Permutation modules and p-ranks of Incidence Matrices I

Peter Sin
University of Florida

Groups and Geometries, ISI Bangalore, December 2012

Permutation modules and p-ranks of Incidence Matrices I

Peter Sin
University of Florida

Groups and Geometries, ISI Bangalore, December 2012

Outline

Incidence matrices, permutation modules

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

Outline

Incidence matrices, permutation modules

GL (V) acting on points and vectors

Nonzero intersection

Affine group action

Incidence matrices

- X, Y sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.
- $\eta: k^{X} \rightarrow k^{Y}, x \mapsto \sum_{(x, y) \in 1} y$
- If a group G acts on X and Y, preserving / then η is a kG-module homomorphism.
- $\operatorname{Im} \eta$ is a $k G$-submodule of k^{Y} of dimension $\operatorname{rank} A$.
- Study submodule structure of k^{Y} to study incidence, and vice versa.

Incidence matrices

- X, Y sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.
- If a group G acts on X and Y, preserving I then η is a $k G$-module homomorphism.
- $\operatorname{Im} \eta$ is a $k G$-submodule of k^{\curlyvee} of dimension rank A.
- Study submodule structure of k^{Y} to study incidence, and vice versa.

Incidence matrices

- X, Y sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.
- $\eta: k^{X} \rightarrow k^{Y}, x \mapsto \sum_{(x, y) \in 1} y$
- If a group G acts on X and Y, preserving I then η is a $k G$-module homomorphism.
- $\operatorname{Im} \eta$ is a $k G$-submodule of k^{Y} of dimension rank A.
- Study submodule structure of k^{\curlyvee} to study incidence, and vice versa.

Incidence matrices

- X, Y sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.
- $\eta: k^{x} \rightarrow k^{Y}, x \mapsto \sum_{(x, y) \in 1} y$
- If a group G acts on X and Y, preserving / then η is a $k G$-module homomorphism.
- $\operatorname{Im} \eta$ is a $k G$-submodule of k^{\curlyvee} of dimension rank A.
- Study submodule structure of k^{\curlyvee} to study incidence, and vice versa.

Incidence matrices

- X, Y sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.
- $\eta: k^{X} \rightarrow k^{Y}, x \mapsto \sum_{(x, y) \in I} y$
- If a group G acts on X and Y, preserving I then η is a $k G$-module homomorphism.
- $\operatorname{Im} \eta$ is a $k G$-submodule of k^{Y} of dimension $\operatorname{rank} A$.
- Study submodule structure of k^{Y} to study incidence, and vice versa.

Incidence matrices

- X, Y sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.
- $\eta: k^{X} \rightarrow k^{Y}, x \mapsto \sum_{(x, y) \in I} y$
- If a group G acts on X and Y, preserving I then η is a $k G$-module homomorphism.
- $\operatorname{Im} \eta$ is a $k G$-submodule of k^{Y} of dimension $\operatorname{rank} A$.
- Study submodule structure of k^{Y} to study incidence, and vice versa.

Outline

Incidence matrices, permutation modules

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

- $q=p^{t}, V=V(q)$ an $(n+1)$-dimensional \mathbf{F}_{q}-vector space.
- $G=\mathrm{GL}(V) \cong \mathrm{GL}(n+1, q)$.
- k algebraically closed field of characteristic p.
- $P=\{1$-diml. subspaces of V$\}$, the points.
- $k^{P}=k 1 \oplus Y_{P}$ as $k G$-modules,

$$
Y_{P}=\left\{f \in k^{P} \mid \sum_{y \in P} f(y)=0\right\} .
$$

- $q=p^{t}, V=V(q)$ an $(n+1)$-dimensional F_{q}-vector space.
- $G=\operatorname{GL}(V) \cong \mathrm{GL}(n+1, q)$.
- k algebraically closed field of characteristic p.
- $P=\{1$-diml. subspaces of V$\}$, the points.
- $k^{P}=k 1 \oplus Y_{P}$ as $k G$-modules,

- $q=p^{t}, V=V(q)$ an $(n+1)$-dimensional F_{q}-vector space.
- $G=\operatorname{GL}(V) \cong \mathrm{GL}(n+1, q)$.
- k algebraically closed field of characteristic p.
- $P=\{1$-diml. subspaces of V$\}$, the points. - $k^{P}=k 1 \oplus Y_{P}$ as $k G$-modules,
- $q=p^{t}, V=V(q)$ an $(n+1)$-dimensional F_{q}-vector space.
- $G=\operatorname{GL}(V) \cong \mathrm{GL}(n+1, q)$.
- k algebraically closed field of characteristic p.
- $P=\{1$-diml. subspaces of V$\}$, the points.
- $k^{P}=k 1 \oplus Y_{P}$ as $k G$-modules,
- $q=p^{t}, V=V(q)$ an $(n+1)$-dimensional F_{q}-vector space.
- $G=\operatorname{GL}(V) \cong \mathrm{GL}(n+1, q)$.
- k algebraically closed field of characteristic p.
- $P=\{1$-diml. subspaces of V$\}$, the points.
- $k^{P}=k 1 \oplus Y_{P}$ as $k G$-modules,

$$
Y_{P}=\left\{f \in k^{P} \mid \sum_{y \in P} f(y)=0\right\}
$$

- Bardoe-Sin (2000) determined the $k G$-submodule structure of $k[V]$ and k^{P}.
- Multiplicity-free modules, submodule lattice is lattice of ideals in some partial ordering on the set of composition factors.
- Earlier work on related groups and modules by Delsarte, Doty, Hirschfeld, Kovacs, Krop, Kuhn.
- Bardoe-Sin (2000) determined the $k G$-submodule structure of $k[V]$ and k^{P}.
- Multiplicity-free modules, submodule lattice is lattice of ideals in some partial ordering on the set of composition factors.
- Earlier work on related groups and modules by Delsarte, Doty, Hirschfeld, Kovacs, Krop, Kuhn.
- Bardoe-Sin (2000) determined the $k G$-submodule structure of $k[V]$ and k^{P}.
- Multiplicity-free modules, submodule lattice is lattice of ideals in some partial ordering on the set of composition factors.
- Earlier work on related groups and modules by Delsarte, Doty, Hirschfeld, Kovacs, Krop, Kuhn.

The set \mathcal{H}

- Let \mathcal{H} denote the set of t-tuples $\left(s_{0}, \ldots, s_{t-1}\right)$ of integers satisfying (for $j=0, \ldots, t-1$)

2. $0 \leq p s_{j+1}-s_{j} \leq(p-1)(n+1)$. (Subcripts mod t.)

- Let \mathcal{H} be partially ordered in the natural way:
$\left(s_{0}^{\prime}, \ldots, s_{t-1}^{\prime}\right) \leq\left(s_{0}, \ldots, s_{t-1}\right)$ if and only if $s_{j}^{\prime} \leq s_{j}$ for all j.

The set \mathcal{H}

- Let \mathcal{H} denote the set of t-tuples $\left(s_{0}, \ldots, s_{t-1}\right)$ of integers satisfying (for $j=0, \ldots, t-1$)

1. $1 \leq s_{j} \leq n$;
(Subcripts mod t.)

- Let \mathcal{H} be partially ordered in the natural way:
$\left(s_{0}^{\prime}, \ldots, s_{t-1}^{\prime}\right) \leq\left(s_{0}, \ldots, s_{t-1}\right)$ if and only if $s_{j}^{\prime} \leq s_{j}$ for all j.

The set \mathcal{H}

- Let \mathcal{H} denote the set of t-tuples $\left(s_{0}, \ldots, s_{t-1}\right)$ of integers satisfying (for $j=0, \ldots, t-1$)

1. $1 \leq s_{j} \leq n$;
2. $0 \leq p s_{j+1}-s_{j} \leq(p-1)(n+1)$. (Subcripts mod t.)

- Let \mathcal{H} be partially ordered in the natural way: $\left(s_{0}^{\prime}, \ldots, s_{t-1}^{\prime}\right) \leq\left(s_{0}, \ldots, s_{t-1}\right)$ if and only if $s_{j}^{\prime} \leq s_{j}$ for all j.

The set \mathcal{H}

- Let \mathcal{H} denote the set of t-tuples $\left(s_{0}, \ldots, s_{t-1}\right)$ of integers satisfying (for $j=0, \ldots, t-1$)

$$
\begin{aligned}
& \text { 1. } 1 \leq s_{j} \leq n ; \\
& \text { 2. } \left.0 \leq p s_{j+1}-s_{j} \leq(p-1)(n+1) . \quad \text { (Subcripts } \bmod t .\right)
\end{aligned}
$$

- Let \mathcal{H} be partially ordered in the natural way: $\left(s_{0}^{\prime}, \ldots, s_{t-1}^{\prime}\right) \leq\left(s_{0}, \ldots, s_{t-1}\right)$ if and only if $s_{j}^{\prime} \leq s_{j}$ for all j.

Theorem

(a) The module k^{P} is multiplicity free and has composition factors $L\left(s_{0}, \ldots, s_{t-1}\right)$ parametrized by the set $\mathcal{H} \cup\{(0, \ldots, 0)\}$.
(b) For $\left(s_{0}, \ldots, s_{t-1}\right) \in \mathcal{H}$, let $\lambda_{j}=p s_{j+1}-s_{j}$. Then the simple $k G$-module $L\left(s_{0}, \ldots, s_{t-1}\right)$ is isomorphic to the twisted tensor product

$$
\bigotimes_{i}^{t-1}\left(\bar{S}^{\lambda_{j}}\right)^{\left(p^{j}\right)},
$$

where \bar{S}^{λ} denotes the component of degree λ in the truncated polynomial ring $\bar{S}=k\left[X_{0}, \ldots, X_{n}\right] /\left(X_{i}^{p}\right)_{i=0}^{n}$ and the superscripts (p^{j}) indicate twisting by powers of the Frobenius map.

Cont'd

Theorem
(Cont'd)
(c) For each submodule M of Y_{P}, let $\mathcal{H}_{M} \subseteq \mathcal{H}$ be the set of its composition factors. Then \mathcal{H}_{M} is an ideal of the partially ordered set (\mathcal{H}, \leq), i.e if $\left(s_{0}, \ldots, s_{t-1}\right) \in \mathcal{H}_{M}$ and $\left(s_{0}^{\prime}, \ldots, s_{t-1}^{\prime}\right) \leq\left(s_{0}, \ldots, s_{t-1}\right)$, then $\left(s_{0}^{\prime}, \ldots, s_{t-1}^{\prime}\right) \in \mathcal{H}_{M}$.
(d) The mapping $M \mapsto \mathcal{H}_{M}$ defines a lattice isomorphism between the submodule lattice of Y_{P} and the lattice of ideals, ordered by inclusion, of the partially ordered set (\mathcal{H}, \leq)

Stabilization of module structure

- Condition (2) in the definition of \mathcal{H} is automatically satisfied when $t=1$, (i.e. $q=p$) or when $p \geq n$.
- Thus, in both of these cases, the submodule lattice of Y_{p} is isomorphic to the lattice of ideals in the t-fold product of the integer interval $[1, n]$.
- In particular, it does not depend on p.
- When $t=1$ the submodules of k^{P} are well in coding theory, as generalizations of the Reed-Muller codes.

Stabilization of module structure

- Condition (2) in the definition of \mathcal{H} is automatically satisfied when $t=1$, (i.e. $q=p$) or when $p \geq n$.
- Thus, in both of these cases, the submodule lattice of Y_{P} is isomorphic to the lattice of ideals in the t-fold product of the integer interval $[1, n]$.
- In particular, it does not depend on p.
- When $t=1$ the submodules of k^{P} are well in coding theory, as generalizations of the Reed-Muller codes.

Stabilization of module structure

- Condition (2) in the definition of \mathcal{H} is automatically satisfied when $t=1$, (i.e. $q=p$) or when $p \geq n$.
- Thus, in both of these cases, the submodule lattice of Y_{P} is isomorphic to the lattice of ideals in the t-fold product of the integer interval $[1, n]$.
- In particular, it does not depend on p.
- When $t=1$ the submodules of k^{P} are well in coding
theory, as generalizations of the Reed-Muller codes.

Stabilization of module structure

- Condition (2) in the definition of \mathcal{H} is automatically satisfied when $t=1$, (i.e. $q=p$) or when $p \geq n$.
- Thus, in both of these cases, the submodule lattice of Y_{P} is isomorphic to the lattice of ideals in the t-fold product of the integer interval $[1, n]$.
- In particular, it does not depend on p.
- When $t=1$ the submodules of k^{P} are well in coding theory, as generalizations of the Reed-Muller codes.

Submodule generated by an element

- To apply the theorem, we need to be able to read off the submodule generated by a given element.
$\begin{aligned} & k^{P} \text { has a monomial basis, each monomial defines an } \\ & \text { element of } \mathcal{H} \cup\{(0, \ldots, 0)\} \text {. } \\ \text { - } & \text { For } f \in k^{P} \text {, let } \mathcal{H} \subseteq \subseteq \mathcal{H} \cup\{(0, \ldots, 0)\} \text { denote the set of } \\ & \text { tuples of the basis monomials appearing with nonzero } \\ & \text { coefficients in the the expression for } f .\end{aligned}$

Submodule generated by an element

- To apply the theorem, we need to be able to read off the submodule generated by a given element.
- k^{P} has a monomial basis, each monomial defines an element of $\mathcal{H} \cup\{(0, \ldots, 0)\}$.
- For $f \in \mathcal{K}^{P}$, let $\mathcal{H}_{f} \subseteq \mathcal{H} \cup\{(0, \ldots, 0)\}$ denote the set of tuples of the basis monomials appearing with nonzero coefficients in the the expression for f.

Submodule generated by an element

- To apply the theorem, we need to be able to read off the submodule generated by a given element.
- k^{P} has a monomial basis, each monomial defines an element of $\mathcal{H} \cup\{(0, \ldots, 0)\}$.
- For $f \in k^{P}$, let $\mathcal{H}_{f} \subseteq \mathcal{H} \cup\{(0, \ldots, 0)\}$ denote the set of tuples of the basis monomials appearing with nonzero coefficients in the the expression for f.
as composition factors.

Submodule generated by an element

- To apply the theorem, we need to be able to read off the submodule generated by a given element.
- k^{P} has a monomial basis, each monomial defines an element of $\mathcal{H} \cup\{(0, \ldots, 0)\}$.
- For $f \in k^{P}$, let $\mathcal{H}_{f} \subseteq \mathcal{H} \cup\{(0, \ldots, 0)\}$ denote the set of tuples of the basis monomials appearing with nonzero coefficients in the the expression for f.

Theorem

The $k G$-submodule of k^{P} generated by f is the smallest submodule having all the $L\left(s_{0}, \ldots, s_{t-1}\right)$ for $\left(s_{0}, \ldots, s_{t-1}\right) \in \mathcal{H}_{f}$ as composition factors.

Hamada's Formula

- $\mathcal{C}_{r} \subseteq k^{P}$, subspace spanned by the r-dimensional subspaces of P.
${ }^{-} \mathcal{C}_{r}$ is equal to $k \mathcal{X}_{L}$, where L is defined by the equations $X_{i}=0, i=r+1 \ldots, n$. Its characteristic function can be written as

Hamada's Formula

- $\mathcal{C}_{r} \subseteq k^{P}$, subspace spanned by the r-dimensional subspaces of P.
- \mathcal{C}_{r} is equal to $k \mathcal{X}_{L}$, where L is defined by the equations $X_{i}=0, i=r+1 \ldots, n$. Its characteristic function can be written as

$$
\chi_{L}=\prod_{i=r+1}^{n}\left(1-x_{i}^{q-1}\right)=\sum_{I \subseteq\{r+1, \ldots, n\}}(-1)^{|/|} x_{I}^{q-1}
$$

For $I \neq \emptyset$ the monomial x_{I}^{q-1} has \mathcal{H}-tuple $(|I|, \ldots,|I|)$, which lies below the \mathcal{H}-tuple $(n-r, \ldots, n-r)$ of $\prod_{i=r+1}^{n} x_{i}^{q-1}$.

Hamada's Formula

$$
\operatorname{dim} \mathcal{C}_{r}=1+\sum_{\left(s_{0}, \ldots, s_{t-1}\right)} \prod_{j=0}^{t-1} \sum_{i=0}^{\left\lfloor\frac{p s_{j+1}-s_{j}}{p}\right\rfloor}(-1)^{i}\binom{n+1}{i}\binom{n+p s_{j+1}-s_{j}-i p}{n},
$$

summed over $\left(s_{0}, \ldots, s_{t-1}\right) \in \mathcal{H}$ with $1 \leq s_{j} \leq n-r$.

- Inamdar-Sastry (2001) gave an alternative proof that \mathcal{C}_{r} is spanned by monomials, hence of Hamada's formula.

Hamada's Formula

$\operatorname{dim} \mathcal{C}_{r}=1+\sum_{\left(s_{0}, \ldots, s_{(-1)}\right)} \prod_{j=0}^{t-1} \sum_{i=0}^{\left[\frac{s s_{+1}-s_{s}}{}\right.} \sum_{i=0}^{\sum_{i}}(-1)^{i}\binom{n+1}{i}\binom{n+p s_{j+1}-s_{j}-i p}{n}$,
summed over $\left(s_{0}, \ldots, s_{t-1}\right) \in \mathcal{H}$ with $1 \leq s_{j} \leq n-r$.

- Inamdar-Sastry (2001) gave an alternative proof that \mathcal{C}_{r} is spanned by monomials, hence of Hamada's formula.

Delsarte's Theorem

Corollary

1. $f \in k^{P}$ belongs to $\mathcal{C}_{r}{ }^{\perp}$ iff every monomial that occurs in f belongs to $\mathcal{C}_{r}{ }^{\perp}$.
2. $\mathcal{C}_{r}{ }^{\perp}$ has a basis of monomials of type $\left(s_{0}, \ldots, s_{t}\right)$ such that $s_{j}<r$ for some r.

Delsarte (1970). Glynn-Hirschfield call this the "main theorem on geometric codes"

Action on vectors

- Action of $Z(G)$ on $k[V(q)]$ yields

$$
k[V(q)]=\bigoplus_{[d] \in \mathbb{Z} /(q-1) \mathbb{Z}} A[d]
$$

where $A[d]$ is the span of the images of monomials of degree congruent to $d \bmod q-1$.

- Similar methods give structure of $A[d]$ for $[d] \neq[0]$.

Action on vectors

- Action of $Z(G)$ on $k[V(q)]$ yields

$$
k[V(q)]=\bigoplus_{[d] \in \mathbb{Z} /(q-1) \mathbb{Z}} A[d]
$$

where $A[d]$ is the span of the images of monomials of degree congruent to $d \bmod q-1$.

- $A[0] \cong k \oplus k^{P}$.
- Similar methods give structure of $A[d]$ for $[d] \neq[0]$.

Action on vectors

- Action of $Z(G)$ on $k[V(q)]$ yields

$$
k[V(q)]=\bigoplus_{[d] \in \mathbb{Z} /(q-1) \mathbb{Z}} A[d]
$$

where $A[d]$ is the span of the images of monomials of degree congruent to $d \bmod q-1$.

- $A[0] \cong k \oplus k^{P}$.
- Similar methods give structure of $A[d]$ for $[d] \neq[0]$.

Action on vectors

- Action of $Z(G)$ on $k[V(q)]$ yields

$$
k[V(q)]=\bigoplus_{[d] \in \mathbb{Z} /(q-1) \mathbb{Z}} A[d]
$$

where $A[d]$ is the span of the images of monomials of degree congruent to $d \bmod q-1$.

- $A[0] \cong k \oplus k^{P}$.
- Similar methods give structure of $A[d]$ for $[d] \neq[0]$.
- Write $d=d_{0}+d_{1} p+\cdots+d_{t-1} p^{t-1}, \quad\left(0 \leq d_{j} \leq p-1\right)$.

Let $\mathcal{H}[d]$ denote the set of t-tuples $\left(r_{0}, \ldots, r_{t-1}\right)$ of integers satisfying (for $j=0, \ldots, t-1$)

1. $0 \leq r_{j} \leq n$;
2. $0 \leq d_{j}+p r_{j+1}-r_{j} \leq(p-1)(n+1)$. (Subcripts mod t.)

Let $\mathcal{H}[d]$ be partially ordered in the natural way:
$\left(r_{0}^{\prime}, \ldots, r_{t-1}^{\prime}\right) \leq\left(r_{0}, \ldots, r_{t-1}\right)$ if and only if $r_{j}^{\prime} \leq r_{j}$ for all j.

Theorem

(a) The module A[d] is multiplicity free and has composition factors $L[d]\left(r_{0}, \ldots, r_{t-1}\right)$ parametrized by the set $\mathcal{H}[d]$.
(b) $\operatorname{For}\left(r_{0}, \ldots, r_{t-1}\right) \in \mathcal{H}[d]$, let $\lambda_{j}=d_{j}+p r_{j+1}-r_{j}$. Then the simple $k G$-module $L[d]\left(r_{0}, \ldots, r_{t-1}\right)$ is isomorphic to the twisted tensor product

$$
\bigotimes_{j=0}^{t-1}\left(\bar{S}^{\lambda_{j}}\right)^{\left(p^{j}\right)} .
$$

(c) For each submodule M of $A[d]$, let $\mathcal{H}[d]_{M} \subseteq \mathcal{H}[d]$ be the set of its composition factors. Then $\mathcal{H}[d]_{M}$ is an ideal of the partially ordered set ($\mathcal{H}[d], \leq$).
(d) The mapping $M \mapsto \mathcal{H}[d]_{M}$ defines a lattice isomorphism between the submodule lattice of $A[d]$ and the lattice of ideals, ordered by inclusion, of the partially ordered set $(\mathcal{H}[d], \leq)$

Structure of symmetric powers

- $S^{d} \subseteq k\left[X_{0}, \ldots, X_{n}\right]$, the space of homogeneous polynomials of degree d.

```
* View as module for the algebraic group GL( }n+1,k)\mathrm{ .
* When d<q-1 the map S }\mp@subsup{S}{}{d}->A[d] \mathrm{ is an embedding of
kG-modules with image }\mp@subsup{\mathcal{F}}{0}{[d]}\mathrm{ . Thus, S}\mp@subsup{S}{}{d}\mathrm{ corresponds to
the ideal
\[
\mathcal{H}[d]_{S^{d}}=\left\{\left(r_{0}, \ldots, r_{t-1}\right) \in \mathcal{H}[d] \mid r_{0}=0\right\} .
\]
This gives the submodule structure of \(S^{d}\) as a module for \(G=\operatorname{GL}\left(n+1, p^{t}\right)\).
- Fix \(d\) and replace \(p^{t}\) by a higher power \(p^{N}\). Let \(A[d](N)\), \(\mathcal{H}[d](N)\), etc. denote the corresponding objects for \(G(N)=\mathrm{GL}\left(n+1, p^{N}\right)\). Then
\[
\mathcal{H}[d](N)_{S^{d}}=\left\{\left(r_{0}, \ldots, r_{N-1}\right) \in \mathcal{H}[d](N) \mid r_{0}=0\right\} .
\]
```


Structure of symmetric powers

- $S^{d} \subseteq k\left[X_{0}, \ldots, X_{n}\right]$, the space of homogeneous polynomials of degree d.
- View as module for the algebraic group GL($n+1, k)$.
$k G$-modules with image $\mathcal{F}_{0}[d]$. Thus, S^{d} corresponds to the ideal

$$
\mathcal{H}[d]_{S^{d}}=\left\{\left(r_{0}, \ldots, r_{t-1}\right) \in \mathcal{H}[d] \mid r_{0}=0\right\} .
$$

This gives the submodule structure of S^{d} as a module for $G=\operatorname{GL}\left(n+1, p^{t}\right)$.

- Fix d and replace p^{t} by a higher power p^{N}. Let $A[d](N)$, $\mathcal{H}[d](N)$, etc. denote the corresponding objects for $G(N)=G L\left(n+1, p^{N}\right)$. Then

$$
\mathcal{H}[d](N)_{S^{d}}=\left\{\left(r_{0}, \ldots, r_{N-1}\right) \in \mathcal{H}[d](N) \mid r_{0}=0\right\} .
$$

Structure of symmetric powers

- $S^{d} \subseteq k\left[X_{0}, \ldots, X_{n}\right]$, the space of homogeneous polynomials of degree d.
- View as module for the algebraic group GL($n+1, k)$.
- When $d<q-1$ the map $S^{d} \rightarrow A[d]$ is an embedding of $k G$-modules with image $\mathcal{F}_{0}[d]$. Thus, S^{d} corresponds to the ideal

$$
\mathcal{H}[d]_{S^{d}}=\left\{\left(r_{0}, \ldots, r_{t-1}\right) \in \mathcal{H}[d] \mid r_{0}=0\right\}
$$

This gives the submodule structure of S^{d} as a module for $G=\operatorname{GL}\left(n+1, p^{t}\right)$.
$\mathcal{H}[d](N)$, etc. denote the corresponding objects for $G(N)=\mathrm{GL}\left(n+1, p^{N}\right)$. Then

Structure of symmetric powers

- $S^{d} \subseteq k\left[X_{0}, \ldots, X_{n}\right]$, the space of homogeneous polynomials of degree d.
- View as module for the algebraic group $\operatorname{GL}(n+1, k)$.
- When $d<q-1$ the map $S^{d} \rightarrow A[d]$ is an embedding of $k G$-modules with image $\mathcal{F}_{0}[d]$. Thus, S^{d} corresponds to the ideal

$$
\mathcal{H}[d]_{S^{d}}=\left\{\left(r_{0}, \ldots, r_{t-1}\right) \in \mathcal{H}[d] \mid r_{0}=0\right\}
$$

This gives the submodule structure of S^{d} as a module for $G=\operatorname{GL}\left(n+1, p^{t}\right)$.

- Fix d and replace p^{t} by a higher power p^{N}. Let $A[d](N)$, $\mathcal{H}[d](N)$, etc. denote the corresponding objects for $G(N)=\mathrm{GL}\left(n+1, p^{N}\right)$. Then

$$
\mathcal{H}[d](N)_{S^{d}}=\left\{\left(r_{0}, \ldots, r_{N-1}\right) \in \mathcal{H}[d](N) \mid r_{0}=0\right\}
$$

- The p-adic expression for d is unchanged, so that we have $d_{j}=0$ for $t \leq j \leq N-1$. Let $\left(r_{0}, \ldots, r_{N-1}\right) \in \mathcal{H}[d](N)_{S^{d}}$.
Then from the definitions we have
$0 \leq d_{N-1}+p r_{0}-r_{N-1}=-r_{N-1}$, which forces $r_{N-1}=0$.
Repeating this, we obtain $r_{j}=0$ for $t \leq j \leq N-1$. Moreover, the conditions on the entries r_{j} for $0 \leq j \leq t-1$ are exactly the conditions for the t-tuple $\left(r_{0}, \ldots, r_{t-1}\right)$ to belong to $\mathcal{H}[d]_{S^{d}}$.

Theorem
The submodule lattice of S^{d} is the same for all of the groups for the algebraic group GL $(n+1, k)$. This lattice is isomorphic to the lattice of ideals in the partially ordered set $\mathcal{H}[d]_{S^{d}}$

- The p-adic expression for d is unchanged, so that we have $d_{j}=0$ for $t \leq j \leq N-1$. Let $\left(r_{0}, \ldots, r_{N-1}\right) \in \mathcal{H}[d](N)_{S^{d}}$.
Then from the definitions we have
$0 \leq d_{N-1}+p r_{0}-r_{N-1}=-r_{N-1}$, which forces $r_{N-1}=0$.
Repeating this, we obtain $r_{j}=0$ for $t \leq j \leq N-1$.
Moreover, the conditions on the entries r_{j} for $0 \leq j \leq t-1$ are exactly the conditions for the t-tuple $\left(r_{0}, \ldots, r_{t-1}\right)$ to belong to $\mathcal{H}[d]_{S^{d}}$.

Theorem

The submodule lattice of S^{d} is the same for all of the groups $\operatorname{GL}\left(n+1, p^{t}\right)$ for $p^{t}-1>d$. Consequently, it is also the same for the algebraic group $\mathrm{GL}(n+1, k)$. This lattice is isomorphic to the lattice of ideals in the partially ordered set $\mathcal{H}[d]_{S^{d}}$

Outline

Incidence matrices, permutation modules

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

Nonzero intersection

- For $1 \leq d, e \leq n+1$, let $A(d, e)$ be the incidence matrix for d-subspaces versus e-subspaces, with incidence being nonzero intersection.

Theorem
The p-rank of $A(d, e)$ is given by the formula

- When $d=1$ this is Hamada's formula.

does not belong to \mathcal{H} then there is some j^{\prime} for which $m\left(n+1, p s_{j^{\prime}+1}-s_{j^{\prime}}, p-1\right)=0$. So we can sum over all tuples \mathbf{s} with $e \leq s_{j} \leq n-d+1$ instead of just those belonging to \mathcal{H}.

Nonzero intersection

- For $1 \leq d, e \leq n+1$, let $A(d, e)$ be the incidence matrix for d-subspaces versus e-subspaces, with incidence being nonzero intersection.
Theorem
The p-rank of $A(d, e)$ is given by the formula

$$
\operatorname{rank}_{p} A(d, e)=1+\sum_{\substack{\mathbf{s} \in \mathcal{H} \\(e)<\mathbf{s}<(n-d+1)}} \prod_{j=0}^{t-1} m\left(n+1, p s_{j+1}-s_{j}, p-1\right)
$$

$$
\text { When } d=1 \text { this is Hamada's formula. }
$$

$$
\text { does not belong to } \mathcal{H} \text { then there is some } j^{\prime} \text { for which }
$$

$$
m\left(n+1, p s_{j^{\prime}+1}-s_{j^{\prime}}, p-1\right)=0 \text {. So we can sum over all }
$$

$$
\text { tuples } \mathbf{s} \text { with } e \leq s_{j} \leq n-d+1 \text { instead of just those }
$$

Nonzero intersection

- For $1 \leq d, e \leq n+1$, let $A(d, e)$ be the incidence matrix for d-subspaces versus e-subspaces, with incidence being nonzero intersection.
Theorem
The p-rank of $A(d, e)$ is given by the formula

$$
\operatorname{rank}_{p} A(d, e)=1+\sum_{\substack{\mathbf{s} \in \mathcal{H} \\(\underline{e}) \leq \mathbf{s} \leq \underline{n-d+1})}} \prod_{j=0}^{t-1} m\left(n+1, p s_{j+1}-s_{j}, p-1\right)
$$

- When $d=1$ this is Hamada's formula.

Nonzero intersection

- For $1 \leq d, e \leq n+1$, let $A(d, e)$ be the incidence matrix for d-subspaces versus e-subspaces, with incidence being nonzero intersection.

Theorem

The p-rank of $A(d, e)$ is given by the formula

$$
\sum_{\substack{\mathbf{s} \in \mathcal{H} \\(\underline{e}) \leq \mathbf{s} \leq(\underline{n-d+1})}} \prod_{j=0}^{t-1} m\left(n+1, p s_{j+1}-s_{j}, p-1\right)
$$

- When $d=1$ this is Hamada's formula.
- If $\mathbf{s}=\left(s_{0}, \ldots, s_{t-1}\right)$ satisfies $e \leq s_{j} \leq n-d+1$ for all j but does not belong to \mathcal{H} then there is some j^{\prime} for which $m\left(n+1, p s_{j^{\prime}+1}-s_{j^{\prime}}, p-1\right)=0$. So we can sum over all tuples \mathbf{s} with $e \leq s_{j} \leq n-d+1$ instead of just those belonging to \mathcal{H}.

Generating function formulation

- Eric Moorhouse gave a generating function formulation.
- Let $D=D(n, p, d, e)$ be the matrix with rows and columns indexed by $\{e, e+1, \ldots, n-d+1\}$ given by $D_{s, s^{\prime}}=m\left(n+1, p s^{\prime}-s, p-1\right)$. Then rank formula can be rewritten as

$$
\operatorname{rank}_{p} A(d, e)=1+\operatorname{trace} D^{t}
$$

$=1+\left(\right.$ coefficient of x^{t} in $\left.\operatorname{trace}\left[(I-x D)^{-1}\right]\right)$

- Study of $A\left(d^{\prime}, e\right)$ (partially) motivated by partial m-systems (Shult-Thas).

Generating function formulation

- Eric Moorhouse gave a generating function formulation.
- Let $D=D(n, p, d, e)$ be the matrix with rows and columns indexed by $\{e, e+1, \ldots, n-d+1\}$ given by
$D_{s, s^{\prime}}=m\left(n+1, p s^{\prime}-s, p-1\right)$. Then rank formula can be rewritten as

$$
\begin{aligned}
\operatorname{rank}_{p} A(d, e) & =1+\operatorname{trace} D^{t} \\
& =1+\left(\text { coefficient of } x^{t} \text { in } \operatorname{trace}\left[(I-x D)^{-1}\right]\right)
\end{aligned}
$$

- Study of $A(d, e)$ (partially) motivated by partial m-systems (Shult-Thas).

Generating function formulation

- Eric Moorhouse gave a generating function formulation.
- Let $D=D(n, p, d, e)$ be the matrix with rows and columns indexed by $\{e, e+1, \ldots, n-d+1\}$ given by
$D_{s, s^{\prime}}=m\left(n+1, p s^{\prime}-s, p-1\right)$. Then rank formula can be rewritten as

$$
\begin{aligned}
\operatorname{rank}_{p} A(d, e) & =1+\operatorname{trace} D^{t} \\
& =1+\left(\text { coefficient of } x^{t} \text { in } \operatorname{trace}\left[(I-x D)^{-1}\right]\right)
\end{aligned}
$$

- Study of $A(d, e)$ (partially) motivated by partial m-systems (Shult-Thas).

Outline

Incidence matrices, permutation modules

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

$k[V]$ under affine group action

- Consider $k[V(q)]$ as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.
- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- Radical series is the same for all groups G with
$V \subset G \subset \operatorname{AGL}(V)$.

$k[V]$ under affine group action

- Consider $k[V(q)]$ as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.
- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- Radical series is the same for all groups G with $V \subset G \subset \operatorname{AGL}(V)$.

$k[V]$ under affine group action

- Consider $k[V(q)]$ as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.
- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- Radical series is the same for all groups G with $V \subset G \subset A G L(V)$.

$k[V]$ under affine group action

- Consider $k[V(q)]$ as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.
- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- Radical series is the same for all groups G with $V \subset G \subset \operatorname{AGL}(V)$.

$k[V]$ under affine group action

- Consider $k[V(q)]$ as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.
- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- Radical series is the same for all groups G with $V \subset G \subset \operatorname{AGL}(V)$.

$k[V]$ under affine group action

- Consider $k[V(q)]$ as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.
- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- Radical series is the same for all groups G with $V \subset G \subset \operatorname{AGL}(V)$.

