2.2.16 We are given finite dimensional vector spaces V, W with $\operatorname{dim}(V)=\operatorname{dim}(V)=n$, and a linear transformation $T: V \rightarrow W$. By Theorem 2.1 we have that $\mathrm{R}(T)$ and $\mathrm{N}(T)$ are sub spaces of V and W, respectively.
If $R(T)=\left\{0_{W}\right\}$ (i.e $\operatorname{dim}(\mathrm{R}(T))=0$), then $[T]_{\beta}^{\gamma}$ is the zero matrix for any ordered basis β of V and any ordered basis γ of W. Let $\operatorname{dim}(\mathrm{R}(T))=k>0$ and $\gamma_{1}=\left(w_{1}, \ldots, w_{k}\right)$ be an ordered basis for $\mathrm{R}(T)$. For each w_{i}, pick a vector $v_{i} \in V$ satisfying $T\left(v_{i}\right)=w_{i}$. By Dimension theorem we have $\operatorname{dim}(\mathrm{N}(T))=n-k$. We may now find vectors v_{k+1}, \ldots, v_{n} in V such that $\left\{v_{k+1}, \ldots v_{n}\right\}$ is a basis for $\mathrm{N}(T)$.
Let $c_{1}, \ldots c_{n}$ be scalars such that $\sum_{i=0}^{n} c_{i} v_{i}=0_{V}$. Since $v_{i} \in \mathrm{~N}(T)$ for $i>k$ and $T\left(v_{i}\right)=w_{i}$ for $i \leq k$, we have

$$
0_{W}=T\left(0_{V}\right)=T\left(\sum_{i=0}^{n} c_{i} v_{i}\right)=\sum_{i=0}^{n} c_{i} T\left(v_{i}\right)=\sum_{i=0}^{k} c_{i} w_{i} .
$$

Linear independence of $\left\{w_{1}, \ldots, w_{k}\right\}$ implies that $c_{i}=0$ for all $i \leq k$. So we now have $\sum_{i>k} c_{i} v_{i}=0_{v}$. As $\left\{v_{k+1}, \ldots v_{n}\right\}$ is a linearly independent set, we must have $c_{i}=0$ for $i>k$ as well. We have proved $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set of size $n=\operatorname{dim}(V)$. Thus $\beta:=\left(v_{1}, \ldots, v_{n}\right)$ is an ordered basis for V (see Cor. 2 of Thm 1.11). Let γ be an ordered basis of W extending the ordered basis γ_{1} of $\mathrm{R}(T)$. Now $[T]_{\beta}^{\gamma}$ is a diagonal matrix.
2.3.9 Let $U: \mathrm{F}^{2} \rightarrow \mathrm{~F}^{2}$ and $T: \mathrm{F}^{2} \rightarrow \mathrm{~F}^{2}$ be non-zero linear transformations satisfying $\mathrm{R}(T) \subseteq \mathrm{N}(U)$ and $\mathrm{R}(U) \nsubseteq \mathrm{N}(T)$. Then we have $U T=T_{0}$ and $T U \neq T_{0}$.
Define T to be the transformation satisfying $T(x, y)=(0, x+y)$ for all $(x, y) \in \mathrm{F}^{2}$. Define U to be the transformation satisfying $U(x, y)=(x, 0)$ for all $(x, y) \in \mathrm{F}^{2}$. Observe that $\mathrm{R}(T)$ and $\mathrm{N}(U)$ are both equal to the subspace of F^{2} generated by $(0,1)$. Also observe that $\mathrm{R}(U)$ contains $(1,0)$, but $\mathrm{N}(T)$ does not contain $(1,0)$. So we have $\mathrm{R}(T) \subseteq$ $\mathrm{N}(U)$ and $\mathrm{R}(U) \nsubseteq \mathrm{N}(T)$ and thus $U T=T_{0}$ and $T U \neq T_{0}$.
Let β be the standard basis for F^{2}. If $A=[U]_{\beta}^{\beta}$ and $B=[T]_{\beta}^{\beta}$, then $A B=\left[T_{0}\right]_{\beta}^{\beta}=0$ and $B A \neq\left[T_{0}\right]_{\beta}^{\beta}=0$.

