2.2.16 We are given finite dimensional vector spaces V, W with $\dim(V) = \dim(V) = n$, and a linear transformation $T: V \to W$. By Theorem 2.1 we have that R(T) and N(T) are sub spaces of V and W, respectively.

If $R(T) = \{0_W\}$ (i.e. dim(R(T)) = 0), then $[T]^{\gamma}_{\beta}$ is the zero matrix for any ordered basis β of V and any ordered basis γ of W. Let dim(R(T)) = k > 0 and $\gamma_1 = (w_1, \ldots, w_k)$ be an ordered basis for R(T). For each w_i , pick a vector $v_i \in V$ satisfying $T(v_i) = w_i$. By Dimension theorem we have dim(N(T)) = n - k. We may now find vectors v_{k+1}, \ldots, v_n in V such that $\{v_{k+1}, \ldots, v_n\}$ is a basis for N(T).

Let c_1, \ldots, c_n be scalars such that $\sum_{i=0}^n c_i v_i = 0_V$. Since $v_i \in N(T)$ for i > k and $T(v_i) = w_i$ for $i \leq k$, we have

$$0_W = T(0_V) = T(\sum_{i=0}^n c_i v_i) = \sum_{i=0}^n c_i T(v_i) = \sum_{i=0}^k c_i w_i.$$

Linear independence of $\{w_1, \ldots, w_k\}$ implies that $c_i = 0$ for all $i \leq k$. So we now have $\sum_{i>k} c_i v_i = 0_v$. As $\{v_{k+1}, \ldots, v_n\}$ is a linearly independent set, we must have $c_i = 0$ for i > k as well. We have proved $\{v_1, \ldots, v_n\}$ is a linearly independent set of size $n = \dim(V)$. Thus $\beta := (v_1, \ldots, v_n)$ is an ordered basis for V (see Cor.2 of Thm 1.11). Let γ be an ordered basis of W extending the ordered basis γ_1 of R(T). Now $[T]^{\gamma}_{\beta}$ is a diagonal matrix.

2.3.9 Let $U : F^2 \to F^2$ and $T : F^2 \to F^2$ be non-zero linear transformations satisfying $R(T) \subseteq N(U)$ and $R(U) \not\subseteq N(T)$. Then we have $UT = T_0$ and $TU \neq T_0$.

Define T to be the transformation satisfying T(x, y) = (0, x + y) for all $(x, y) \in F^2$. Define U to be the transformation satisfying U(x, y) = (x, 0) for all $(x, y) \in F^2$. Observe that R(T) and N(U) are both equal to the subspace of F^2 generated by (0, 1). Also observe that R(U) contains (1, 0), but N(T) does not contain (1, 0). So we have $R(T) \subseteq N(U)$ and $R(U) \not\subseteq N(T)$ and thus $UT = T_0$ and $TU \neq T_0$.

Let β be the standard basis for F^2 . If $A = [U]^{\beta}_{\beta}$ and $B = [T]^{\beta}_{\beta}$, then $AB = [T_0]^{\beta}_{\beta} = 0$ and $BA \neq [T_0]^{\beta}_{\beta} = 0$.