

Assignment 3 and 4 Solutions

3.4.9) The map $r : M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}^4$ satisfying $r \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = [a, b, c, d]^t$ is an isomorphism.

Under this map, the set S maps to the set

$r(S) := \{[0, -1, -1, 1]^t, [1, 2, 2, 3]^t, [2, 1, 1, 9]^t, [1, -2, -2, 4]^t, [-1, 2, 2, -1]^t\}$. As r is an isomorphism, $r(S)$ generates the subspace $r(W)$ of \mathbb{R}^4 and moreover if $A \subset r(S)$ is a basis set of $r(W)$, then $r^{-1}(A) := \{r^{-1}(a) \mid a \in A\}$ is a subset of S generating W .

The matrix whose columns are elements of S is

$$X = \begin{pmatrix} 0 & 1 & 2 & 1 & -1 \\ -1 & 2 & 1 & -2 & 2 \\ -1 & 2 & 1 & -2 & 2 \\ 1 & 3 & 9 & 4 & -1 \end{pmatrix}.$$

The reduced row-echelon form of X is

$$\begin{pmatrix} 1 & 0 & 3 & 0 & 4 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & -2 & \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

By Theorem 3.16 c) & d), the set $A = \{[0, -1, -1, 1]^t, [1, 2, 2, 3]^t, [1, -2, -2, 4]^t\}$ is a basis for $\text{Span}(r(S)) = r(W)$. Thus the set consisting of the first, second and fourth elements of S is a basis for W .

4.2.23) We prove this by induction on the size of the matrix. It is clear that the determinant of all 1×1 upper triangular matrices is equal to the product of its diagonal entries. Now we assume that the statement is true for all $n \times n$ matrices for some positive integer n . Consider the following generic $n + 1 \times n + 1$ upper triangular matrix.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & \cdots & a_{1,n+1} \\ \vdots & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ & & & & a_{n+1,n+1} \end{pmatrix}.$$

Using cofactor expansion along the first column, we have $\det(A) = a_{11}\det(\tilde{A}_{11})$. Now \tilde{A}_{11} is an $n \times n$ upper triangular matrix whose diagonal entries are $a_{22}, \dots, a_{n+1,n+1}$.

Thus by induction hypothesis $\det(\tilde{A}_{11}) = \prod_{j=2}^{n+1} a_{jj}$, and thus $\det(A) = \prod_{j=1}^{n+1} a_{jj}$.

We can now conclude that the statement is true by principles of mathematical induction.

5.2.3 a) With respect to the standard ordered basis $\beta = (1, x, x^2, x^3)$ of $P_3(\mathbb{R})$, we have

$$A := [T]_\beta = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The characteristic polynomial of A is $\det(A - tI) = t^4$. So 0 is the only eigenvalue of A . We observe that $\text{rank}(A) = 3$ and thus $4 - \text{rank}(A - 0I) = 1$ is not equal to the multiplicity of the eigenvalue 0 of A . So by Theorem 5.9, T is not diagonalizable.

b) With respect to the standard ordered basis $\beta = (1, x, x^2)$ of $P_2(\mathbb{R})$, we have

$$A := [T]_\beta = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

The characteristic polynomial of T is $\det(tI - A) = (t + 1)(t - 1)^2$. Thus T has two eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$, with multiplicities $m_{\lambda_1} = 2$ and $m_{\lambda_2} = -1$ respectively.

Consider the eigenspace $E_1 = \{f(x) \in P_2(\mathbb{R}) \mid T(f(x)) = f(x)\}$. If $ax^2 + bx + c$ is an element of E_1 , then we must have $(ax^2 + bx + c) = cx^2 + bx + a$. Thus $a = c$, and therefore $E_1 = \{ax^2 + bx + c \mid a, b \in \mathbb{R}\}$. The set $\beta_1 = \{x^2 + 1, x\}$ generates E_1 and is linearly independent. We can now conclude that $\dim(E_1) = 2 = m_{\lambda_1}$.

Consider the eigenspace $E_{-1} = \{f(x) \in P_2(\mathbb{R}) \mid T(f(x)) = -f(x)\}$. If $ax^2 + bx + c$ is an element of E_{-1} , then we must have $-(ax^2 + bx + c) = cx^2 + bx + a$. Thus $a = -c$ and $b = 0$, and therefore $E_{-1} = \{ax^2 - a \mid a \in \mathbb{R}\}$. The set $\beta_2 = \{x^2 - 1\}$ generates E_{-1} and thus $\dim(E_{-1}) = 1 = m_{\lambda_2}$.

Now by Theorem 5.9 we can conclude that T is diagonalizable and $\beta = (x^2 + 1, x, x^2 - 1)$ is an ordered basis of $P_2(\mathbb{R})$ such that $[T]_\beta$ is a diagonal matrix.

6.1.11 We have

$$\begin{aligned} \|x + y\|^2 + \|x - y\|^2 &= \langle x + y, x + y \rangle + \langle x - y, x - y \rangle \\ (\text{; by the definition of innerproducts we have}) \quad &= \langle x, x + y \rangle + \langle y, x + y \rangle \\ &\quad + \langle x, x - y \rangle - \langle y, x - y \rangle; \end{aligned}$$

(now application of Theorem 6.1 yields)

$$\begin{aligned} &= \langle x, x \rangle + \langle x, x \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &\quad + \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle \\ &= 2(\|x\|^2 + \|y\|^2). \end{aligned}$$

In \mathbb{R}^2 , this law can be interpreted as “The sum of the squares of the lengths of diagonals of a parallelogram is equal to the sum of the squares of the lengths of its sides.”