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GL(V ) acting on P(V )

I V a vector space over Fq.
I GL(V ) acts doubly transitively on the set P of

1-dimensional subspaces of V .
I F an algebraically closed field of characteristic ` - q.
I F P the FG-permutation module.
I If ` - |P|, F P = F ⊕ X

I F

X
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Figure: F P when ` | |P|
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I Suppose V has a non-dengenerate quadratic form or
symplectic form, or a vector space over Fq2 with a
nonsingular hermitian form.

I G, the subgroup of GL(V ) preserving the form.
I P0 the set of singular 1-spaces (points).
I Action of G on P0 is transitive of rank 3
I Let Ψ, Φ be the nondiagonal orbits of G on P0 × P0, with Φ

the set of singular pairs.
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Characteristic zero

I ∆ : F P0 → F P0 , x 7→
∑

(x ,y)∈Ψ y

I F P0 = F1⊕ X ⊕ Y
I D. G. Higman (1960s)
I The summands are the eigenspaces ∆.
I Let k be the eigenvalue of 1, c and d the other

eigenvalues.
I ∆ is adjacency map of a strongly regular graph
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I Liebeck (1980-81) studied F P0 under the assumption c 6= d
I graph submodules U ′c , U ′d , where

U ′λ = 〈(∆− λI)(x − x ′) |, x , x ′ ∈ X 〉
I Found the submodule structures of F X in these cases.
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Structure of F P0 when c 6= d

a /∈ {c,d} :

F ⊕ X ⊕ Y

a ∈ {c,d} : F

X ⊕ Y

F

Figure: The cases c 6= d
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F P0 when c = d

I Sp(2m,q) q odd, ` = 2 ( Lataille-Sin-Tiep (2003))
I m even : F
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Figure: Sp(2m,q), q odd, ` = 2



F P0 when c = d

I Sp(2m,q) q odd, ` = 2 ( Lataille-Sin-Tiep (2003))
I m even : F

X

F
{{
{ CC

C

W1
CC

C
W2

{{
{

F

X

F

m odd : X
FFF

F F
xxx
x

W1
FFF

F
W2

xxx
x

X F

Figure: Sp(2m,q), q odd, ` = 2



Structure of module of lines for m = 2, ` = 2

F

W
||
|

11
11

11
1

F

X Y






F
BB

B

W

F

Figure: lines for Sp(4,q), q odd, ` = 2



Related work on GQ codes

The F2-permutation modules for rank 2 groups of odd
characteristic have been studied in small ranks by
Bagchi-Brouwer-Wilbrink (1991), and
Brouwer-Haemers-Wilbrink (1992) in connection with the
F2-codes associated with generalized quadrangles.



F P0, remaining c = d cases

I Sin-Tiep (2005)
I GU(2m,q2) with m ≥ 2 and `|(q + 1)

I GU(2m + 1,q2) when m ≥ 2, `|(q + 1)

I GO(2m + 1,q) with m ≥ 3, q odd and ` = 2
I GO+(2m,q) with m ≥ 3 and `|(q + 1)

I GO−(2m,q) with m ≥ 3 and `|(q + 1)
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Unitary groups in even dimension
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Figure: F P0 for GU(2m,q2) when ` | (q + 1).



Unitary groups in odd dimension
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Figure: Submodule structure of F P0 for GU(2m + 1,q2) when
` | (q + 1) and ` is odd or ` = 2 and q ≡ 3(mod 4).



Unitary groups in odd dimension
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Figure: Submodule structure of F P0 for GU(2m + 1,q2) when ` = 2
and q ≡ 1(mod 4).



Orthogonal groups in odd dimension
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Figure: Submodule structure of F P0 for GO(2m + 1,q), q odd, when
` = 2.



Orthogonal groups in even dimension, maximal index
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Figure: Submodule structure of F P0 for GO+(2m,q) when ` 6= 2 and
` | (q + 1).
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Orthogonal groups in even dimension, minimal index

m even : X

F ⊕ D

X

m odd : F

X
~~~ @@@

D
@@@

F
~~~

X

F

Figure: Submodule structure of F P0 for GO−(2m,q) when ` 6= 2 and
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Orthogonal groups in even dimension, minimal index
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Figure: Submodule structure of F P0 for GO−(2m,q), q odd, when
` = 2.



Remarks

I In all cases, the dimensions and Brauer characters of the
composition factors are computed.

I One can identify the “geometric” submodules, such as
those generated by the characteristic vectors of the max.
isotropic subspaces.
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Further work

I Hall-Nguyen, rank 3 permutation modules on nonsingular
points, O±2m(2), m ≥ 2 and Um(2), m ≥ 4.

I There are two rank 3 permutation modules for E6(q),
related by an automorphism.
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Coding theory examples

The cross-characteristic theory, in particular ` = 2, shows up in
coding theory, in connection with structured Low Density Parity
Check (LDPC) Codes. These may use the F2-incidence
matrices of a family of geometrically defined incidence relations
as generator or parity-check matrices.



LU(3, q) codes

I V a 4-dimensional vector space over the field Fq

I Assume V has a nonsingular alternating bilinear form.
I P = P(V ), L = the set of totally isotropic 2-dimensional

subspaces , lines in P.
I Fix a point p0 and a line `0 through p0.
I P1 = P \ p⊥0 ,
I L1 = set of lines that do not meet `0.
I Consider the incidence systems (P1,L1),
I M(P,L), M(P1,L1) incidence matrices with F2 entries.
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LU(3, q) codes

I LU(3,q) codes defined by Kim, Peled, Perepelitsa, Pless,
Friedland (2004)

I P∗ and L∗ sets in bijection with Fq
3

I (a,b, c) ∈ P∗ is incident with [x , y , z] ∈ L∗ iff

y = ax + b and z = ay + c.

I The LU(3,q) codes are defined using the incidence matrix
and its transpose as parity check matrices.

I Kim et. al. gave a conjecture for dim LU(3,q), q odd.
I One can show the incidence systems (P∗,L∗) is equivalent

to (P1,L1).
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I If q is odd, rank2 M(P,L) = (q3 + 2q2 + q + 2)/2.
(Bagchi-Brouwer-Wilbrink, 1991)

I If q is even, rank2 M(P,L) = 1 + (1+
√

17
2 )2t + (1−

√
17

2 )2t .
(Sastry-Sin)

I If q is odd, rank2 M(P1,L1) = rank2 M(P,L)− 2q.
(Sin-Xiang, 2006)

I If q is even, rank2 M(P1,L1) = rank2 M(P,L)− 2q. (Arslan,
2009)
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I If q is even, rank2 M(P1,L1) = rank2 M(P,L)− 2q. (Arslan,
2009)



Codes from a conic

I PG(2,q), q odd.
I O conic.
I Points: O, E (external) I (internal)
I Lines: Ta (tangent) , Se (secant), Pa (passant)
I Droms and Mellinger used the various point-line incidence

matrices to define families of LDPC codes.
I Conjectures for dimensions based on computer

calculations.
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Conjectures of Droms and Mellinger

I

rank2 A(E ,Se) =

{
1
4(q − 1)2 + 1, if q ≡ 1 (mod 4),
1
4(q − 1)2 − 1, if q ≡ 3 (mod 4).

I Sin-Xiang-Wu (2011) gave a proof.
I Proof uses detailed information about 2-blocks of SL(2,q)

(Landrock 1980).
I Wu has recently solved the corresponding 2-rank

conjectures of Droms and Mellinger for the other possible
incidences of points and lines.
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