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I G finite classical group (symplectic, orthogonal, unitary).
I P the set of singular points of the standard module V
I k , algebraically closed field of (defining) characteristic p.
I We consider the permutation module kP .
I Main difficulty is that for orthogonal an unitary groups, P is

a proper subset of P(V ).
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Sp(2m, q), q = pt odd

I We consider the submodule structures of k [V ], A[d ], and
YP , under the action of Sp(V ).

I Sλ :=truncated symmetric power (prev. S
λ
) with

0 ≤ λj ≤ 2m(p − 1).
I Sλ remain simple except when λ = m(p − 1), in which

case we have
Sm(p−1) = S+ ⊕ S−.

I S+ and S− are simple k Sp(V )-modules,

dim(S+) = (d(p−1)m+pm)/2, dim(S−) = (d(p−1)m−pm)/2.
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The modules S+ and S−.

I (Wong, Lahtohnen (1990))
I Use multi-index notation XαY β for monomials in

symplectic coords Xi , Yi , 0 ≤ i ≤ m.
I For any multi-index β, we define
|β| =

∑m
i=1 bi , β! =

∏m
i=1 bi !, and

β = (p − 1− b1, . . . ,p − 1− bm).
I Denote monomials in the quotient module Sm(p−1) using

bars. The map

τ : Sm(p−1) → Sm(p−1), X
α

Y
β 7→ (−1)|β|α!β!X

β
Y

α

is a k Sp(V )-homomorphism with τ2 = 1. S+ and S− are
the eigenspaces.
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Submodules of kP for Sp(2m, q)

I (Chandler-Sin Xiang, 2007)
I Construct a special basis of k [V ], of symplectic basis

functions.
I Describe the submodule structure of the kG-submodule of

k [V ] and kP generated by an arbitrary symplectic basis
function.

I Describe the part of the submodule lattice of k [V ] and kP

involving the above submodules.
I This includes images of incidence maps ηr : kIr → kP ,

where Ir is the set of totally isotropic r -subspaces.
I Symplectic analogue of Hamada’s p-rank formula,
I When m = 2, get a closed formula for the p-rank of the

symplectic GQ.
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Basis of special functions

I S+ and S− have bases consisting of images of monomials:

xαyα,

and sums and differences of monomials:

xαyβ ± (−1)|β|+mα!β!xβyα

I The monomials together with binomials with a “+” sign
form a basis of S+, binomials with a “−” sign form a basis
of S−.
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I Symplectic basis functions of type λ = (λ0, λ1, . . . , λt−1).

f = f0f p
1 · · · f

pt−1

t−1 .

where each fj , which we will call the j-th digit of f , is either
a basis monomial or binomial of k [V ] of degree λj . If
λj 6= (p − 1)m, then fj can be any basis monomial of
degree λj in which the degree in each variable is at most
p − 1. If λj = (p − 1)m, then fj can be any of the S+ and
S− basis functions.

I The union of these sets of functions over all λ is our
special basis for k [V ].

I By restricting the types for the symplectic basis functions
we can obtain bases for A[d ], and kP .
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The posets S and S[d ]

I Λ = {(λ0, . . . , λt−1 | 0 ≤ λj ≤ 2m(p − 1)∀j}, “Types”

I Definition
For λ ∈ Λ, let s be the corresponding H-type in H[d ]. Set

J(s) = {j | 0 ≤ j ≤ t − 1, λj = m(p − 1)}.

For any s,s′ ∈ H[d ], let
Z (s,s′) = {j | s′j = sj , s′j+1 = sj+1, λj = m(p − 1)}. We define

S[d ] = {(s, ε) | s ∈ H[d ], ε ⊆ J(s)}.

In the case [d ] = [0], we also define

S = {(s, ε) | s ∈ H, ε ⊆ J(s)}.

We define (s′, ε′) ≤ (s, ε) if and only if s′ ≤ s and
ε ∩ Z (s′,s) = ε′ ∩ Z (s′,s).
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Definition
To each symplectic basis function of k [V ] we associate a pair
(s, ε) ∈ S[d ] for some [d ] ∈ Z/(q − 1)Z, as follows. If f is of type
λ, then s is the corresponding H-type. The set ε ⊆ J(s), called
the signature, is defined to be the set of j ∈ J(s) for which the
image of the j-th digit fj of f in Sm(p−1) belongs to S+.

I k Sp(V )-composition factors of k [V ] are given by their
types, together with the additional choice of signs for each
j with λj = m(p − 1).
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I In terms of H-types, we see that each H-type gives a
k GL(V )-composition factor and then the choice of signs
determines the simple k Sp(V ) composition factor of this
simple k GL(V )-module.

I Thus S indexes the k Sp(V )-composition factors of YP ,
S[d ], [d ] 6= [0] label the k Sp(V )-composition factors of
A[d ].

I However it should be noted that different elements of S or
S[d ] can label isomorphic composition factors, due to the
fact that Sλ ∼= S2m(p−1)−λ as k Sp(V )-modules.

I L(s, ε)[d ] denotes the simple summand of L(s)[d ] where
we take the + summand for each j ∈ ε and the −
summand for each j ∈ J(s) \ ε. When s ∈ H, we may use
the simpler notation L(s, ε).
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Symplectic Analogue of Hamada’s formula

Next we give the symplectic analogue of Hamada’s formula for
the p-rank of the incidence matrix between points and m-flats of
W(2m − 1,q) in terms of t , where q = pt , p an odd prime.

Theorem
Let Am

1,m(pt) be the incidence matrix between points and m-flats
of W(2m − 1,pt). Assume that p is odd. Then

rankp(Am
1,m(pt)) = 1 +

∑
∀j,1≤sj≤m

t−1∏
j=0

d(sj ,sj+1),

where

d(sj ,sj+1) =

{
dim(S+) = (dm(p−1) + pm)/2, if sj = sj+1 = m,
dλj , where λj = psj+1 − sj , otherwise.



Sp(4, q) generalized quadrangle q odd.

I We consider the case where m = 2 and r = 2.
I Symplectic polar space W(3,q) is a classical generalized

quadrangle.
I In the case where q = p is an odd prime, de Caen and

Moorhouse determined the p-rank of A2
1,2(p).

I Theorem
Let p be an odd prime and let t ≥ 1 be an integer. Then the
p-rank of A2

1,2(p
t) is equal to

1 + αt
1 + αt

2,

where

α1, α2 =
p(p + 1)2

4
± p(p + 1)(p − 1)

12

√
17.
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I Chandler-Sin-Xiang (2010)
I q = 2t , V a 2m-dimensional symplectic Fq-vector space.
I The trucated symmetric powers Sλ are exterior powers
∧λ(V ) and are not simple or semisimple, but rather have
filtrations by Weyl modules, The Weyl modules themselves
are not simple or semisimple.

I Ir = Ir (t), set of totally r -dimensional isotropic subspaces
(or complements of such).
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Analogue of Hamada’s formula

I Br ,1 = Br ,1(t) denote the incidence matrix between P = I1
and Ir .

Theorem
Let m ≥ 2 and 1 ≤ r ≤ 2m − 1. Let A be the
(2m − r)× (2m − r)-matrix whose (i , j)-entry is

ai,j =

(
2m

2j − i

)
−
(

2m
2j + i + 2r − 4m − 2− 2(m − r)δ(r ≤ m)

)
.

Then
rank2(Br ,1(t)) = 1 + Trace(At).

(δ(P) = 1 if a statement P holds, and δ(P) = 0 otherwise.)
I The significance of the entries ai,j is that they are the

dimensions of certain representations of the symplectic
group Sp(V ) which are restrictions of representations of
the algebraic group Sp(2m,Fq), where Fq is an algebraic
closure of Fq.
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I When m = r = 2,

A =

(
4 4
1 5

)
,

I Eigenvalues are 9±
√

17
2 = (1±

√
17

2 )2. Thus,

rank2(B2,1(t)) = 1 +

(
1 +
√

17
2

)2t

+

(
1−
√

17
2

)2t

.

I Formula was previously proved by Sastry-Sin (1998) by
using very detailed information about the extensions of
simple modules for Sp(4,q).

I Sastry-Shukla have investigated the SL(2,q) submodule
structure of kP for this example.
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I So far, no analogous results on submodule structure of kP

for orthogonal or unitary groups.
I We need to understand the submodules of the

homogeneous coordinate ring of the projective variety of
singular points in the algebraically closed case.

I
⊕

r≥0 H0(rω), ω ∈ {ω1, ω1 + ω`} .
I Complete results on point-hyperplane incidences

(Arslan-Sin, 2011). These also rely on connection to
algebraic groups.
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Orthogonal, unitary groups, hyperplanes, opposites

I V = V (q), quadratic form or V (q2) with Hermitian form.
I P be the set of singular points, P∗ the set of polar

hyperplanes
I P̂,P̂∗ sets of all points and hyperplanes.
I Subdivide incidence matrix A of (P̂,P̂∗)

A =

(
A11 A12
A21 A22

)
, A1 =

(
A11 A12

)
I p-rank of A is well known.
I p-ranks of the A1 were determined by Blokhuis and

Moorhouse.
I p-ranks of the A11 was posed as problem by Moorhouse.



Orthogonal, unitary groups, hyperplanes, opposites

I V = V (q), quadratic form or V (q2) with Hermitian form.
I P be the set of singular points, P∗ the set of polar

hyperplanes
I P̂,P̂∗ sets of all points and hyperplanes.
I Subdivide incidence matrix A of (P̂,P̂∗)

A =

(
A11 A12
A21 A22

)
, A1 =

(
A11 A12

)
I p-rank of A is well known.
I p-ranks of the A1 were determined by Blokhuis and

Moorhouse.
I p-ranks of the A11 was posed as problem by Moorhouse.



Orthogonal, unitary groups, hyperplanes, opposites

I V = V (q), quadratic form or V (q2) with Hermitian form.
I P be the set of singular points, P∗ the set of polar

hyperplanes
I P̂,P̂∗ sets of all points and hyperplanes.
I Subdivide incidence matrix A of (P̂,P̂∗)

A =

(
A11 A12
A21 A22

)
, A1 =

(
A11 A12

)
I p-rank of A is well known.
I p-ranks of the A1 were determined by Blokhuis and

Moorhouse.
I p-ranks of the A11 was posed as problem by Moorhouse.



Orthogonal, unitary groups, hyperplanes, opposites

I V = V (q), quadratic form or V (q2) with Hermitian form.
I P be the set of singular points, P∗ the set of polar

hyperplanes
I P̂,P̂∗ sets of all points and hyperplanes.
I Subdivide incidence matrix A of (P̂,P̂∗)

A =

(
A11 A12
A21 A22

)
, A1 =

(
A11 A12

)
I p-rank of A is well known.
I p-ranks of the A1 were determined by Blokhuis and

Moorhouse.
I p-ranks of the A11 was posed as problem by Moorhouse.



Orthogonal, unitary groups, hyperplanes, opposites

I V = V (q), quadratic form or V (q2) with Hermitian form.
I P be the set of singular points, P∗ the set of polar

hyperplanes
I P̂,P̂∗ sets of all points and hyperplanes.
I Subdivide incidence matrix A of (P̂,P̂∗)

A =

(
A11 A12
A21 A22

)
, A1 =

(
A11 A12

)
I p-rank of A is well known.
I p-ranks of the A1 were determined by Blokhuis and

Moorhouse.
I p-ranks of the A11 was posed as problem by Moorhouse.



Orthogonal, unitary groups, hyperplanes, opposites

I V = V (q), quadratic form or V (q2) with Hermitian form.
I P be the set of singular points, P∗ the set of polar

hyperplanes
I P̂,P̂∗ sets of all points and hyperplanes.
I Subdivide incidence matrix A of (P̂,P̂∗)

A =

(
A11 A12
A21 A22

)
, A1 =

(
A11 A12

)
I p-rank of A is well known.
I p-ranks of the A1 were determined by Blokhuis and

Moorhouse.
I p-ranks of the A11 was posed as problem by Moorhouse.



Orthogonal, unitary groups, hyperplanes, opposites

I V = V (q), quadratic form or V (q2) with Hermitian form.
I P be the set of singular points, P∗ the set of polar

hyperplanes
I P̂,P̂∗ sets of all points and hyperplanes.
I Subdivide incidence matrix A of (P̂,P̂∗)

A =

(
A11 A12
A21 A22

)
, A1 =

(
A11 A12

)
I p-rank of A is well known.
I p-ranks of the A1 were determined by Blokhuis and

Moorhouse.
I p-ranks of the A11 was posed as problem by Moorhouse.



Orthogonal case

Theorem
Suppose dim V (q) = n ≥ 4. The following hold.
(a) Assume p = 2. Then

rankp A11 =

{
1 + nt , if n is even,
1 + (n − 1)t , if n is odd.



Theorem
(cont’d)
(b) Assume p > 2. Then the p-rank depends on whether there

exists a positive integer u such that

u ≡ n (mod 2) and n − 3 ≤ up ≤ p + n − 5.

If u exists then

rankp A11 = 1 + (

(
n + p − 2

n − 1

)
−
(

n + p − 4
n − 1

)
−
(

up + 2
n − 1

)
+

(
up

n − 1

)
)t .

Otherwise,

rankp A11 = 1 + (

(
n + p − 2

n − 1

)
−
(

n + p − 4
n − 1

)
)t .



Remark
When n is even, there are two types of nondegenerate forms,
distinguished by the Witt index . However, the p-rank of A11 is
the same for both types.



Hermitian case

Theorem
Suppose dim V (q2) = n ≥ 4. The p-rank depends on the
existence of a positive integer u satisfying

n − 2 ≤ up ≤ p + n − 3

If u exists then

rankp A11 = 1 + (

(
n + p − 2

n − 1

)2

−
(

n + p − 3
n − 1

)2

−
(

up + 1
n − 1

)2

+

(
up

n − 1

)2

)t .

Otherwise,

rankp A11 = 1 +

[(
n + p − 2

n − 1

)2

−
(

n + p − 3
n − 1

)2
]t

.



I When n = 3 or 4, the totally isotropic subspaces of
dimensions one and two form the points and lines of the
Hermitian generalized quadrangle.

I The p-rank of the incidence relation of points and lines of
this generalized quadrangle is still unknown in general.

I we can also compute point-hyperplane p-ranks for
DH(4,q2).

Theorem
The p-rank of the point-hyperplane incidence matrix A11 for the
dual Hermitian generalized quadrangle DH(4,q2) is as follows.

(a) If p > 2 then

rankp A11 = 1 + (
p(p + 1)

32

(
2p + 2

3

)2

− p(p − 1)

32

(
2p
3

)2

+
p
2

(
p + 1

3

)2

)t .

(b) If p = 2 then rank2 A11 = 1 + 74t .



I When n = 3 or 4, the totally isotropic subspaces of
dimensions one and two form the points and lines of the
Hermitian generalized quadrangle.

I The p-rank of the incidence relation of points and lines of
this generalized quadrangle is still unknown in general.

I we can also compute point-hyperplane p-ranks for
DH(4,q2).

Theorem
The p-rank of the point-hyperplane incidence matrix A11 for the
dual Hermitian generalized quadrangle DH(4,q2) is as follows.

(a) If p > 2 then

rankp A11 = 1 + (
p(p + 1)

32

(
2p + 2

3

)2

− p(p − 1)

32

(
2p
3

)2

+
p
2

(
p + 1

3

)2

)t .

(b) If p = 2 then rank2 A11 = 1 + 74t .



I When n = 3 or 4, the totally isotropic subspaces of
dimensions one and two form the points and lines of the
Hermitian generalized quadrangle.

I The p-rank of the incidence relation of points and lines of
this generalized quadrangle is still unknown in general.

I we can also compute point-hyperplane p-ranks for
DH(4,q2).

Theorem
The p-rank of the point-hyperplane incidence matrix A11 for the
dual Hermitian generalized quadrangle DH(4,q2) is as follows.

(a) If p > 2 then

rankp A11 = 1 + (
p(p + 1)

32

(
2p + 2

3

)2

− p(p − 1)

32

(
2p
3

)2

+
p
2

(
p + 1

3

)2

)t .

(b) If p = 2 then rank2 A11 = 1 + 74t .



I When n = 3 or 4, the totally isotropic subspaces of
dimensions one and two form the points and lines of the
Hermitian generalized quadrangle.

I The p-rank of the incidence relation of points and lines of
this generalized quadrangle is still unknown in general.

I we can also compute point-hyperplane p-ranks for
DH(4,q2).

Theorem
The p-rank of the point-hyperplane incidence matrix A11 for the
dual Hermitian generalized quadrangle DH(4,q2) is as follows.

(a) If p > 2 then

rankp A11 = 1 + (
p(p + 1)

32

(
2p + 2

3

)2

− p(p − 1)

32

(
2p
3

)2

+
p
2

(
p + 1

3

)2

)t .

(b) If p = 2 then rank2 A11 = 1 + 74t .



I When n = 3 or 4, the totally isotropic subspaces of
dimensions one and two form the points and lines of the
Hermitian generalized quadrangle.

I The p-rank of the incidence relation of points and lines of
this generalized quadrangle is still unknown in general.

I we can also compute point-hyperplane p-ranks for
DH(4,q2).

Theorem
The p-rank of the point-hyperplane incidence matrix A11 for the
dual Hermitian generalized quadrangle DH(4,q2) is as follows.

(a) If p > 2 then

rankp A11 = 1 + (
p(p + 1)

32

(
2p + 2

3

)2

− p(p − 1)

32

(
2p
3

)2

+
p
2

(
p + 1

3

)2

)t .

(b) If p = 2 then rank2 A11 = 1 + 74t .



I When n = 3 or 4, the totally isotropic subspaces of
dimensions one and two form the points and lines of the
Hermitian generalized quadrangle.

I The p-rank of the incidence relation of points and lines of
this generalized quadrangle is still unknown in general.

I we can also compute point-hyperplane p-ranks for
DH(4,q2).

Theorem
The p-rank of the point-hyperplane incidence matrix A11 for the
dual Hermitian generalized quadrangle DH(4,q2) is as follows.

(a) If p > 2 then

rankp A11 = 1 + (
p(p + 1)

32

(
2p + 2

3

)2

− p(p − 1)

32

(
2p
3

)2

+
p
2

(
p + 1

3

)2

)t .

(b) If p = 2 then rank2 A11 = 1 + 74t .



I The reduction of the p-rank problem to simple modules is
achieved by reformulating it in terms of representations of
the associated finite classical group.

I By algebraic group representations, we find the structure of
H0(rω) for 0 ≤ r ≤ p − 1.

I Corresponding results for the 27-dimensional module for
the exceptional group E6. (Submitted to the conference
proceedings.)
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