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Assignment 3 and 4 Solutions

b

The map r : Myys(R) — R?* satisfying r (( CCL J

)) = [a,b,c,d]" is an isomorphism.
Under this map, the set .S maps to the set

r(S) = {[0,—1,—1,1], [1,2,2,3)%, [2,1,1,9)%, [1,—2,—2,4), [-1,2,2,—1]'}. As r is
an isomorphism, r(S) generates the subspace r(W) of R* and moreover if A C r(S5) is
a basis set of r(W), then r~1(A) := {r~'(a)| a € A} is a subset of S generating W.

The matrix whose columns are elements of S is

0o 12 1 -1
-1 21 -2 2
X=1_1921 -2 9
1 39 4 -1
The reduced row-echelon form of X is
1 030 4
0120 1
0 01 =2
000O0 O

By Theorem 3.16 ¢) & d), the set A = {[0,—1,—1,1], [1,2,2,3]",[1,—2,—2,4]'} is a
basis for Span(r(S)) = r(W). Thus the set consisting of the first, second and fourth
elements of S is a basis for W.

We prove this by induction on the size of the matrix. It is clear that the determinant of
all 1 x 1 upper triangular matrices is equal to the product of its diagonal entries. Now
we assume that the statement is true for all n x n matrices for some positive integer n.
Consider the following generic n + 1 x n + 1 upper triangular matrix.

an+Ln+1

Using cofactor expansion along the first column, we have det(A) = andet(A;1). Now
A is an n X n upper triangular matrix whose diagonal entries are ass, ... ant1pn41-

~ nt1 n+1
Thus by induction hypothesis det(Ai1) = [] aj;, and thus det(A) = [] aj;.
j=2 j=1

We can now conclude that the statement is true by principles of mathematical induction.



5.2.3 a) With respect to the standard ordered basis 8 = (1, x, 2% 23) of P3(R), we have

(L
2
A=T); = :
0

o O OO
OO O
S W oo

The characteristic polynomial of A is det(A—tI) = t*. So 0 is the only eigenvalue of
A. We observe that rank(A) = 3 and thus 4 —rank(A —0I) = 1 is not equal to the
multiplicity of the eigenvalue 0 of A. So by Theorem 5.9, T" is not diagonalizable.

b) With respect to the standard ordered basis 8 = (1,2, 2%) of P»(R), we have

001
A=[Tlg=(0 1 0
1 00
The characteristic polynomial of T is det(t] — A) = (t + 1)(t — 1)2. Thus T has
two eigenvalues Ay = 1 and Ao = —1, with multiplicities my, = 2 and m,, = —1
respectively.

Consider the eigenspace Ey = {f(x) € B(R)| T(f(z)) = f(x)} If ax? + bz + ¢ is
an element of £y, then we must have (az? + bz + ¢) = cz® + bz + a. Thus a = ¢,
and therefore £y = {ax® 4+ bx +c| a,b € R}. The set 8; = {2? + 1,2} generates F;
and is linearly independent. We can now conclude that dim(F;) = 2 = my,

Consider the eigenspace E_; = {f(x) € By(R)| T(f(x)) = —f(z)}. If ax® + bz + ¢
is an element of F_;, then we must have —(az? + bx + ¢) = cz* + bx + a. Thus
a = —c and b = 0, and therefore F_; = {az? — a| a € R}. The set $; = {2? — 1}
generates F_; and thus dim(E_;) =1 =m,,.

Now by Theorem 5.9 we can conclude that T is diagonalizable and 8 = (2% +
1,z,2? — 1) is an ordered basis of P,(R) such that [Tz is a diagonal matrix.

6.1.11 We have

|z +ylP + e =yl =(z +y, a+y) + (& —y, z—y)

(; by the definition of innerproducts we have)

=(z, z4+y) +{y, = +y)

+(z, 2 —y) =y, 2+y);

(now application of Theorem 6.1 yields)

= (2, ) +(z, ©) + (y, =) + (y, ¥)
(z, z) = (z, y) = (v, ©) + (¥, v)
2(||21* + [lyl*).

+

In R2, this law can be interpreted as “The sum of the squares of the lengths of diagonals
of a parallelogram is equal to the sum of the squares of the lengths of its sides.”



