3.4.9) The map $r: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ satisfying $r\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=[a, b, c, d]^{t}$ is an isomorphism. Under this map, the set S maps to the set
$r(S):=\left\{[0,-1,-1,1]^{t},[1,2,2,3]^{t},[2,1,1,9]^{t},[1,-2,-2,4]^{t},[-1,2,2,-1]^{t}\right\}$. As r is an isomorphism, $r(S)$ generates the subspace $r(W)$ of \mathbb{R}^{4} and moreover if $A \subset r(S)$ is a basis set of $r(W)$, then $r^{-1}(A):=\left\{r^{-1}(a) \mid a \in A\right\}$ is a subset of S generating W.
The matrix whose columns are elements of S is

$$
X=\left(\begin{array}{ccccc}
0 & 1 & 2 & 1 & -1 \\
-1 & 2 & 1 & -2 & 2 \\
-1 & 2 & 1 & -2 & 2 \\
1 & 3 & 9 & 4 & -1
\end{array}\right)
$$

The reduced row-echelon form of X is

$$
\left(\begin{array}{ccccc}
1 & 0 & 3 & 0 & 4 \\
0 & 1 & 2 & 0 & 1 \\
0 & & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

By Theorem 3.16 c) \& d), the set $A=\left\{[0,-1,-1,1]^{t},[1,2,2,3]^{t},[1,-2,-2,4]^{t}\right\}$ is a basis for $\operatorname{Span}(r(S))=r(W)$. Thus the set consisting of the first, second and fourth elements of S is a basis for W.
4.2.23) We prove this by induction on the size of the matrix. It is clear that the determinant of all 1×1 upper triangular matrices is equal to the product of its diagonal entries. Now we assume that the statement is true for all $n \times n$ matrices for some positive integer n. Consider the following generic $n+1 \times n+1$ upper triangular matrix.

$$
A=\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & \cdots & \cdots & a_{1, n+1} \\
& \ddots & & & \\
& & \ddots & & \\
& 0 & & \ddots & \\
& & & & a_{n+1, n+1}
\end{array}\right)
$$

Using cofactor expansion along the first column, we have $\operatorname{det}(A)=a_{11} \operatorname{det}\left(\tilde{A}_{11}\right)$. Now \tilde{A}_{11} is an $n \times n$ upper triangular matrix whose diagonal entries are $a_{22}, \ldots a_{n+1, n+1}$. Thus by induction hypothesis $\operatorname{det}\left(\tilde{A}_{11}\right)=\prod_{j=2}^{n+1} a_{j j}$, and thus $\operatorname{det}(A)=\prod_{j=1}^{n+1} a_{j j}$.
We can now conclude that the statement is true by principles of mathematical induction.
5.2 .3 a) With respect to the standard ordered basis $\beta=\left(1, x, x^{2}, x^{3}\right)$ of $P_{3}(\mathbb{R})$, we have

$$
A:=[T]_{\beta}=\left(\begin{array}{cccc}
0 & 1 & 2 & 0 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The characteristic polynomial of A is $\operatorname{det}(A-t I)=t^{4}$. So 0 is the only eigenvalue of A. We observe that $\operatorname{rank}(A)=3$ and thus $4-\operatorname{rank}(A-0 I)=1$ is not equal to the multiplicity of the eigenvalue 0 of A. So by Theorem 5.9, T is not diagonalizable.
b) With respect to the standard ordered basis $\beta=\left(1, x, x^{2}\right)$ of $P_{2}(\mathbb{R})$, we have

$$
A:=[T]_{\beta}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

The characteristic polynomial of T is $\operatorname{det}(t I-A)=(t+1)(t-1)^{2}$. Thus T has two eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-1$, with multiplicities $m_{\lambda_{1}}=2$ and $m_{\lambda_{2}}=-1$ respectively.
Consider the eigenspace $E_{1}=\left\{f(x) \in P_{2}(\mathbb{R}) \mid T(f(x))=f(x)\right\}$. If $a x^{2}+b x+c$ is an element of E_{1}, then we must have $\left(a x^{2}+b x+c\right)=c x^{2}+b x+a$. Thus $a=c$, and therefore $E_{1}=\left\{a x^{2}+b x+c \mid a, b \in \mathbb{R}\right\}$. The set $\beta_{1}=\left\{x^{2}+1, x\right\}$ generates E_{1} and is linearly independent. We can now conclude that $\operatorname{dim}\left(E_{1}\right)=2=m_{\lambda_{1}}$
Consider the eigenspace $E_{-1}=\left\{f(x) \in P_{2}(\mathbb{R}) \mid T(f(x))=-f(x)\right\}$. If $a x^{2}+b x+c$ is an element of E_{-1}, then we must have $-\left(a x^{2}+b x+c\right)=c x^{2}+b x+a$. Thus $a=-c$ and $b=0$, and therefore $E_{-1}=\left\{a x^{2}-a \mid a \in \mathbb{R}\right\}$. The set $\beta_{2}=\left\{x^{2}-1\right\}$ generates E_{-1} and thus $\operatorname{dim}\left(E_{-1}\right)=1=m_{\lambda_{2}}$.
Now by Theorem 5.9 we can conclude that T is diagonalizable and $\beta=\left(x^{2}+\right.$ $\left.1, x, x^{2}-1\right)$ is an ordered basis of $P_{2}(\mathbb{R})$ such that $[T]_{\beta}$ is a diagonal matrix.
6.1.11 We have

$$
\|x+y\|^{2}+\|x-y\|^{2}=\langle x+y, x+y\rangle+\langle x-y, x-y\rangle
$$

(; by the definition of innerproducts we have)

$$
\begin{aligned}
& =\langle x, x+y\rangle+\langle y, x+y\rangle \\
& +\langle x, x-y\rangle-\langle y, x+y\rangle
\end{aligned}
$$

(now application of Theorem 6.1 yields)

$$
\begin{aligned}
& =\langle x, x\rangle+\langle x, x\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& +\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
& =2\left(\|x\|^{2}+\|y\|^{2}\right) .
\end{aligned}
$$

In \mathbb{R}^{2}, this law can be interpreted as "The sum of the squares of the lengths of diagonals of a parallelogram is equal to the sum of the squares of the lengths of its sides."

