Permutation modules and *p*-ranks of Incidence Matrices I

Peter Sin

University of Florida

Groups and Geometries, ISI Bangalore, December 2012

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Permutation modules and *p*-ranks of Incidence Matrices I

Peter Sin

University of Florida

Groups and Geometries, ISI Bangalore, December 2012

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Incidence matrices, permutation modules

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

Incidence matrices, permutation modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

Incidence matrices

• *X*, *Y* sets $I \subset X \times Y$ incidence relation.

A incidence matrix over a field *k*.

▶
$$\eta: k^X \to k^Y, x \mapsto \sum_{(x,y) \in I} y$$

- If a group G acts on X and Y, preserving I then η is a kG-module homomorphism.
- Im η is a *kG*-submodule of k^{Y} of dimension rank *A*.
- Study submodule structure of k^Y to study incidence, and vice versa.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- *X*, *Y* sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.
- ▶ $\eta: k^X \to k^Y, x \mapsto \sum_{(x,y) \in I} y$
- If a group G acts on X and Y, preserving I then η is a kG-module homomorphism.
- Im η is a *kG*-submodule of k^{Y} of dimension rank *A*.
- Study submodule structure of k^Y to study incidence, and vice versa.

Incidence matrices

- ▶ *X*, *Y* sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.

►
$$\eta: k^X \to k^Y, x \mapsto \sum_{(x,y) \in I} y$$

- If a group G acts on X and Y, preserving I then η is a kG-module homomorphism.
- Im η is a *kG*-submodule of k^{Y} of dimension rank *A*.
- Study submodule structure of k^Y to study incidence, and vice versa.

- *X*, *Y* sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.

►
$$\eta: k^X \to k^Y, x \mapsto \sum_{(x,y) \in I} y$$

- If a group G acts on X and Y, preserving I then η is a kG-module homomorphism.
- Im η is a *kG*-submodule of k^{Y} of dimension rank *A*.
- Study submodule structure of k^Y to study incidence, and vice versa.

- *X*, *Y* sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.

►
$$\eta: k^X \to k^Y, x \mapsto \sum_{(x,y) \in I} y$$

- If a group G acts on X and Y, preserving I then η is a kG-module homomorphism.
- Im η is a *kG*-submodule of k^{γ} of dimension rank *A*.
- Study submodule structure of k^Y to study incidence, and vice versa.

- ▶ *X*, *Y* sets $I \subset X \times Y$ incidence relation.
- A incidence matrix over a field k.

$$\blacktriangleright \eta: k^X \to k^Y, x \mapsto \sum_{(x,y) \in I} y$$

- If a group G acts on X and Y, preserving I then η is a kG-module homomorphism.
- Im η is a *kG*-submodule of k^{Y} of dimension rank *A*.
- Study submodule structure of k^Y to study incidence, and vice versa.

Incidence matrices, permutation modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

• $q = p^t$, V = V(q) an (n + 1)-dimensional \mathbf{F}_q -vector space.

- $\blacktriangleright G = \operatorname{GL}(V) \cong \operatorname{GL}(n+1,q).$
- ▶ *k* algebraically closed field of characteristic *p*.
- $P = \{1 \text{-diml. subspaces of V}\}, \text{ the points.}$
- $k^P = k1 \oplus Y_P$ as *kG*-modules,

$$Y_P = \{ f \in k^P \mid \sum_{y \in P} f(y) = 0 \}.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

q = *p^t*, *V* = *V*(*q*) an (*n* + 1)-dimensional *F_q*-vector space. *G* = GL(*V*) ≅ GL(*n* + 1, *q*).

- ▶ *k* algebraically closed field of characteristic *p*.
- $P = \{1 \text{-diml. subspaces of V}\}, \text{ the points.}$
- $k^P = k1 \oplus Y_P$ as *kG*-modules,

$$Y_P = \{ f \in k^P \mid \sum_{y \in P} f(y) = 0 \}.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

- ▶ $q = p^t$, V = V(q) an (n + 1)-dimensional \mathbf{F}_q -vector space.
- $G = \operatorname{GL}(V) \cong \operatorname{GL}(n+1,q).$
- ► *k* algebraically closed field of characteristic *p*.
- $P = \{1 \text{-diml. subspaces of V}\}, \text{ the points.}$
- $k^P = k1 \oplus Y_P$ as *kG*-modules,

$$Y_P = \{ f \in k^P \mid \sum_{y \in P} f(y) = 0 \}.$$

A D F A 同 F A E F A E F A Q A

- ▶ $q = p^t$, V = V(q) an (n + 1)-dimensional \mathbf{F}_q -vector space.
- $G = \operatorname{GL}(V) \cong \operatorname{GL}(n+1,q).$
- ► *k* algebraically closed field of characteristic *p*.
- $P = \{1 \text{-diml. subspaces of V}\}, \text{ the points.}$

▶ $k^P = k1 \oplus Y_P$ as *kG*-modules,

$$Y_P = \{ f \in k^P \mid \sum_{y \in P} f(y) = 0 \}.$$

▶
$$q = p^t$$
, $V = V(q)$ an $(n+1)$ -dimensional \mathbf{F}_q -vector space.

•
$$G = \operatorname{GL}(V) \cong \operatorname{GL}(n+1,q).$$

- ► *k* algebraically closed field of characteristic *p*.
- $P = \{1 \text{-diml. subspaces of V}\}, \text{ the points.}$
- $k^P = k1 \oplus Y_P$ as *kG*-modules,

$$Y_{P} = \{f \in k^{P} \mid \sum_{y \in P} f(y) = 0\}.$$

Bardoe-Sin (2000) determined the kG-submodule structure of k[V] and k^P.

- Multiplicity-free modules, submodule lattice is lattice of ideals in some partial ordering on the set of composition factors.
- Earlier work on related groups and modules by Delsarte, Doty, Hirschfeld, Kovacs, Krop, Kuhn.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Bardoe-Sin (2000) determined the kG-submodule structure of k[V] and k^P.
- Multiplicity-free modules, submodule lattice is lattice of ideals in some partial ordering on the set of composition factors.
- Earlier work on related groups and modules by Delsarte, Doty, Hirschfeld, Kovacs, Krop, Kuhn.

- Bardoe-Sin (2000) determined the kG-submodule structure of k[V] and k^P.
- Multiplicity-free modules, submodule lattice is lattice of ideals in some partial ordering on the set of composition factors.
- Earlier work on related groups and modules by Delsarte, Doty, Hirschfeld, Kovacs, Krop, Kuhn.

- Let *H* denote the set of *t*-tuples (s₀,..., s_{t-1}) of integers satisfying (for *j* = 0,..., *t* − 1)
- 1. $1 \le s_j \le n$; 2. $0 \le ps_{j+1} - s_j \le (p-1)(n+1)$. (Subcripts mod *t*.) • Let \mathcal{H} be partially ordered in the natural way:
 - $(s'_0, \ldots, s'_{t-1}) \leq (s_0, \ldots, s_{t-1})$ if and only if $s'_j \leq s_j$ for all j.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Let *H* denote the set of *t*-tuples (s₀,..., s_{t-1}) of integers satisfying (for *j* = 0,..., *t* − 1)
 - 1. $1 \le s_j \le n;$

2. $0 \le ps_{j+1} - s_j \le (p-1)(n+1)$. (Subcripts mod *t*.)

▶ Let \mathcal{H} be partially ordered in the natural way: $(s'_0, \dots, s'_{t-1}) \leq (s_0, \dots, s_{t-1})$ if and only if $s'_j \leq s_j$ for all j.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Let *H* denote the set of *t*-tuples (s₀,..., s_{t-1}) of integers satisfying (for *j* = 0,..., *t* − 1)
 - 1. $1 \le s_j \le n$;
 - 2. $0 \le ps_{j+1} s_j \le (p-1)(n+1)$. (Subcripts mod *t*.)
- ▶ Let \mathcal{H} be partially ordered in the natural way: $(s'_0, \ldots, s'_{t-1}) \leq (s_0, \ldots, s_{t-1})$ if and only if $s'_j \leq s_j$ for all j.

Let *H* denote the set of *t*-tuples (s₀,..., s_{t-1}) of integers satisfying (for *j* = 0,..., *t* − 1)

1.
$$1 \le s_j \le n;$$

2.
$$0 \le p s_{j+1} - s_j \le (p-1)(n+1)$$
. (Subcripts mod *t*.)

► Let \mathcal{H} be partially ordered in the natural way: $(s'_0, \dots, s'_{t-1}) \leq (s_0, \dots, s_{t-1})$ if and only if $s'_j \leq s_j$ for all j.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem

- (a) The module k^P is multiplicity free and has composition factors L(s₀,..., s_{t-1}) parametrized by the set H ∪ {(0,...,0)}.
- (b) For $(s_0, \ldots, s_{t-1}) \in \mathcal{H}$, let $\lambda_j = ps_{j+1} s_j$. Then the simple kG-module $L(s_0, \ldots, s_{t-1})$ is isomorphic to the twisted tensor product

$$\bigotimes_{j=0}^{t-1} (\overline{S}^{\lambda_j})^{(p^j)},$$

where \overline{S}^{λ} denotes the component of degree λ in the truncated polynomial ring $\overline{S} = k[X_0, \ldots, X_n]/(X_i^p)_{i=0}^n$ and the superscripts (p^i) indicate twisting by powers of the Frobenius map.

Theorem (Cont'd)

- (c) For each submodule M of Y_P , let $\mathcal{H}_M \subseteq \mathcal{H}$ be the set of its composition factors. Then \mathcal{H}_M is an ideal of the partially ordered set (\mathcal{H}, \leq) , i.e if $(s_0, \ldots, s_{t-1}) \in \mathcal{H}_M$ and $(s'_0, \ldots, s'_{t-1}) \leq (s_0, \ldots, s_{t-1})$, then $(s'_0, \ldots, s'_{t-1}) \in \mathcal{H}_M$.
- (d) The mapping M → H_M defines a lattice isomorphism between the submodule lattice of Y_P and the lattice of ideals, ordered by inclusion, of the partially ordered set (H, ≤)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Stabilization of module structure

- Condition (2) in the definition of *H* is automatically satisfied when *t* = 1, (i.e. *q* = *p*) or when *p* ≥ *n*.
- Thus, in both of these cases, the submodule lattice of Y_P is isomorphic to the lattice of ideals in the *t*-fold product of the integer interval [1, n].

- ▶ In particular, it does not depend on *p*.
- When t = 1 the submodules of k^P are well in coding theory, as generalizations of the Reed-Muller codes.

- Condition (2) in the definition of *H* is automatically satisfied when *t* = 1, (i.e. *q* = *p*) or when *p* ≥ *n*.
- Thus, in both of these cases, the submodule lattice of Y_P is isomorphic to the lattice of ideals in the *t*-fold product of the integer interval [1, n].

- ▶ In particular, it does not depend on *p*.
- When t = 1 the submodules of k^P are well in coding theory, as generalizations of the Reed-Muller codes.

- Condition (2) in the definition of *H* is automatically satisfied when *t* = 1, (i.e. *q* = *p*) or when *p* ≥ *n*.
- Thus, in both of these cases, the submodule lattice of Y_P is isomorphic to the lattice of ideals in the *t*-fold product of the integer interval [1, n].

- In particular, it does not depend on p.
- When t = 1 the submodules of k^P are well in coding theory, as generalizations of the Reed-Muller codes.

- Condition (2) in the definition of *H* is automatically satisfied when *t* = 1, (i.e. *q* = *p*) or when *p* ≥ *n*.
- Thus, in both of these cases, the submodule lattice of Y_P is isomorphic to the lattice of ideals in the *t*-fold product of the integer interval [1, n].

- ▶ In particular, it does not depend on *p*.
- When t = 1 the submodules of k^P are well in coding theory, as generalizations of the Reed-Muller codes.

To apply the theorem, we need to be able to read off the submodule generated by a given element.

- ▶ k^P has a monomial basis, each monomial defines an element of $\mathcal{H} \cup \{(0, ..., 0)\}$.
- For f ∈ k^P, let H_f ⊆ H ∪ {(0,...,0)} denote the set of tuples of the basis monomials appearing with nonzero coefficients in the the expression for f.

Theorem

The kG-submodule of k^P generated by f is the smallest submodule having all the $L(s_0, \ldots, s_{t-1})$ for $(s_0, \ldots, s_{t-1}) \in H_f$ as composition factors.

- To apply the theorem, we need to be able to read off the submodule generated by a given element.
- *k^P* has a monomial basis, each monomial defines an element of *H* ∪ {(0,...,0)}.
- For f ∈ k^P, let H_f ⊆ H ∪ {(0,...,0)} denote the set of tuples of the basis monomials appearing with nonzero coefficients in the the expression for f.

Theorem

The kG-submodule of k^P generated by f is the smallest submodule having all the $L(s_0, \ldots, s_{t-1})$ for $(s_0, \ldots, s_{t-1}) \in \mathcal{H}_f$ as composition factors.

- To apply the theorem, we need to be able to read off the submodule generated by a given element.
- *k^P* has a monomial basis, each monomial defines an element of *H* ∪ {(0,...,0)}.
- For *f* ∈ *k*^P, let H_f ⊆ H ∪ {(0,...,0)} denote the set of tuples of the basis monomials appearing with nonzero coefficients in the the expression for *f*.

Theorem

The kG-submodule of k^P generated by f is the smallest submodule having all the $L(s_0, \ldots, s_{t-1})$ for $(s_0, \ldots, s_{t-1}) \in \mathcal{H}_f$ as composition factors.

- To apply the theorem, we need to be able to read off the submodule generated by a given element.
- *k^P* has a monomial basis, each monomial defines an element of *H* ∪ {(0,...,0)}.
- For *f* ∈ *k*^P, let H_f ⊆ H ∪ {(0,...,0)} denote the set of tuples of the basis monomials appearing with nonzero coefficients in the the expression for *f*.

Theorem

The kG-submodule of k^P generated by f is the smallest submodule having all the $L(s_0, \ldots, s_{t-1})$ for $(s_0, \ldots, s_{t-1}) \in \mathcal{H}_f$ as composition factors.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Hamada's Formula

C_r ⊆ k^P, subspace spanned by the *r*-dimensional subspaces of *P*.

C_r is equal to kG_{XL}, where L is defined by the equations X_i = 0, i = r + 1..., n. Its characteristic function can be written as

$$\chi_L = \prod_{i=r+1}^n (1 - x_i^{q-1}) = \sum_{I \subseteq \{r+1, \dots, n\}} (-1)^{|I|} x_I^{q-1}.$$

For $I \neq \emptyset$ the monomial x_i^{q-1} has \mathcal{H} -tuple (|I|, ..., |I|), which lies below the \mathcal{H} -tuple (n - r, ..., n - r) of $\prod_{i=r+1}^{n} x_i^{q-1}$.

Hamada's Formula

- C_r ⊆ k^P, subspace spanned by the *r*-dimensional subspaces of *P*.
- C_r is equal to kG_{χL}, where L is defined by the equations X_i = 0, i = r + 1..., n. Its characteristic function can be written as

$$\chi_L = \prod_{i=r+1}^n (1 - x_i^{q-1}) = \sum_{I \subseteq \{r+1, \dots, n\}} (-1)^{|I|} x_I^{q-1}.$$

For $I \neq \emptyset$ the monomial x_I^{q-1} has \mathcal{H} -tuple (|I|, ..., |I|), which lies below the \mathcal{H} -tuple (n - r, ..., n - r) of $\prod_{i=r+1}^{n} x_i^{q-1}$.

Hamada's Formula

$$\dim C_r = 1 + \sum_{(s_0, \dots, s_{t-1})} \prod_{j=0}^{t-1} \sum_{i=0}^{\lfloor \frac{ps_{j+1}-s_j}{p} \rfloor} (-1)^i \binom{n+1}{i} \binom{n+ps_{j+1}-s_j-ip}{n}$$

summed over $(s_0, \ldots, s_{t-1}) \in \mathcal{H}$ with $1 \leq s_j \leq n-r$.

Inamdar-Sastry (2001) gave an alternative proof that C_r is spanned by monomials, hence of Hamada's formula.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hamada's Formula

$$\dim C_r = 1 + \sum_{(s_0, \dots, s_{t-1})} \prod_{j=0}^{t-1} \sum_{i=0}^{\lfloor \frac{ps_{j+1}-s_j}{p} \rfloor} (-1)^i \binom{n+1}{i} \binom{n+ps_{j+1}-s_j-ip}{n}.$$

summed over $(s_0, \ldots, s_{t-1}) \in \mathcal{H}$ with $1 \leq s_j \leq n-r$.

Inamdar-Sastry (2001) gave an alternative proof that Cr is spanned by monomials, hence of Hamada's formula.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Corollary

- *f* ∈ *k*^P belongs to C_r[⊥] iff every monomial that occurs in f belongs to C_r[⊥].
- 2. C_r^{\perp} has a basis of monomials of type (s_0, \ldots, s_t) such that $s_j < r$ for some r.

Delsarte (1970). Glynn-Hirschfield call this the "main theorem on geometric codes"

$$k[V(q)] = \bigoplus_{[d] \in \mathbb{Z}/(q-1)\mathbb{Z}} A[d],$$

where A[d] is the span of the images of monomials of degree congruent to $d \mod q - 1$.

$$\blacktriangleright A[0] \cong k \oplus k^P.$$

- Similar methods give structure of A[d] for $[d] \neq [0]$.
- Write $d = d_0 + d_1 p + \dots + d_{t-1} p^{t-1}$, $(0 \le d_j \le p 1)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$k[V(q)] = \bigoplus_{[d] \in \mathbb{Z}/(q-1)\mathbb{Z}} A[d],$$

where A[d] is the span of the images of monomials of degree congruent to $d \mod q - 1$.

►
$$A[0] \cong k \oplus k^P$$
.

- Similar methods give structure of A[d] for $[d] \neq [0]$.
- Write $d = d_0 + d_1 p + \dots + d_{t-1} p^{t-1}$, $(0 \le d_j \le p 1)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$k[V(q)] = \bigoplus_{[d] \in \mathbb{Z}/(q-1)\mathbb{Z}} A[d],$$

where A[d] is the span of the images of monomials of degree congruent to $d \mod q - 1$.

►
$$A[0] \cong k \oplus k^P$$
.

- Similar methods give structure of A[d] for $[d] \neq [0]$.
- Write $d = d_0 + d_1 p + \dots + d_{t-1} p^{t-1}$, $(0 \le d_j \le p 1)$.

$$k[V(q)] = \bigoplus_{[d] \in \mathbb{Z}/(q-1)\mathbb{Z}} A[d],$$

where A[d] is the span of the images of monomials of degree congruent to $d \mod q - 1$.

►
$$A[0] \cong k \oplus k^P$$
.

- Similar methods give structure of A[d] for $[d] \neq [0]$.
- Write $d = d_0 + d_1 p + \dots + d_{t-1} p^{t-1}$, $(0 \le d_j \le p 1)$.

Let $\mathcal{H}[d]$ denote the set of *t*-tuples (r_0, \ldots, r_{t-1}) of integers satisfying (for $j = 0, \ldots, t-1$)

1. $0 \le r_j \le n$; 2. $0 \le d_j + pr_{j+1} - r_j \le (p-1)(n+1)$. (Subcripts mod *t*.) Let $\mathcal{H}[d]$ be partially ordered in the natural way: $(r'_0, \ldots, r'_{t-1}) \le (r_0, \ldots, r_{t-1})$ if and only if $r'_j \le r_j$ for all *j*.

Theorem

- (a) The module A[d] is multiplicity free and has composition factors $L[d](r_0, ..., r_{t-1})$ parametrized by the set $\mathcal{H}[d]$.
- (b) For $(r_0, \ldots, r_{t-1}) \in \mathcal{H}[d]$, let $\lambda_j = d_j + pr_{j+1} r_j$. Then the simple kG-module $L[d](r_0, \ldots, r_{t-1})$ is isomorphic to the twisted tensor product

- (c) For each submodule M of A[d], let $\mathcal{H}[d]_M \subseteq \mathcal{H}[d]$ be the set of its composition factors. Then $\mathcal{H}[d]_M$ is an ideal of the partially ordered set $(\mathcal{H}[d], \leq)$.
- (d) The mapping M → H[d]_M defines a lattice isomorphism between the submodule lattice of A[d] and the lattice of ideals, ordered by inclusion, of the partially ordered set (H[d], ≤)

- $S^d \subseteq k[X_0, \ldots, X_n]$, the space of homogeneous polynomials of degree *d*.
- ▶ View as module for the algebraic group GL(n + 1, k).
- When d < q − 1 the map S^d → A[d] is an embedding of kG-modules with image F₀[d]. Thus, S^d corresponds to the ideal

$$\mathcal{H}[d]_{S^d} = \{(r_0, \dots, r_{t-1}) \in \mathcal{H}[d] \mid r_0 = 0\}.$$

This gives the submodule structure of S^d as a module for $G = GL(n+1, p^t)$.

Fix *d* and replace *p^t* by a higher power *p^N*. Let *A*[*d*](*N*), *H*[*d*](*N*), etc. denote the corresponding objects for *G*(*N*) = GL(*n* + 1, *p^N*). Then

$$\mathcal{H}[d](N)_{S^d} = \{(r_0, \dots, r_{N-1}) \in \mathcal{H}[d](N) \mid r_0 = 0\}.$$

- S^d ⊆ k[X₀,...,X_n], the space of homogeneous polynomials of degree d.
- ▶ View as module for the algebraic group GL(n + 1, k).
- When d < q − 1 the map S^d → A[d] is an embedding of kG-modules with image F₀[d]. Thus, S^d corresponds to the ideal

$$\mathcal{H}[d]_{S^d} = \{(r_0, \dots, r_{t-1}) \in \mathcal{H}[d] \mid r_0 = 0\}.$$

This gives the submodule structure of S^d as a module for $G = GL(n+1, p^t)$.

Fix *d* and replace *p^t* by a higher power *p^N*. Let *A*[*d*](*N*), *H*[*d*](*N*), etc. denote the corresponding objects for *G*(*N*) = GL(*n* + 1, *p^N*). Then

$$\mathcal{H}[d](N)_{S^d} = \{(r_0, \dots, r_{N-1}) \in \mathcal{H}[d](N) \mid r_0 = 0\}.$$

- S^d ⊆ k[X₀,...,X_n], the space of homogeneous polynomials of degree d.
- ▶ View as module for the algebraic group GL(n + 1, k).
- When d < q − 1 the map S^d → A[d] is an embedding of kG-modules with image F₀[d]. Thus, S^d corresponds to the ideal

$$\mathcal{H}[d]_{S^d} = \{(r_0, \dots, r_{t-1}) \in \mathcal{H}[d] \mid r_0 = 0\}.$$

This gives the submodule structure of S^d as a module for $G = GL(n + 1, p^t)$.

Fix *d* and replace *p^t* by a higher power *p^N*. Let *A*[*d*](*N*), *H*[*d*](*N*), etc. denote the corresponding objects for *G*(*N*) = GL(*n* + 1, *p^N*). Then

$$\mathcal{H}[d](N)_{S^d} = \{(r_0, \dots, r_{N-1}) \in \mathcal{H}[d](N) \mid r_0 = 0\}.$$

- S^d ⊆ k[X₀,...,X_n], the space of homogeneous polynomials of degree d.
- ▶ View as module for the algebraic group GL(n + 1, k).
- When d < q − 1 the map S^d → A[d] is an embedding of kG-modules with image F₀[d]. Thus, S^d corresponds to the ideal

$$\mathcal{H}[d]_{S^d} = \{(r_0, \ldots, r_{t-1}) \in \mathcal{H}[d] \mid r_0 = 0\}.$$

This gives the submodule structure of S^d as a module for $G = GL(n + 1, p^t)$.

Fix *d* and replace *p^t* by a higher power *p^N*. Let *A*[*d*](*N*), *H*[*d*](*N*), etc. denote the corresponding objects for *G*(*N*) = GL(*n* + 1, *p^N*). Then

$$\mathcal{H}[d](N)_{S^d} = \{(r_0, \dots, r_{N-1}) \in \mathcal{H}[d](N) \mid r_0 = 0\}.$$

▶ The *p*-adic expression for *d* is unchanged, so that we have $d_j = 0$ for $t \le j \le N - 1$. Let $(r_0, ..., r_{N-1}) \in \mathcal{H}[d](N)_{S^d}$. Then from the definitions we have $0 \le d_{N-1} + pr_0 - r_{N-1} = -r_{N-1}$, which forces $r_{N-1} = 0$. Repeating this, we obtain $r_j = 0$ for $t \le j \le N - 1$. Moreover, the conditions on the entries r_j for $0 \le j \le t - 1$ are exactly the conditions for the *t*-tuple $(r_0, ..., r_{t-1})$ to belong to $\mathcal{H}[d]_{S^d}$.

Theorem

The submodule lattice of S^d is the same for all of the groups $GL(n+1, p^t)$ for $p^t - 1 > d$. Consequently, it is also the same for the algebraic group GL(n+1, k). This lattice is isomorphic to the lattice of ideals in the partially ordered set $\mathcal{H}[d]_{S^d}$

▶ The *p*-adic expression for *d* is unchanged, so that we have $d_j = 0$ for $t \le j \le N - 1$. Let $(r_0, ..., r_{N-1}) \in \mathcal{H}[d](N)_{S^d}$. Then from the definitions we have $0 \le d_{N-1} + pr_0 - r_{N-1} = -r_{N-1}$, which forces $r_{N-1} = 0$. Repeating this, we obtain $r_j = 0$ for $t \le j \le N - 1$. Moreover, the conditions on the entries r_j for $0 \le j \le t - 1$ are exactly the conditions for the *t*-tuple $(r_0, ..., r_{t-1})$ to belong to $\mathcal{H}[d]_{S^d}$.

Theorem

The submodule lattice of S^d is the same for all of the groups $GL(n+1, p^t)$ for $p^t - 1 > d$. Consequently, it is also the same for the algebraic group GL(n+1, k). This lattice is isomorphic to the lattice of ideals in the partially ordered set $\mathcal{H}[d]_{S^d}$

Incidence matrices, permutation modules

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

For 1 ≤ d, e ≤ n + 1, let A(d, e) be the incidence matrix for d-subspaces versus e-subspaces, with incidence being nonzero intersection.

Theorem

The p-rank of A(d, e) is given by the formula

$$\operatorname{rank}_{p} A(d, e) = 1 + \sum_{\substack{\mathbf{s} \in \mathcal{H} \\ (\underline{e}) \le \mathbf{s} \le (\underline{n-d+1})}} \prod_{j=0}^{t-1} m(n+1, ps_{j+1} - s_j, p-1)$$

- When d = 1 this is Hamada's formula.
- ▶ If $\mathbf{s} = (s_0, ..., s_{t-1})$ satisfies $e \le s_j \le n d + 1$ for all *j* but does not belong to \mathcal{H} then there is some *j'* for which $m(n+1, ps_{j'+1} s_{j'}, p-1) = 0$. So we can sum over all tuples \mathbf{s} with $e \le s_j \le n d + 1$ instead of just those belonging to \mathcal{H} .

For 1 ≤ d, e ≤ n + 1, let A(d, e) be the incidence matrix for d-subspaces versus e-subspaces, with incidence being nonzero intersection.

Theorem

The p-rank of A(d, e) is given by the formula

$$\operatorname{rank}_{p} A(d, e) = 1 + \sum_{\substack{\mathbf{s} \in \mathcal{H} \\ (\underline{e}) \le \mathbf{s} \le (\underline{n-d+1})}} \prod_{j=0}^{t-1} m(n+1, ps_{j+1} - s_j, p-1)$$

- When d = 1 this is Hamada's formula.
- ▶ If $\mathbf{s} = (s_0, ..., s_{t-1})$ satisfies $e \le s_j \le n d + 1$ for all *j* but does not belong to \mathcal{H} then there is some *j'* for which $m(n+1, ps_{j'+1} s_{j'}, p-1) = 0$. So we can sum over all tuples \mathbf{s} with $e \le s_j \le n d + 1$ instead of just those belonging to \mathcal{H} .

For 1 ≤ d, e ≤ n + 1, let A(d, e) be the incidence matrix for d-subspaces versus e-subspaces, with incidence being nonzero intersection.

Theorem

The p-rank of A(d, e) is given by the formula

$$\operatorname{rank}_{p} A(d, e) = 1 + \sum_{\substack{\mathbf{s} \in \mathcal{H} \\ (\underline{e}) \le \mathbf{s} \le (\underline{n-d+1})}} \prod_{j=0}^{t-1} m(n+1, ps_{j+1} - s_j, p-1)$$

• When d = 1 this is Hamada's formula.

If s = (s₀,..., s_{t-1}) satisfies e ≤ s_j ≤ n − d + 1 for all j but does not belong to H then there is some j' for which m(n + 1, ps_{j'+1} − s_{j'}, p − 1) = 0. So we can sum over all tuples s with e ≤ s_j ≤ n − d + 1 instead of just those belonging to H.

For 1 ≤ d, e ≤ n + 1, let A(d, e) be the incidence matrix for d-subspaces versus e-subspaces, with incidence being nonzero intersection.

Theorem

The p-rank of A(d, e) is given by the formula

$$\operatorname{rank}_{p} A(d, e) = 1 + \sum_{\substack{\mathbf{s} \in \mathcal{H} \\ (\underline{e}) \le \mathbf{s} \le (\underline{n-d+1})}} \prod_{j=0}^{t-1} m(n+1, ps_{j+1} - s_j, p-1)$$

- When d = 1 this is Hamada's formula.
- If s = (s₀,..., s_{t-1}) satisfies e ≤ s_j ≤ n − d + 1 for all j but does not belong to H then there is some j' for which m(n + 1, ps_{j'+1} − s_{j'}, p − 1) = 0. So we can sum over all tuples s with e ≤ s_j ≤ n − d + 1 instead of just those belonging to H.

Generating function formulation

Eric Moorhouse gave a generating function formulation.

▶ Let D = D(n, p, d, e) be the matrix with rows and columns indexed by $\{e, e + 1, ..., n - d + 1\}$ given by $D_{s,s'} = m(n+1, ps' - s, p - 1)$. Then rank formula can be rewritten as

$$\operatorname{rank}_{\rho} A(d, e) = 1 + \operatorname{trace} D^{t}$$
$$= 1 + (\operatorname{coefficient} \text{ of } x^{t} \text{ in } \operatorname{trace}[(I - xD)^{-1}])$$

Study of A(d, e) (partially) motivated by partial m-systems (Shult-Thas).

Generating function formulation

- Eric Moorhouse gave a generating function formulation.
- Let D = D(n, p, d, e) be the matrix with rows and columns indexed by {e, e + 1, ..., n − d + 1} given by D_{s,s'} = m(n + 1, ps' − s, p − 1). Then rank formula can be rewritten as

$$\operatorname{rank}_{\rho} A(d, e) = 1 + \operatorname{trace} D^{t}$$
$$= 1 + (\operatorname{coefficient} of x^{t} \text{ in } \operatorname{trace}[(I - xD)^{-1}])$$

Study of A(d, e) (partially) motivated by partial m-systems (Shult-Thas).

Generating function formulation

- Eric Moorhouse gave a generating function formulation.
- Let D = D(n, p, d, e) be the matrix with rows and columns indexed by {e, e + 1, ..., n − d + 1} given by D_{s,s'} = m(n + 1, ps' − s, p − 1). Then rank formula can be rewritten as

$$\operatorname{rank}_{\rho} A(d, e) = 1 + \operatorname{trace} D^{t}$$
$$= 1 + (\operatorname{coefficient} of x^{t} \text{ in } \operatorname{trace}[(I - xD)^{-1}])$$

Study of A(d, e) (partially) motivated by partial m-systems (Shult-Thas).

Incidence matrices, permutation modules

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

GL(V) acting on points and vectors

Nonzero intersection

Affine group action

► Consider *k*[*V*(*q*)] as a module for the Affine group.

- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- ▶ Radical series is the same for all groups *G* with $V \subset G \subset AGL(V)$.

- Consider k[V(q)] as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- ▶ Radical series is the same for all groups *G* with $V \subset G \subset AGL(V)$.

- Consider k[V(q)] as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.

- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- ▶ Radical series is the same for all groups *G* with $V \subset G \subset AGL(V)$.

- Consider k[V(q)] as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- ▶ Radical series is the same for all groups *G* with $V \subset G \subset AGL(V)$.

- Consider k[V(q)] as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- ▶ Radical series is the same for all groups *G* with $V \subset G \subset AGL(V)$.

- Consider k[V(q)] as a module for the Affine group.
- Studied early on by coding theorists Kasami-Peterson-Lin (1968), Delsarte (1970), Charpin (1982).
- Sin (2012) representation-theoretic, AGL(V)-submodule structure.

(ロ) (同) (三) (三) (三) (○) (○)

- Doubly transitive permutation modules.
- Composition factors are same as for GL(V)
- ▶ Radical series is the same for all groups *G* with $V \subset G \subset AGL(V)$.