBQ^{-1}=D_{r,1}D_{1,s},$$

- ► E exists iff there is basis of $R^{\mathcal{L}_1}$ which is simultaneously a right SNF basis for B^t and a left SNF basis for B
- In general such as basis does not exist, but we get it here from R^{L₁} being multiplicity-free.
- ► Finally, we know the elementary divisors of *B*^t and *B* from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-3559].

▶ Suppose we can obtain the SNF of B^t and B by:

$$PB^tE^{-1}=D_{2,1}$$

and

$$EBQ^{-1}=D_{1,2}$$

where E is the same matrix in both equations

$$PB^{t}BQ^{-1} = D_{r,1}D_{1,s},$$

- ▶ E exists iff there is basis of $R^{\mathcal{L}_1}$ which is simultaneously a *right* SNF basis for B^t and a *left* SNF basis for B
- In general such as basis does not exist, but we get it here from R^{L₁} being multiplicity-free.
- ► Finally, we know the elementary divisors of *B*^t and *B* from [D. Chandler, P. Sin, Q. Xiang, Trans. AMS 358 (2006) 3537-3559].

Outline

Part I. Classical Weyl modules

Jantzen Sum Formula

Applications

Part II. Invariants of lines in space

p-filtrations and SNF bases

Special properties of A

Reduction to Point-Line Incidence

Simultaneous SNF Bases

Concluding remarks

- ▶ In both problems we considered *p*-filtrations with gaps.
- ▶ elementary divisors with multiplicity zero ≡ empty layers in the p-filtration ⇒ excessive multiplicities in the Jantzen Sum formula.
- Is there a way to predict these gaps?
- ▶ Even when such gaps, exact results can still be obtained.

- ▶ In both problems we considered *p*-filtrations with gaps.
- ▶ elementary divisors with multiplicity zero ≡ empty layers in the p-filtration ⇒ excessive multiplicities in the Jantzen Sum formula.
- Is there a way to predict these gaps?
- ► Even when such gaps, exact results can still be obtained.

- ▶ In both problems we considered *p*-filtrations with gaps.
- ▶ elementary divisors with multiplicity zero ≡ empty layers in the p-filtration ⇒ excessive multiplicities in the Jantzen Sum formula.
- Is there a way to predict these gaps?
- ► Even when such gaps, exact results can still be obtained.

- ▶ In both problems we considered *p*-filtrations with gaps.
- ▶ elementary divisors with multiplicity zero ≡ empty layers in the p-filtration ⇒ excessive multiplicities in the Jantzen Sum formula.
- Is there a way to predict these gaps?
- Even when such gaps, exact results can still be obtained.

Thank you for your attention!