Permutation modules and p-ranks of Incidence Matrices Part 2: Spaces with forms

Peter Sin

University of Florida

Groups and Geometries, ISI Bangalore, December 2012

Outline

Symplectic groups in odd characteristic

Symplectic groups in characteristic 2

Other groups, hyperplane incidences

- G finite classical group (symplectic, orthogonal, unitary).
- P the set of singular points of the standard module V
- k, algebraically closed field of (defining) characteristic p.
- We consider the permutation module k^{P}.
- Main difficulty is that for orthogonal an unitary groups, P is a proper subset of $\mathbf{P}(V)$.
- G finite classical group (symplectic, orthogonal, unitary).
- P the set of singular points of the standard module V
- k, algebraically closed field of (defining) characteristic p.
- We consider the permutation module k^{P}.
- Main difficulty is that for orthogonal an unitary groups, P is a proper subset of $\mathrm{P}(\mathrm{V})$.
- G finite classical group (symplectic, orthogonal, unitary).
- P the set of singular points of the standard module V
- k, algebraically closed field of (defining) characteristic p.
- We consider the permutation module k^{P}.
- Main difficulty is that for orthogonal an unitary groups, P is a proper subset of $\mathbf{P}(V)$.
- G finite classical group (symplectic, orthogonal, unitary).
- P the set of singular points of the standard module V
- k, algebraically closed field of (defining) characteristic p.
- We consider the permutation module k^{P}.
- Main difficulty is that for orthogonal an unitary groups, P is a proper subset of $\mathbf{P}(V)$.
- G finite classical group (symplectic, orthogonal, unitary).
- P the set of singular points of the standard module V
- k, algebraically closed field of (defining) characteristic p.
- We consider the permutation module k^{P}.
- Main difficulty is that for orthogonal an unitary groups, P is a proper subset of $\mathbf{P}(V)$.

Outline

Symplectic groups in odd characteristic

Symplectic groups in characteristic 2

Other groups, hyperplane incidences

$\operatorname{Sp}(2 m, q), q=p^{t}$ odd

- We consider the submodule structures of $k[V], A[d]$, and Y_{P}, under the action of $\operatorname{Sp}(V)$.
> $S^{\lambda}:=$ truncated symmetric power (prev. \bar{S}^{λ}) with $0 \leq \lambda_{j} \leq 2 m(p-1)$.
- S^{λ} remain simple except when $\lambda=m(p-1)$, in which case we have
- S^{+}and S^{-}are simple $k \operatorname{Sp}(V)$-modules,

$\operatorname{Sp}(2 m, q), q=p^{t}$ odd

- We consider the submodule structures of $k[V], A[d]$, and Y_{P}, under the action of $\operatorname{Sp}(V)$.
- $S^{\lambda}:=$ truncated symmetric power (prev. \bar{S}^{λ}) with $0 \leq \lambda_{j} \leq 2 m(p-1)$.
- S^{λ} remain simple except when $\lambda=m(p-1)$, in which case we have
- S^{+}and S^{-}are simple $k \operatorname{Sp}(V)$-modules,

$\operatorname{Sp}(2 m, q), q=p^{t}$ odd

- We consider the submodule structures of $k[V], A[d]$, and Y_{P}, under the action of $\operatorname{Sp}(V)$.
- $S^{\lambda}:=$ truncated symmetric power (prev. \bar{S}^{λ}) with $0 \leq \lambda_{j} \leq 2 m(p-1)$.
- S^{λ} remain simple except when $\lambda=m(p-1)$, in which case we have

$$
S^{m(p-1)}=S^{+} \oplus S^{-}
$$

- S^{+}and S^{-}are simple $k S p(V)$-modules,
$\operatorname{dim}\left(S^{+}\right)=\left(d_{(p-1) m}+p^{m}\right) / 2$,

$\operatorname{Sp}(2 m, q), q=p^{t}$ odd

- We consider the submodule structures of $k[V], A[d]$, and Y_{P}, under the action of $\operatorname{Sp}(V)$.
- S^{λ} :=truncated symmetric power (prev. \bar{S}^{λ}) with $0 \leq \lambda_{j} \leq 2 m(p-1)$.
- S^{λ} remain simple except when $\lambda=m(p-1)$, in which case we have

$$
S^{m(p-1)}=S^{+} \oplus S^{-}
$$

- S^{+}and S^{-}are simple $k \operatorname{Sp}(V)$-modules, $\operatorname{dim}\left(S^{+}\right)=\left(d_{(p-1) m}+p^{m}\right) / 2, \quad \operatorname{dim}\left(S^{-}\right)=\left(d_{(p-1) m}-p^{m}\right) / 2$.

The modules S^{+}and S^{-}.

- (Wong, Lahtohnen (1990))
- Use multi-index notation $X^{\alpha} Y^{\beta}$ for monomials in symplectic coords $X_{i}, Y_{i}, 0 \leq i \leq m$.
- For any multi-index $\boldsymbol{\beta}$, we define

- Denote monomials in the quotient module $S^{m(p-1)}$ using bars. The map
is a $k \operatorname{Sp}(V)$-homomorphism with $\tau^{2}=1 . S^{+}$and S^{-}are the eigenspaces.

The modules S^{+}and S^{-}.

- (Wong, Lahtohnen (1990))
- Use multi-index notation $X^{\alpha} Y^{\beta}$ for monomials in symplectic coords $X_{i}, Y_{i}, 0 \leq i \leq m$.
- For any multi-index β, we define

- Denote monomials in the quotient module $S^{m(p-1)}$ using bars. The map
is a $k \operatorname{Sp}(V)$-homomorphism with $\tau^{2}=1 . S^{+}$and S^{-}are the eigenspaces.

The modules S^{+}and S^{-}.

- (Wong, Lahtohnen (1990))
- Use multi-index notation $X^{\alpha} Y^{\beta}$ for monomials in symplectic coords $X_{i}, Y_{i}, 0 \leq i \leq m$.
- For any multi-index $\boldsymbol{\beta}$, we define

$$
\begin{aligned}
& |\boldsymbol{\beta}|=\sum_{i=1}^{m} b_{i}, \boldsymbol{\beta}!=\prod_{i=1}^{m} b_{i}!, \text { and } \\
& \overline{\boldsymbol{\beta}}=\left(p-1-b_{1}, \ldots, p-1-b_{m}\right) .
\end{aligned}
$$

- Denote monomials in the quotient module $S^{m(p-1)}$ using bars. The map
is a $k \operatorname{Sp}(V)$-homomorphism with $\tau^{2}=1 . S^{+}$and S^{-}are the eigenspaces.

The modules S^{+}and S^{-}.

- (Wong, Lahtohnen (1990))
- Use multi-index notation $X^{\alpha} Y^{\beta}$ for monomials in symplectic coords $X_{i}, Y_{i}, 0 \leq i \leq m$.
- For any multi-index $\boldsymbol{\beta}$, we define

$$
\begin{aligned}
& |\boldsymbol{\beta}|=\sum_{i=1}^{m} b_{i}, \boldsymbol{\beta}!=\prod_{i=1}^{m} b_{i}!, \text { and } \\
& \overline{\boldsymbol{\beta}}=\left(p-1-b_{1}, \ldots, p-1-b_{m}\right) .
\end{aligned}
$$

- Denote monomials in the quotient module $S^{m(p-1)}$ using bars. The map

$$
\tau: S^{m(p-1)} \rightarrow S^{m(p-1)}, \quad \bar{X}^{\alpha} \bar{Y}^{\boldsymbol{\beta}} \mapsto(-1)^{|\boldsymbol{\beta}|} \boldsymbol{\alpha}!\boldsymbol{\beta}!\bar{X}^{\bar{\beta}} \bar{Y}^{\bar{\alpha}}
$$

is a $k \operatorname{Sp}(V)$-homomorphism with $\tau^{2}=1 . S^{+}$and S^{-}are the eigenspaces.

Submodules of k^{P} for $\operatorname{Sp}(2 m, q)$

- (Chandler-Sin Xiang, 2007)
- Construct a special basis of $k[\mathrm{~V}]$, of symplectic basis functions.
- Describe the submodule structure of the $k G$-submodule of $k[V]$ and k^{P} generated by an arbitrary symplectic basis function.
- Describe the part of the submodule lattice of $k[V]$ and k^{P} involving the above submodules.
- This includes images of incidence maps $\eta_{r}: k^{\mathcal{I}_{r}} \rightarrow k^{P}$, where \mathcal{I}_{r} is the set of totally isotropic r-subspaces.
- Symplectic analogue of Hamada's p-rank formula,
- When $m=2$, get a closed formula for the p-rank of the symplectic GQ.

Submodules of k^{P} for $\operatorname{Sp}(2 m, q)$

- (Chandler-Sin Xiang, 2007)
- Construct a special basis of $k[V]$, of symplectic basis functions.
- Describe the submodule structure of the $k G$-submodule of $k[V]$ and k^{P} generated by an arbitrary symplectic basis function.
- Describe the part of the submodule lattice of $k[V]$ and k^{P} involving the above submodules.
- This includes images of incidence maps $\eta_{r}: k^{I_{r}} \rightarrow k^{P}$, where \mathcal{I}_{r} is the set of totally isotropic r-subspaces.
- Symplectic analogue of Hamada's p-rank formula,
- When $m=2$, get a closed formula for the p-rank of the symplectic GQ.

Submodules of k^{P} for $\operatorname{Sp}(2 m, q)$

- (Chandler-Sin Xiang, 2007)
- Construct a special basis of $k[V]$, of symplectic basis functions.
- Describe the submodule structure of the $k G$-submodule of $k[V]$ and k^{P} generated by an arbitrary symplectic basis function.
- Describe the part of the submodule lattice of $k[V]$ and k^{P} involving the above submodules.
- This includes images of incidence maps $\eta_{r}: k^{T_{r}} \rightarrow k^{P}$, where \mathcal{I}_{r} is the set of totally isotropic r-subspaces.
- Symplectic analogue of Hamada's p-rank formula,
- When $m=2$, get a closed formula for the p-rank of the symplectic GQ.

Submodules of k^{P} for $\operatorname{Sp}(2 m, q)$

- (Chandler-Sin Xiang, 2007)
- Construct a special basis of $k[V]$, of symplectic basis functions.
- Describe the submodule structure of the $k G$-submodule of $k[V]$ and k^{P} generated by an arbitrary symplectic basis function.
- Describe the part of the submodule lattice of $k[V]$ and k^{P} involving the above submodules.
\Rightarrow This includes images of incidence maps $\eta_{r}: k^{I_{r}} \rightarrow k^{P}$, where \mathcal{I}_{r} is the set of totally isotropic r-subspaces.
- Symplectic analogue of Hamada's p-rank formula,
- When $m=2$, get a closed formula for the p-rank of the symplectic GQ.

Submodules of k^{P} for $\operatorname{Sp}(2 m, q)$

- (Chandler-Sin Xiang, 2007)
- Construct a special basis of $k[V]$, of symplectic basis functions.
- Describe the submodule structure of the $k G$-submodule of $k[V]$ and k^{P} generated by an arbitrary symplectic basis function.
- Describe the part of the submodule lattice of $k[V]$ and k^{P} involving the above submodules.
- This includes images of incidence maps $\eta_{r}: k^{\mathcal{I}_{r}} \rightarrow k^{P}$, where \mathcal{I}_{r} is the set of totally isotropic r-subspaces.
- When $m=2$, get a closed formula for the p-rank of the symplectic GQ.

Submodules of k^{P} for $\operatorname{Sp}(2 m, q)$

- (Chandler-Sin Xiang, 2007)
- Construct a special basis of $k[V]$, of symplectic basis functions.
- Describe the submodule structure of the $k G$-submodule of $k[V]$ and k^{P} generated by an arbitrary symplectic basis function.
- Describe the part of the submodule lattice of $k[V]$ and k^{P} involving the above submodules.
- This includes images of incidence maps $\eta_{r}: k^{\mathcal{I}_{r}} \rightarrow k^{P}$, where \mathcal{I}_{r} is the set of totally isotropic r-subspaces.
- Symplectic analogue of Hamada's p-rank formula,

Submodules of k^{P} for $\operatorname{Sp}(2 m, q)$

- (Chandler-Sin Xiang, 2007)
- Construct a special basis of $k[V]$, of symplectic basis functions.
- Describe the submodule structure of the $k G$-submodule of $k[V]$ and k^{P} generated by an arbitrary symplectic basis function.
- Describe the part of the submodule lattice of $k[V]$ and k^{P} involving the above submodules.
- This includes images of incidence maps $\eta_{r}: k^{\mathcal{I}_{r}} \rightarrow k^{P}$, where \mathcal{I}_{r} is the set of totally isotropic r-subspaces.
- Symplectic analogue of Hamada's p-rank formula,
- When $m=2$, get a closed formula for the p-rank of the symplectic GQ.

Basis of special functions

- S^{+}and S^{-}have bases consisting of images of monomials:

$$
x^{\alpha} y^{\bar{\alpha}}
$$

and sums and differences of monomials:

$$
x^{\alpha} y^{\boldsymbol{\beta}} \pm(-1)^{|\boldsymbol{\beta}|+m} \boldsymbol{\alpha}!\beta!x^{\bar{\beta}} y^{\bar{\alpha}}
$$

- The monomials together with binomials with a " + " sign form a basis of S^{+}, binomials with a "-" sign form a basis

Basis of special functions

- S^{+}and S^{-}have bases consisting of images of monomials:

$$
x^{\alpha} y^{\bar{\alpha}},
$$

and sums and differences of monomials:

$$
x^{\alpha} y^{\boldsymbol{\beta}} \pm(-1)^{|\boldsymbol{\beta}|+m} \boldsymbol{\alpha}!\boldsymbol{\beta}!x^{\bar{\beta}} y^{\bar{\alpha}}
$$

- The monomials together with binomials with a "+" sign form a basis of S^{+}, binomials with a "-" sign form a basis of S^{-}.
- Symplectic basis functions of type $\boldsymbol{\lambda}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{t-1}\right)$.

$$
f=f_{0} f_{1}^{p} \cdots f_{t-1}^{p^{t-1}}
$$

where each f_{j}, which we will call the j-th digit of f, is either a basis monomial or binomial of $k[V]$ of degree λ_{j}. If $\lambda_{j} \neq(p-1) m$, then f_{j} can be any basis monomial of degree λ_{j} in which the degree in each variable is at most $p-1$. If $\lambda_{j}=(p-1) m$, then f_{j} can be any of the S^{+}and S^{-}basis functions.

- The union of these sets of functions over all $\boldsymbol{\lambda}$ is our special basis for $k[V]$.
- By restricting the types for the symplectic basis functions we can obtain bases for $A[d]$, and k^{P}.
- Symplectic basis functions of type $\boldsymbol{\lambda}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{t-1}\right)$.

$$
f=f_{0} f_{1}^{p} \cdots f_{t-1}^{t-1} .
$$

where each f_{j}, which we will call the j-th digit of f, is either a basis monomial or binomial of $k[V]$ of degree λ_{j}. If $\lambda_{j} \neq(p-1) m$, then f_{j} can be any basis monomial of degree λ_{j} in which the degree in each variable is at most $p-1$. If $\lambda_{j}=(p-1) m$, then f_{j} can be any of the S^{+}and S^{-}basis functions.

- The union of these sets of functions over all $\boldsymbol{\lambda}$ is our special basis for $k[V]$.
- By restricting the types for the symplectic basis functions we can obtain bases for $A[d]$, and k^{P}.
- Symplectic basis functions of type $\boldsymbol{\lambda}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{t-1}\right)$.

$$
f=f_{0} f_{1}^{p} \cdots f_{t-1}^{t-1} .
$$

where each f_{j}, which we will call the j-th digit of f, is either a basis monomial or binomial of $k[V]$ of degree λ_{j}. If $\lambda_{j} \neq(p-1) m$, then f_{j} can be any basis monomial of degree λ_{j} in which the degree in each variable is at most $p-1$. If $\lambda_{j}=(p-1) m$, then f_{j} can be any of the S^{+}and S^{-}basis functions.

- The union of these sets of functions over all $\boldsymbol{\lambda}$ is our special basis for $k[V]$.
- By restricting the types for the symplectic basis functions we can obtain bases for $A[d]$, and k^{P}.

The posets \mathcal{S} and $\mathcal{S}[d]$

- $\boldsymbol{\Lambda}=\left\{\left(\lambda_{0}, \ldots, \lambda_{t-1} \mid 0 \leq \lambda_{j} \leq 2 m(p-1) \forall j\right\}\right.$, "Types"

The posets \mathcal{S} and $\mathcal{S}[d]$

- $\boldsymbol{\Lambda}=\left\{\left(\lambda_{0}, \ldots, \lambda_{t-1} \mid 0 \leq \lambda_{j} \leq 2 m(p-1) \forall j\right\}\right.$, "Types"
- Definition

For $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$, let \mathbf{s} be the corresponding \mathcal{H}-type in $\mathcal{H}[d]$. Set

$$
J(\mathbf{s})=\left\{j \mid 0 \leq j \leq t-1, \lambda_{j}=m(p-1)\right\} .
$$

For any $\mathbf{s}, \mathbf{s}^{\prime} \in \mathcal{H}[d]$, let
$Z\left(\mathbf{s}, \mathbf{s}^{\prime}\right)=\left\{j \mid s_{j}^{\prime}=s_{j}, s_{j+1}^{\prime}=s_{j+1}, \lambda_{j}=m(p-1)\right\}$. We define

$$
\mathcal{S}[d]=\{(\mathbf{s}, \epsilon) \mid \mathbf{s} \in \mathcal{H}[d], \epsilon \subseteq J(\mathbf{s})\} .
$$

In the case $[d]=[0]$, we also define

$$
S=\{(s, \epsilon) \mid s \in \mathcal{H}, \in \subseteq J(s)\} .
$$

We define $\left(\mathbf{s}^{\prime}, \epsilon^{\prime}\right) \leq(\mathbf{s}, \epsilon)$ if and only if $\mathbf{s}^{\prime} \leq \mathbf{s}$ and $\epsilon \cap Z\left(\mathbf{s}^{\prime}, \mathbf{s}\right)=\epsilon^{\prime} \cap Z\left(\mathbf{s}^{\prime}, \mathbf{s}\right)$.

The posets \mathcal{S} and $\mathcal{S}[d]$

- $\boldsymbol{\Lambda}=\left\{\left(\lambda_{0}, \ldots, \lambda_{t-1} \mid 0 \leq \lambda_{j} \leq 2 m(p-1) \forall j\right\}\right.$, "Types"
- Definition

For $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$, let \mathbf{s} be the corresponding \mathcal{H}-type in $\mathcal{H}[d]$. Set

$$
J(\mathbf{s})=\left\{j \mid 0 \leq j \leq t-1, \lambda_{j}=m(p-1)\right\} .
$$

For any $\mathbf{s}, \mathbf{s}^{\prime} \in \mathcal{H}[d]$, let
$Z\left(\mathbf{s}, \mathbf{s}^{\prime}\right)=\left\{j \mid s_{j}^{\prime}=s_{j}, s_{j+1}^{\prime}=s_{j+1}, \lambda_{j}=m(p-1)\right\}$. We define

$$
\mathcal{S}[d]=\{(\mathbf{s}, \epsilon) \mid \mathbf{s} \in \mathcal{H}[d], \epsilon \subseteq J(\mathbf{s})\} .
$$

In the case $[d]=[0]$, we also define

$$
\mathcal{S}=\{(\mathbf{s}, \epsilon) \mid \mathbf{s} \in \mathcal{H}, \epsilon \subseteq J(\mathbf{s})\} .
$$

We define ($\mathbf{s}^{\prime}, \epsilon^{\prime}$) $\leq(\mathbf{s}, \epsilon)$ if and only if $\mathbf{s}^{\prime} \leq \mathbf{s}$ and
$\epsilon \cap Z\left(\mathbf{s}^{\prime}, \mathbf{s}\right)=\epsilon^{\prime} \cap Z\left(\mathbf{s}^{\prime}, \mathbf{s}\right)$.

Definition

To each symplectic basis function of $k[V]$ we associate a pair $(\mathbf{s}, \epsilon) \in \mathcal{S}[d]$ for some $[d] \in \mathbb{Z} /(q-1) \mathbb{Z}$, as follows. If f is of type λ, then \mathbf{s} is the corresponding \mathcal{H}-type. The set $\epsilon \subseteq J(\mathbf{s})$, called the signature, is defined to be the set of $j \in J(\mathbf{s})$ for which the image of the j-th digit f_{j} of f in $S^{m(p-1)}$ belongs to S^{+}.

Definition

To each symplectic basis function of $k[V]$ we associate a pair $(\mathbf{s}, \epsilon) \in \mathcal{S}[d]$ for some $[d] \in \mathbb{Z} /(q-1) \mathbb{Z}$, as follows. If f is of type λ, then \mathbf{s} is the corresponding \mathcal{H}-type. The set $\epsilon \subseteq J(\mathbf{s})$, called the signature, is defined to be the set of $j \in J(\mathbf{s})$ for which the image of the j-th digit f_{j} of f in $S^{m(p-1)}$ belongs to S^{+}.

- $k \operatorname{Sp}(V)$-composition factors of $k[V]$ are given by their types, together with the additional choice of signs for each j with $\lambda_{j}=m(p-1)$.
- In terms of \mathcal{H}-types, we see that each \mathcal{H}-type gives a $k \mathrm{GL}(V)$-composition factor and then the choice of signs determines the simple $k \operatorname{Sp}(V)$ composition factor of this simple k GL(V)-module.

- In terms of \mathcal{H}-types, we see that each \mathcal{H}-type gives a $k \mathrm{GL}(V)$-composition factor and then the choice of signs determines the simple $k \operatorname{Sp}(V)$ composition factor of this simple k GL(V)-module.
- Thus \mathcal{S} indexes the $k \operatorname{Sp}(V)$-composition factors of Y_{P}, $\mathcal{S}[d],[d] \neq[0]$ label the $k \operatorname{Sp}(V)$-composition factors of $A[d]$.
- However it should be noted that different elements of \mathcal{S} or $\mathcal{S}[d]$ can label isomorphic composition factors, due to the fact that $S^{\lambda} \cong S^{2 m(p-1)-\lambda}$ as $k \operatorname{Sp}(V)$-modules.
- $L(\mathbf{s}, \epsilon)[d]$ denotes the simple summand of $L(\mathbf{s})[d]$ where we take the + summand for each $j \in \epsilon$ and the summand for each $j \in J(\mathbf{s}) \backslash \epsilon$. When $\mathbf{s} \in \mathcal{H}$, we may use the simpler notation $L(\mathbf{s}, \epsilon)$.
- In terms of \mathcal{H}-types, we see that each \mathcal{H}-type gives a $k \mathrm{GL}(V)$-composition factor and then the choice of signs determines the simple $k \operatorname{Sp}(V)$ composition factor of this simple $k \mathrm{GL}(V)$-module.
- Thus \mathcal{S} indexes the $k \operatorname{sp}(V)$-composition factors of Y_{P}, $\mathcal{S}[d],[d] \neq[0]$ label the $k \operatorname{Sp}(V)$-composition factors of $A[d]$.
- However it should be noted that different elements of \mathcal{S} or $\mathcal{S}[d]$ can label isomorphic composition factors, due to the fact that $S^{\lambda} \cong S^{2 m(p-1)-\lambda}$ as $k \operatorname{Sp}(V)$-modules.

- In terms of \mathcal{H}-types, we see that each \mathcal{H}-type gives a $k \mathrm{GL}(V)$-composition factor and then the choice of signs determines the simple $k \operatorname{Sp}(V)$ composition factor of this simple $k \mathrm{GL}(V)$-module.
- Thus \mathcal{S} indexes the $k \operatorname{Sp}(V)$-composition factors of Y_{P}, $\mathcal{S}[d],[d] \neq[0]$ label the $k \operatorname{Sp}(V)$-composition factors of $A[d]$.
- However it should be noted that different elements of \mathcal{S} or $\mathcal{S}[d]$ can label isomorphic composition factors, due to the fact that $S^{\lambda} \cong S^{2 m(p-1)-\lambda}$ as $k \operatorname{Sp}(V)$-modules.
- $L(\mathbf{s}, \epsilon)[d]$ denotes the simple summand of $L(\mathbf{s})[d]$ where we take the + summand for each $j \in \epsilon$ and the summand for each $j \in J(\mathbf{s}) \backslash \epsilon$. When $\mathbf{s} \in \mathcal{H}$, we may use the simpler notation $L(\mathbf{s}, \epsilon)$.

Symplectic Analogue of Hamada's formula

Next we give the symplectic analogue of Hamada's formula for the p-rank of the incidence matrix between points and m-flats of $\mathrm{W}(2 m-1, q)$ in terms of t, where $q=p^{t}, p$ an odd prime.
Theorem
Let $A_{1, m}^{m}\left(p^{t}\right)$ be the incidence matrix between points and m-flats of $\mathrm{W}\left(2 m-1, p^{t}\right)$. Assume that p is odd. Then

$$
\operatorname{rank}_{p}\left(A_{1, m}^{m}\left(p^{t}\right)\right)=1+\sum_{\forall j, 1 \leq s_{j} \leq m} \prod_{j=0}^{t-1} d_{\left(s_{j}, s_{j+1}\right)}
$$

where

$$
d_{\left(s_{j}, s_{j+1}\right)}= \begin{cases}\operatorname{dim}\left(S^{+}\right)=\left(d_{m(p-1)}+p^{m}\right) / 2, & \text { if } s_{j}=s_{j+1}=m \\ d_{\lambda_{j}}, \text { where } \lambda_{j}=p s_{j+1}-s_{j}, & \text { otherwise }\end{cases}
$$

$\mathrm{Sp}(4, q)$ generalized quadrangle q odd.

- We consider the case where $m=2$ and $r=2$.
- Symplectic polar space $W(3, q)$ is a classical generalized quadrangle.
- In the case where $q=p$ is an odd prime, de Caen and Moorhouse determined the p-rank of $A_{1,2}^{2}(p)$.

$\mathrm{Sp}(4, q)$ generalized quadrangle q odd.

- We consider the case where $m=2$ and $r=2$.
- Symplectic polar space $\mathrm{W}(3, q)$ is a classical generalized quadrangle.
- In the case where $q=p$ is an odd prime, de Caen and
Moorhouse determined the p-rank of $A_{1,2}^{2}(p)$.

$\mathrm{Sp}(4, q)$ generalized quadrangle q odd.

- We consider the case where $m=2$ and $r=2$.
- Symplectic polar space $\mathrm{W}(3, q)$ is a classical generalized quadrangle.
- In the case where $q=p$ is an odd prime, de Caen and Moorhouse determined the p-rank of $A_{1,2}^{2}(p)$.

$\mathrm{Sp}(4, q)$ generalized quadrangle q odd.

- We consider the case where $m=2$ and $r=2$.
- Symplectic polar space $\mathrm{W}(3, q)$ is a classical generalized quadrangle.
- In the case where $q=p$ is an odd prime, de Caen and Moorhouse determined the p-rank of $A_{1,2}^{2}(p)$.
- Theorem

Let p be an odd prime and let $t \geq 1$ be an integer. Then the p-rank of $A_{1,2}^{2}\left(p^{t}\right)$ is equal to
where

$\mathrm{Sp}(4, q)$ generalized quadrangle q odd.

- We consider the case where $m=2$ and $r=2$.
- Symplectic polar space $\mathrm{W}(3, q)$ is a classical generalized quadrangle.
- In the case where $q=p$ is an odd prime, de Caen and Moorhouse determined the p-rank of $A_{1,2}^{2}(p)$.
- Theorem

Let p be an odd prime and let $t \geq 1$ be an integer. Then the p-rank of $A_{1,2}^{2}\left(p^{t}\right)$ is equal to

$$
1+\alpha_{1}^{t}+\alpha_{2}^{t}
$$

where

$$
\alpha_{1}, \alpha_{2}=\frac{p(p+1)^{2}}{4} \pm \frac{p(p+1)(p-1)}{12} \sqrt{17}
$$

Outline

Symplectic groups in odd characteristic

Symplectic groups in characteristic 2

Other groups, hyperplane incidences

- Chandler-Sin-Xiang (2010)
- $q=2^{t}$, V a $2 m$-dimensional symplectic F_{q}-vector space.
- The trucated symmetric powers S^{λ} are exterior powers $\wedge^{\lambda}(V)$ and are not simple or semisimple, but rather have filtrations by Weyl modules, The Weyl modules themselves are not simple or semisimple.
- $\mathcal{I}_{r}=\mathcal{I}_{r}(t)$, set of totally r-dimensional isotropic subspaces (or complements of such).
- Chandler-Sin-Xiang (2010)
- $q=2^{t}, V$ a $2 m$-dimensional symplectic F_{q}-vector space.
- The trucated symmetric powers S^{λ} are exterior powers $\wedge^{\lambda}(V)$ and are not simple or semisimple, but rather have filtrations by Weyl modules, The Weyl modules themselves are not simple or semisimple.
- $\mathcal{I}_{r}=\mathcal{I}_{r}(t)$, set of totally r-dimensional isotropic subspaces (or complements of such).
- Chandler-Sin-Xiang (2010)
- $q=2^{t}, V$ a $2 m$-dimensional symplectic F_{q}-vector space.
- The trucated symmetric powers S^{λ} are exterior powers $\wedge^{\lambda}(V)$ and are not simple or semisimple, but rather have filtrations by Weyl modules, The Weyl modules themselves are not simple or semisimple.
$\Rightarrow \mathcal{I}_{r}=\mathcal{I}_{r}(t)$, set of totally r-dimensional isotropic subspaces (or complements of such).
- Chandler-Sin-Xiang (2010)
- $q=2^{t}, V$ a $2 m$-dimensional symplectic F_{q}-vector space.
- The trucated symmetric powers S^{λ} are exterior powers $\wedge^{\lambda}(V)$ and are not simple or semisimple, but rather have filtrations by Weyl modules, The Weyl modules themselves are not simple or semisimple.
- $\mathcal{I}_{r}=\mathcal{I}_{r}(t)$, set of totally r-dimensional isotropic subspaces (or complements of such).

Analogue of Hamada's formula

- $B_{r, 1}=B_{r, 1}(t)$ denote the incidence matrix between $P=\mathcal{I}_{1}$ and \mathcal{I}_{r}.

Then

$$
\operatorname{rank}_{2}\left(B_{r, 1}(t)\right)=1+\operatorname{Trace}\left(A^{t}\right) .
$$

$(\delta(P)=1$ if a statement P holds, and $\delta(P)=0$ otherwise.)

- The significance of the entries $a_{i, j}$ is that they are the dimensions of certain representations of the symplectic group $\operatorname{Sp}(V)$ which are restrictions of representations of the algebraic group $\operatorname{Sp}\left(2 m, \overline{\mathbf{F}}_{q}\right)$, where $\overline{\mathbf{F}}_{q}$ is an algebraic closure of F_{c}

Analogue of Hamada's formula

- $B_{r, 1}=B_{r, 1}(t)$ denote the incidence matrix between $P=\mathcal{I}_{1}$ and \mathcal{I}_{r}.
Theorem
Let $m \geq 2$ and $1 \leq r \leq 2 m-1$. Let A be the
$(2 m-r) \times(2 m-r)$-matrix whose (i, j)-entry is
$a_{i, j}=\binom{2 m}{2 j-i}-\binom{2 m}{2 j+i+2 r-4 m-2-2(m-r) \delta(r \leq m)}$.
Then

$$
\operatorname{rank}_{2}\left(B_{r, 1}(t)\right)=1+\operatorname{Trace}\left(A^{t}\right)
$$

$(\delta(P)=1$ if a statement P holds, and $\delta(P)=0$ otherwise.)

Analogue of Hamada's formula

- $B_{r, 1}=B_{r, 1}(t)$ denote the incidence matrix between $P=\mathcal{I}_{1}$ and \mathcal{I}_{r}.
Theorem
Let $m \geq 2$ and $1 \leq r \leq 2 m-1$. Let A be the
$(2 m-r) \times(2 m-r)$-matrix whose (i, j)-entry is

$$
a_{i, j}=\binom{2 m}{2 j-i}-\binom{2 m}{2 j+i+2 r-4 m-2-2(m-r) \delta(r \leq m)}
$$

Then

$$
\operatorname{rank}_{2}\left(B_{r, 1}(t)\right)=1+\operatorname{Trace}\left(A^{t}\right)
$$

$(\delta(P)=1$ if a statement P holds, and $\delta(P)=0$ otherwise.)

- The significance of the entries $a_{i, j}$ is that they are the dimensions of certain representations of the symplectic group $\operatorname{Sp}(V)$ which are restrictions of representations of the algebraic group $\operatorname{Sp}\left(2 m, \overline{\mathbf{F}}_{q}\right)$, where $\overline{\mathbf{F}}_{q}$ is an algebraic closure of \mathbf{F}_{q}.
- When $m=r=2$,

$$
A=\left(\begin{array}{ll}
4 & 4 \\
1 & 5
\end{array}\right)
$$

- Eigenvalues are $\frac{9 \pm \sqrt{17}}{2}=\left(\frac{1 \pm \sqrt{ } 17}{2}\right)^{2}$. Thus,

$$
\operatorname{rank}_{2}\left(B_{2,1}(t)\right)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}
$$

- Formula was previously proved by Sastry-Sin (1998) by using very detailed information about the extensions of simple modules for $\operatorname{Sp}(4, q)$.
- Sastry-Shukla have investigated the $\operatorname{SL}(2, q)$ submodule structure of k^{P} for this example.
- When $m=r=2$,

$$
A=\left(\begin{array}{ll}
4 & 4 \\
1 & 5
\end{array}\right)
$$

- Eigenvalues are $\frac{9 \pm \sqrt{17}}{2}=\left(\frac{1 \pm \sqrt{17}}{2}\right)^{2}$. Thus,

$$
\operatorname{rank}_{2}\left(B_{2,1}(t)\right)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}
$$

- Formula was previously proved by Sastry-Sin (1998) by using very detailed information about the extensions of simple modules for $\operatorname{Sp}(4, q)$.
- Sastry-Shukla have investigated the SL($2, q$) submodule structure of k^{P} for this example.
- When $m=r=2$,

$$
A=\left(\begin{array}{ll}
4 & 4 \\
1 & 5
\end{array}\right)
$$

- Eigenvalues are $\frac{9 \pm \sqrt{17}}{2}=\left(\frac{1 \pm \sqrt{17}}{2}\right)^{2}$. Thus,

$$
\operatorname{rank}_{2}\left(B_{2,1}(t)\right)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}
$$

- Formula was previously proved by Sastry-Sin (1998) by using very detailed information about the extensions of simple modules for $\operatorname{Sp}(4, q)$.
- Sastry-Shukla have investigated the SL($2, q$) submodule structure of k^{P} for this example.
- When $m=r=2$,

$$
A=\left(\begin{array}{ll}
4 & 4 \\
1 & 5
\end{array}\right)
$$

- Eigenvalues are $\frac{9 \pm \sqrt{17}}{2}=\left(\frac{1 \pm \sqrt{17}}{2}\right)^{2}$. Thus,

$$
\operatorname{rank}_{2}\left(B_{2,1}(t)\right)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}
$$

- Formula was previously proved by Sastry-Sin (1998) by using very detailed information about the extensions of simple modules for $\operatorname{Sp}(4, q)$.
- Sastry-Shukla have investigated the $\operatorname{SL}(2, q)$ submodule structure of k^{P} for this example.

Outline

Symplectic groups in odd characteristic

Symplectic groups in characteristic 2

Other groups, hyperplane incidences

- So far, no analogous results on submodule structure of k^{P} for orthogonal or unitary groups.
- We need to understand the submodules of the homogeneous coordinate ring of the projective variety of singular points in the algebraically closed case.
- $\bigoplus_{r>0} H^{0}(r \omega), \omega \in\left\{\omega_{1}, \omega_{1}+\omega_{\ell}\right\}$
- Complete results on point-hyperplane incidences (Arslan-Sin, 2011). These also rely on connection to algebraic groups.
- So far, no analogous results on submodule structure of k^{P} for orthogonal or unitary groups.
- We need to understand the submodules of the homogeneous coordinate ring of the projective variety of singular points in the algebraically closed case.
- Complete results on point-hyperplane incidences (Arslan-Sin, 2011). These also rely on connection to algebraic groups.
- So far, no analogous results on submodule structure of k^{P} for orthogonal or unitary groups.
- We need to understand the submodules of the homogeneous coordinate ring of the projective variety of singular points in the algebraically closed case.
- $\bigoplus_{r \geq 0} H^{0}(r \omega), \omega \in\left\{\omega_{1}, \omega_{1}+\omega_{\ell}\right\}$.
- Complete results on point-hyperplane incidences (Arslan-Sin, 2011). These also rely on connection to algebraic groups.
- So far, no analogous results on submodule structure of k^{P} for orthogonal or unitary groups.
- We need to understand the submodules of the homogeneous coordinate ring of the projective variety of singular points in the algebraically closed case.
- $\bigoplus_{r \geq 0} H^{0}(r \omega), \omega \in\left\{\omega_{1}, \omega_{1}+\omega_{\ell}\right\}$.
- Complete results on point-hyperplane incidences (Arslan-Sin, 2011). These also rely on connection to algebraic groups.

Orthogonal, unitary groups, hyperplanes, opposites

- $V=V(q)$, quadratic form or $V\left(q^{2}\right)$ with Hermitian form.
- P be the set of singular points, P^{*} the set of polar
hyperplanes
- $\widehat{P}, \widehat{P}^{*}$ sets of all points and hyperplanes.
- Subdivide incidence matrix A of $\left(P, P^{*}\right)$

- p-rank of A is well known.
- p-ranks of the A_{1} were determined by Blokhuis and Moorhouse.
- p-ranks of the A_{11} was posed as problem by Moorhouse.

Orthogonal, unitary groups, hyperplanes, opposites

- $V=V(q)$, quadratic form or $V\left(q^{2}\right)$ with Hermitian form.
- P be the set of singular points, P^{*} the set of polar hyperplanes
- $\widehat{P}, \widehat{P}^{*}$ sets of all points and hyperplanes.
- Subdivide incidence matrix A of $\left(\widehat{P}, \widehat{P}^{*}\right)$

- p-rank of A is well known.
- p-ranks of the A_{1} were determined by Blokhuis and Moorhouse.
- p-ranks of the A_{11} was posed as problem by Moorhouse.

Orthogonal, unitary groups, hyperplanes, opposites

- $V=V(q)$, quadratic form or $V\left(q^{2}\right)$ with Hermitian form.
- P be the set of singular points, P^{*} the set of polar hyperplanes
- $\widehat{P}, \widehat{P}^{*}$ sets of all points and hyperplanes.
- Subdivide incidence matrix A of $\left(\widehat{P}, \widehat{P}^{*}\right)$

- p-rank of A is well known.
- p-ranks of the A_{1} were determined by Blokhuis and Moorhouse.
- p-ranks of the A_{11} was posed as problem by Moorhouse.

Orthogonal, unitary groups, hyperplanes, opposites

- $V=V(q)$, quadratic form or $V\left(q^{2}\right)$ with Hermitian form.
- P be the set of singular points, P^{*} the set of polar hyperplanes
- $\widehat{P}, \widehat{P}^{*}$ sets of all points and hyperplanes.
- Subdivide incidence matrix A of $\left(\widehat{P}, \widehat{P}^{*}\right)$

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad A_{1}=\left(\begin{array}{ll}
A_{11} & A_{12}
\end{array}\right)
$$

- p-rank of A is well known.
- p-ranks of the A_{1} were determined by Blokhuis and Moorhouse.
- p-ranks of the A_{11} was posed as problem by Moorhouse.

Orthogonal, unitary groups, hyperplanes, opposites

- $V=V(q)$, quadratic form or $V\left(q^{2}\right)$ with Hermitian form.
- P be the set of singular points, P^{*} the set of polar hyperplanes
- $\widehat{P}, \widehat{P}^{*}$ sets of all points and hyperplanes.
- Subdivide incidence matrix A of ($\left.\widehat{P}, \widehat{P}^{*}\right)$

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad A_{1}=\left(\begin{array}{ll}
A_{11} & A_{12}
\end{array}\right)
$$

- p-rank of A is well known.

- p-ranks of the A_{11} was posed as problem by Moorhouse.

Orthogonal, unitary groups, hyperplanes, opposites

- $V=V(q)$, quadratic form or $V\left(q^{2}\right)$ with Hermitian form.
- P be the set of singular points, P^{*} the set of polar hyperplanes
- $\widehat{P}, \widehat{P}^{*}$ sets of all points and hyperplanes.
- Subdivide incidence matrix A of ($\left.\widehat{P}, \widehat{P}^{*}\right)$

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad A_{1}=\left(\begin{array}{ll}
A_{11} & A_{12}
\end{array}\right)
$$

- p-rank of A is well known.
- p-ranks of the A_{1} were determined by Blokhuis and Moorhouse.
- p-ranks of the A_{11} was posed as problem by Moorhouse.

Orthogonal, unitary groups, hyperplanes, opposites

- $V=V(q)$, quadratic form or $V\left(q^{2}\right)$ with Hermitian form.
- P be the set of singular points, P^{*} the set of polar hyperplanes
- $\widehat{P}, \widehat{P}^{*}$ sets of all points and hyperplanes.
- Subdivide incidence matrix A of ($\left.\widehat{P}, \widehat{P}^{*}\right)$

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad A_{1}=\left(\begin{array}{ll}
A_{11} & A_{12}
\end{array}\right)
$$

- p-rank of A is well known.
- p-ranks of the A_{1} were determined by Blokhuis and Moorhouse.
- p-ranks of the A_{11} was posed as problem by Moorhouse.

Orthogonal case

Theorem
Suppose $\operatorname{dim} V(q)=n \geq 4$. The following hold.
(a) Assume $p=2$. Then

$$
\operatorname{rank}_{p} A_{11}=\left\{\begin{array}{l}
1+n^{t}, \quad \text { if } n \text { is even } \\
1+(n-1)^{t}, \quad \text { if } n \text { is odd. }
\end{array}\right.
$$

Theorem
(cont'd)
(b) Assume $p>2$. Then the p-rank depends on whether there exists a positive integer u such that

$$
u \equiv n \quad(\bmod 2) \quad \text { and } \quad n-3 \leq u p \leq p+n-5
$$

If u exists then

$$
\begin{aligned}
\operatorname{rank}_{p} A_{11}=1+\left(\binom{n+p-2}{n-1}\right. & -\binom{n+p-4}{n-1} \\
& \left.-\binom{u p+2}{n-1}+\binom{u p}{n-1}\right)^{t}
\end{aligned}
$$

Otherwise,

$$
\operatorname{rank}_{p} A_{11}=1+\left(\binom{n+p-2}{n-1}-\binom{n+p-4}{n-1}\right)^{t}
$$

Remark

When n is even, there are two types of nondegenerate forms, distinguished by the Witt index. However, the p-rank of A_{11} is the same for both types.

Hermitian case

Theorem
Suppose $\operatorname{dim} V\left(q^{2}\right)=n \geq 4$. The p-rank depends on the existence of a positive integer u satisfying

$$
n-2 \leq u p \leq p+n-3
$$

If u exists then

$$
\begin{aligned}
\operatorname{rank}_{p} A_{11}=1+\left(\binom{n+p-2}{n-1}^{2}\right. & -\binom{n+p-3}{n-1}^{2} \\
& \left.-\binom{u p+1}{n-1}^{2}+\binom{u p}{n-1}^{2}\right)^{t}
\end{aligned}
$$

Otherwise,

$$
\operatorname{rank}_{p} A_{11}=1+\left[\binom{n+p-2}{n-1}^{2}-\binom{n+p-3}{n-1}^{2}\right]^{t}
$$

- When $n=3$ or 4 , the totally isotropic subspaces of dimensions one and two form the points and lines of the Hermitian generalized quadrangle.
- The p-rank of the incidence relation of points and lines of this generalized quadrangle is still unknown in general.
- we can also compute point-hyperplane p-ranks for $D H\left(4, q^{2}\right)$.
- When $n=3$ or 4 , the totally isotropic subspaces of dimensions one and two form the points and lines of the Hermitian generalized quadrangle.
- The p-rank of the incidence relation of points and lines of this generalized quadrangle is still unknown in general.
- we can also compute point-hyperplane p-ranks for $D H\left(4, q^{2}\right)$.
- When $n=3$ or 4 , the totally isotropic subspaces of dimensions one and two form the points and lines of the Hermitian generalized quadrangle.
- The p-rank of the incidence relation of points and lines of this generalized quadrangle is still unknown in general.
- we can also compute point-hyperplane p-ranks for $D H\left(4, q^{2}\right)$.
- When $n=3$ or 4, the totally isotropic subspaces of dimensions one and two form the points and lines of the Hermitian generalized quadrangle.
- The p-rank of the incidence relation of points and lines of this generalized quadrangle is still unknown in general.
- we can also compute point-hyperplane p-ranks for $D H\left(4, q^{2}\right)$.
Theorem
The p-rank of the point-hyperplane incidence matrix A_{11} for the dual Hermitian generalized quadrangle $D H\left(4, q^{2}\right)$ is as follows.
(a) If $p>2$ then
(b) If $p=2$ then $\operatorname{rank}_{2} A_{11}=1+74^{t}$
- When $n=3$ or 4, the totally isotropic subspaces of dimensions one and two form the points and lines of the Hermitian generalized quadrangle.
- The p-rank of the incidence relation of points and lines of this generalized quadrangle is still unknown in general.
- we can also compute point-hyperplane p-ranks for $D H\left(4, q^{2}\right)$.
Theorem
The p-rank of the point-hyperplane incidence matrix A_{11} for the dual Hermitian generalized quadrangle $D H\left(4, q^{2}\right)$ is as follows.
(a) If $p>2$ then

$$
\begin{aligned}
\operatorname{rank}_{p} A_{11}=1+\left(\frac{p(p+1)}{32}\binom{2 p+2}{3}^{2}\right. & -\frac{p(p-1)}{32}\binom{2 p}{3}^{2} \\
& \left.+\frac{p}{2}\binom{p+1}{3}^{2}\right)^{t}
\end{aligned}
$$

(b) If $p=2$ then rank $A_{11}=1+74^{t}$

- When $n=3$ or 4, the totally isotropic subspaces of dimensions one and two form the points and lines of the Hermitian generalized quadrangle.
- The p-rank of the incidence relation of points and lines of this generalized quadrangle is still unknown in general.
- we can also compute point-hyperplane p-ranks for $D H\left(4, q^{2}\right)$.
Theorem
The p-rank of the point-hyperplane incidence matrix A_{11} for the dual Hermitian generalized quadrangle $D H\left(4, q^{2}\right)$ is as follows.
(a) If $p>2$ then

$$
\begin{aligned}
\operatorname{rank}_{p} A_{11}=1+\left(\frac{p(p+1)}{32}\binom{2 p+2}{3}^{2}\right. & -\frac{p(p-1)}{32}\binom{2 p}{3}^{2} \\
& \left.+\frac{p}{2}\binom{p+1}{3}^{2}\right)^{t}
\end{aligned}
$$

(b) If $p=2$ then rank $_{2} A_{11}=1+74^{t}$.

- The reduction of the p-rank problem to simple modules is achieved by reformulating it in terms of representations of the associated finite classical group.
- By algebraic group representations, we find the structure of $H^{0}(r \omega)$ for $0 \leq r \leq p-1$
- Correspondina results for the 27-dimensional module for the exceptional group E_{6}. (Submitted to the conference proceedings.)
- The reduction of the p-rank problem to simple modules is achieved by reformulating it in terms of representations of the associated finite classical group.
- By algebraic group representations, we find the structure of $H^{0}(r \omega)$ for $0 \leq r \leq p-1$.
- Corresponding results for the 27-dimensional module for the exceptional group E_{6}. (Submitted to the conference proceedings.)
- The reduction of the p-rank problem to simple modules is achieved by reformulating it in terms of representations of the associated finite classical group.
- By algebraic group representations, we find the structure of $H^{0}(r \omega)$ for $0 \leq r \leq p-1$.
- Corresponding results for the 27-dimensional module for the exceptional group E_{6}. (Submitted to the conference proceedings.)

