Permutation modules and *p*-ranks of Incidence Matrices Part 3: Cross-characteristic

Peter Sin

University of Florida

Groups and Geometries, ISI Bangalore, December 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Permutation modules and *p*-ranks of Incidence Matrices Part 3: Cross-characteristic

Peter Sin

University of Florida

Groups and Geometries, ISI Bangalore, December 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A cross-characteristic example

Permutation modules for classical groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Characteristic zero

Results of Liebeck

The cases c = d

Some Applications

Outline

A cross-characteristic example

Permutation modules for classical groups

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Characteristic zero

Results of Liebeck

The cases c = d

Some Applications

• V a vector space over \mathbf{F}_q .

- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- ► *F^P* the *FG*-permutation module.
- ▶ If $\ell \nmid |P|$, $F^P = F \oplus X$

Figure: F^P when $\ell \mid \mid P$

- V a vector space over F_q.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- ► *F^P* the *FG*-permutation module.

▶ If $\ell \nmid |P|$, $F^P = F \oplus X$

Figure: F^P when $\ell \mid \mid P$

- V a vector space over F_q.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- ► *F* an algebraically closed field of characteristic $l \nmid q$.
- ► *F^P* the *FG*-permutation module.

▶ If $\ell \nmid |P|$, $F^P = F \oplus X$

Figure: F^P when $\ell \mid \mid P$

- V a vector space over F_q.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- ► *F* an algebraically closed field of characteristic $l \nmid q$.
- F^P the FG-permutation module.

► If $\ell \nmid |P|$, $F^P = F \oplus X$ ► F \downarrow X \downarrow FFigure: F^P when $\ell \mid \downarrow$

- V a vector space over F_q.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- F^P the FG-permutation module.

► If
$$\ell \nmid |P|$$
, $F^P = F \oplus X$

Figure: F^P when $\ell \mid \mid P$

- V a vector space over F_q.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- F^P the FG-permutation module.

► If
$$\ell \nmid |P|$$
, $F^P = F \oplus X$

Figure: F^P when $\ell \mid |P|$

A cross-characteristic example

Permutation modules for classical groups

Characteristic zero

Results of Liebeck

The cases c = d

Some Applications

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over F_{q²} with a nonsingular hermitian form.
- G, the subgroup of **GL**(V) preserving the form.
- \triangleright **P**₀ the set of singular 1-spaces (points).
- Action of G on \mathbf{P}_0 is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on P₀ × P₀, with Φ the set of singular pairs.

- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over F_{q²} with a nonsingular hermitian form.
- G, the subgroup of **GL**(V) preserving the form.
- **P** $_0$ the set of singular 1-spaces (points).
- Action of G on P₀ is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on P₀ × P₀, with Φ the set of singular pairs.

- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over F_{q²} with a nonsingular hermitian form.
- *G*, the subgroup of GL(V) preserving the form.
- ▶ **P**₀ the set of singular 1-spaces (points).
- Action of G on P₀ is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on P₀ × P₀, with Φ the set of singular pairs.

- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over F_{q²} with a nonsingular hermitian form.
- *G*, the subgroup of GL(V) preserving the form.
- ▶ **P**₀ the set of singular 1-spaces (points).
- Action of G on P₀ is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on P₀ × P₀, with Φ the set of singular pairs.

- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over F_{q²} with a nonsingular hermitian form.
- *G*, the subgroup of GL(V) preserving the form.
- ▶ **P**₀ the set of singular 1-spaces (points).
- Action of G on P₀ is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on P₀ × P₀, with Φ the set of singular pairs.

A cross-characteristic example

Permutation modules for classical groups

Characteristic zero

Results of Liebeck

The cases *c* = *d*

Some Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$\blacktriangleright \Delta: F^{\mathbf{P}_0} \to F^{\mathbf{P}_0}, x \mapsto \sum_{(x,y) \in \Psi} y$

- $\blacktriangleright F^{\mathbf{P}_0} = \mathbf{F1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ .
- ► Let *k* be the eigenvalue of **1**, *c* and *d* the other eigenvalues.
- Δ is adjacency map of a *strongly regular graph*

$\blacktriangleright \Delta: F^{\mathbf{P}_0} \to F^{\mathbf{P}_0}, x \mapsto \sum_{(x,y) \in \Psi} y$

- $\blacktriangleright F^{\mathbf{P}_0} = \mathbf{F1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ .
- ► Let *k* be the eigenvalue of **1**, *c* and *d* the other eigenvalues.
- Δ is adjacency map of a *strongly regular graph*

- $\blacktriangleright \Delta: \mathcal{F}^{\mathbf{P}_0} \to \mathcal{F}^{\mathbf{P}_0}, \, x \mapsto \sum_{(x,y) \in \Psi} y$
- $\blacktriangleright F^{\mathbf{P}_0} = \mathbf{F1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ .
- ► Let *k* be the eigenvalue of **1**, *c* and *d* the other eigenvalues.
- Δ is adjacency map of a *strongly regular graph*

- $\blacktriangleright \Delta: F^{\mathbf{P}_0} \to F^{\mathbf{P}_0}, x \mapsto \sum_{(x,y) \in \Psi} y$
- $\blacktriangleright F^{\mathbf{P}_0} = \mathbf{F1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ .
- Let k be the eigenvalue of 1, c and d the other eigenvalues.
- Δ is adjacency map of a *strongly regular graph*

- $\blacktriangleright \Delta: F^{\mathbf{P}_0} \to F^{\mathbf{P}_0}, x \mapsto \sum_{(x,y) \in \Psi} y$
- $\blacktriangleright F^{\mathbf{P}_0} = \mathbf{F1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ .
- Let k be the eigenvalue of 1, c and d the other eigenvalues.
- Δ is adjacency map of a *strongly regular graph*

- $\blacktriangleright \Delta: F^{\mathbf{P}_0} \to F^{\mathbf{P}_0}, \, x \mapsto \sum_{(x,y) \in \Psi} y$
- $\blacktriangleright F^{\mathbf{P}_0} = \mathbf{F1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ .
- Let k be the eigenvalue of 1, c and d the other eigenvalues.
- Δ is adjacency map of a strongly regular graph

A cross-characteristic example

Permutation modules for classical groups

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Characteristic zero

Results of Liebeck

The cases c = d

Some Applications

▶ Liebeck (1980-81) studied $F^{\mathbf{P}_0}$ under the assumption $c \neq d$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

► graph submodules U'_{c} , U'_{d} , where $U'_{\lambda} = \langle (\Delta - \lambda I)(x - x') |, x, x' \in X \rangle$

Found the submodule structures of F^X in these cases.

▶ Liebeck (1980-81) studied $F^{\mathbf{P}_0}$ under the assumption $c \neq d$

- ► graph submodules U'_c , U'_d , where $U'_{\lambda} = \langle (\Delta - \lambda I)(x - x') |, x, x' \in X \rangle$
- Found the submodule structures of F^X in these cases.

▶ Liebeck (1980-81) studied $F^{\mathbf{P}_0}$ under the assumption $c \neq d$

- graph submodules U'_c , U'_d , where $U'_{\lambda} = \langle (\Delta - \lambda I)(x - x') |, x, x' \in X \rangle$
- Found the submodule structures of F^X in these cases.

Structure of $F^{\mathbf{P}_0}$ when $c \neq d$

Figure: The cases $c \neq d$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A cross-characteristic example

Permutation modules for classical groups

Characteristic zero

Results of Liebeck

The cases c = d

Some Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▶ **Sp**(2m, q) q odd, $\ell = 2$ (Lataille-Sin-Tiep (2003))

Figure: **Sp**(2m, q), q odd, $\ell = 2$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $F^{\mathbf{P}_0}$ when c = d

▶ **Sp**(2m, q) q odd, $\ell = 2$ (Lataille-Sin-Tiep (2003))

Figure: **Sp**(2m, q), q odd, $\ell = 2$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Structure of module of lines for $m = 2, \ell = 2$

Figure: lines for **Sp**(4, q), q odd, $\ell = 2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The F_2 -permutation modules for rank 2 groups of odd characteristic have been studied in small ranks by Bagchi-Brouwer-Wilbrink (1991), and Brouwer-Haemers-Wilbrink (1992) in connection with the F_2 -codes associated with generalized quadrangles.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sin-Tiep (2005)

- **GU** $(2m, q^2)$ with $m \ge 2$ and $\ell | (q + 1)$
- **GU** $(2m+1, q^2)$ when $m \ge 2, \ell | (q+1)$
- **GO**(2m+1, q) with $m \ge 3$, q odd and $\ell = 2$

- $\mathbf{GO}^+(2m,q)$ with $m \ge 3$ and $\ell|(q+1)$
- $\mathbf{GO}^{-}(2m,q)$ with $m \geq 3$ and $\ell|(q+1)$

Sin-Tiep (2005)

- **GU** $(2m, q^2)$ with $m \ge 2$ and $\ell | (q + 1)$
- **GU** $(2m+1, q^2)$ when $m \ge 2, \ell | (q+1)$
- **GO**(2m+1, q) with $m \ge 3$, q odd and $\ell = 2$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- $\mathbf{GO}^+(2m,q)$ with $m \ge 3$ and $\ell|(q+1)$
- **GO**⁻(2*m*, *q*) with $m \ge 3$ and $\ell | (q + 1)$

- Sin-Tiep (2005)
- **GU** $(2m, q^2)$ with $m \ge 2$ and $\ell | (q + 1)$
- **GU** $(2m + 1, q^2)$ when $m \ge 2, \ell | (q + 1)$
- **GO**(2m+1, q) with $m \ge 3$, q odd and $\ell = 2$

- $\mathbf{GO}^+(2m,q)$ with $m \ge 3$ and $\ell|(q+1)$
- **GO**⁻(2*m*, *q*) with $m \ge 3$ and $\ell | (q + 1)$

- Sin-Tiep (2005)
- **GU** $(2m, q^2)$ with $m \ge 2$ and $\ell | (q + 1)$
- **GU** $(2m+1, q^2)$ when $m \ge 2, \ell | (q+1)$
- **GO**(2m+1, q) with $m \ge 3$, q odd and $\ell = 2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\mathbf{GO}^+(2m,q)$ with $m \ge 3$ and $\ell|(q+1)$
- $\mathbf{GO}^{-}(2m,q)$ with $m \geq 3$ and $\ell|(q+1)$

- Sin-Tiep (2005)
- **GU** $(2m, q^2)$ with $m \ge 2$ and $\ell | (q + 1)$
- **GU** $(2m + 1, q^2)$ when $m \ge 2, \ell | (q + 1)$
- **GO**(2m+1, q) with $m \ge 3$, q odd and $\ell = 2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\mathbf{GO}^+(2m,q)$ with $m \ge 3$ and $\ell|(q+1)$
- **GO**⁻(2*m*, *q*) with $m \ge 3$ and $\ell | (q + 1)$

- Sin-Tiep (2005)
- **GU** $(2m, q^2)$ with $m \ge 2$ and $\ell | (q + 1)$
- **GU** $(2m + 1, q^2)$ when $m \ge 2, \ell | (q + 1)$
- **GO**(2m+1, q) with $m \ge 3$, q odd and $\ell = 2$

- $\mathbf{GO}^+(2m,q)$ with $m \ge 3$ and $\ell|(q+1)$
- $\mathbf{GO}^{-}(2m,q)$ with $m \geq 3$ and $\ell|(q+1)$

Unitary groups in even dimension

Figure: $F^{\mathbf{P}_0}$ for $\mathbf{GU}(2m, q^2)$ when $\ell \mid (q+1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unitary groups in odd dimension

Figure: Submodule structure of $F^{\mathbf{P}_0}$ for $\mathbf{GU}(2m+1,q^2)$ when $\ell \mid (q+1)$ and ℓ is odd or $\ell = 2$ and $q \equiv 3 \pmod{4}$.

Unitary groups in odd dimension

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Submodule structure of $F^{\mathbf{P}_0}$ for $\mathbf{GU}(2m+1, q^2)$ when $\ell = 2$ and $q \equiv 1 \pmod{4}$.

Orthogonal groups in odd dimension

Figure: Submodule structure of $F^{\mathbf{P}_0}$ for $\mathbf{GO}(2m+1, q)$, q odd, when $\ell = 2$.

Orthogonal groups in even dimension, maximal index

Figure: Submodule structure of $F^{\mathbf{P}_0}$ for $\mathbf{GO}^+(2m,q)$ when $\ell \neq 2$ and $\ell \mid (q+1)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Orthogonal groups in even diemsnion, maximal index

m odd :

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Figure: Submodule structure of $F^{\mathbf{P}_0}$ for $\mathbf{GO}^+(2m, q)$, q odd, when $\ell = 2$.

Orthogonal groups in even dimension, minimal index

Figure: Submodule structure of $F^{\mathbf{P}_0}$ for $\mathbf{GO}^-(2m, q)$ when $\ell \neq 2$ and $\ell \mid (q + 1)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Orthogonal groups in even dimension, minimal index

Figure: Submodule structure of $F^{\mathbf{P}_0}$ for $\mathbf{GO}^-(2m, q)$, q odd, when $\ell = 2.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- In all cases, the dimensions and Brauer characters of the composition factors are computed.
- One can identify the "geometric" submodules, such as those generated by the characteristic vectors of the max. isotropic subspaces.

- In all cases, the dimensions and Brauer characters of the composition factors are computed.
- One can identify the "geometric" submodules, such as those generated by the characteristic vectors of the max. isotropic subspaces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ► Hall-Nguyen, rank 3 permutation modules on nonsingular points, O[±]_{2m}(2), m ≥ 2 and U_m(2), m ≥ 4.
- There are two rank 3 permutation modules for E₆(q), related by an automorphism.

► Hall-Nguyen, rank 3 permutation modules on nonsingular points, O[±]_{2m}(2), m ≥ 2 and U_m(2), m ≥ 4.

(ロ) (同) (三) (三) (三) (○) (○)

There are two rank 3 permutation modules for E₆(q), related by an automorphism.

A cross-characteristic example

Permutation modules for classical groups

Characteristic zero

Results of Liebeck

The cases *c* = *d*

Some Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The cross-characteristic theory, in particular $\ell = 2$, shows up in coding theory, in connection with structured Low Density Parity Check (LDPC) Codes. These may use the **F**₂-incidence matrices of a family of geometrically defined incidence relations as generator or parity-check matrices.

V a 4-dimensional vector space over the field F_q

- ► Assume *V* has a nonsingular alternating bilinear form.
- ► P = P(V), L = the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_0 and a line ℓ_0 through p_0 .
- $\blacktriangleright P_1 = P \setminus p_0^{\perp},$
- L_1 = set of lines that do not meet ℓ_0 .
- Consider the incidence systems (P_1, L_1) ,
- ► M(P, L), $M(P_1, L_1)$ incidence matrices with **F**₂ entries.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- V a 4-dimensional vector space over the field F_q
- ► Assume *V* has a nonsingular alternating bilinear form.
- ► P = P(V), L = the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_0 and a line ℓ_0 through p_0 .
- $\blacktriangleright P_1 = P \setminus p_0^{\perp},$
- L_1 = set of lines that do not meet ℓ_0 .
- Consider the incidence systems (P_1, L_1) ,
- ► M(P, L), $M(P_1, L_1)$ incidence matrices with **F**₂ entries.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- V a 4-dimensional vector space over the field F_q
- ► Assume *V* has a nonsingular alternating bilinear form.
- ► P = P(V), L = the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_0 and a line ℓ_0 through p_0 .
- $\blacktriangleright P_1 = P \setminus p_0^{\perp},$
- L_1 = set of lines that do not meet ℓ_0 .
- Consider the incidence systems (P_1, L_1) ,
- ► M(P, L), $M(P_1, L_1)$ incidence matrices with **F**₂ entries.

- V a 4-dimensional vector space over the field F_q
- ► Assume *V* has a nonsingular alternating bilinear form.
- ► P = P(V), L = the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_0 and a line ℓ_0 through p_0 .
- $\blacktriangleright P_1 = P \setminus p_0^{\perp},$
- L_1 = set of lines that do not meet ℓ_0 .
- Consider the incidence systems (P_1, L_1) ,
- ► M(P, L), $M(P_1, L_1)$ incidence matrices with **F**₂ entries.

- V a 4-dimensional vector space over the field F_q
- ► Assume *V* has a nonsingular alternating bilinear form.
- ► P = P(V), L = the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_0 and a line ℓ_0 through p_0 .
- ► $P_1 = P \setminus p_0^{\perp}$,
- L_1 = set of lines that do not meet ℓ_0 .
- Consider the incidence systems (P_1, L_1) ,
- ► M(P, L), $M(P_1, L_1)$ incidence matrices with **F**₂ entries.

- V a 4-dimensional vector space over the field F_q
- ► Assume *V* has a nonsingular alternating bilinear form.
- ► P = P(V), L = the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_0 and a line ℓ_0 through p_0 .

$$\blacktriangleright P_1 = P \setminus p_0^{\perp},$$

- L_1 = set of lines that do not meet ℓ_0 .
- Consider the incidence systems (P_1, L_1) ,
- ► M(P, L), $M(P_1, L_1)$ incidence matrices with **F**₂ entries.

- V a 4-dimensional vector space over the field F_q
- ► Assume *V* has a nonsingular alternating bilinear form.
- ► P = P(V), L = the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_0 and a line ℓ_0 through p_0 .
- $\blacktriangleright P_1 = P \setminus p_0^{\perp},$
- L_1 = set of lines that do not meet ℓ_0 .
- Consider the incidence systems (P_1, L_1) ,
- ► M(P, L), $M(P_1, L_1)$ incidence matrices with **F**₂ entries.

- V a 4-dimensional vector space over the field F_q
- ► Assume *V* has a nonsingular alternating bilinear form.
- ► P = P(V), L = the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_0 and a line ℓ_0 through p_0 .

$$\blacktriangleright P_1 = P \setminus p_0^{\perp},$$

- L_1 = set of lines that do not meet ℓ_0 .
- Consider the incidence systems (P_1, L_1) ,
- ► M(P, L), $M(P_1, L_1)$ incidence matrices with **F**₂ entries.

 LU(3, q) codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)

• P^* and L^* sets in bijection with \mathbf{F}_q^3

• $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ iff

- ► The *LU*(3, *q*) codes are defined using the incidence matrix and its transpose as parity check matrices.
- Find the Kim et. al. gave a conjecture for dim LU(3, q), q odd.
- ► One can show the incidence systems (P*, L*) is equivalent to (P₁, L₁).

- LU(3, q) codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^* and L^* sets in bijection with \mathbf{F}_q^3
- $(a, b, c) \in P^*$ is incident with $[x, y, z] \in L^*$ iff

- ► The *LU*(3, *q*) codes are defined using the incidence matrix and its transpose as parity check matrices.
- Find the Kim et. al. gave a conjecture for dim LU(3, q), q odd.
- ► One can show the incidence systems (P*, L*) is equivalent to (P₁, L₁).

- LU(3, q) codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^* and L^* sets in bijection with \mathbf{F}_q^3
- (*a*, *b*, *c*) ∈ *P*^{*} is incident with [*x*, *y*, *z*] ∈ *L*^{*} iff

- ► The *LU*(3, *q*) codes are defined using the incidence matrix and its transpose as parity check matrices.
- Find the Kim et. al. gave a conjecture for dim LU(3, q), q odd.
- ► One can show the incidence systems (P*, L*) is equivalent to (P₁, L₁).

- LU(3, q) codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^* and L^* sets in bijection with \mathbf{F}_q^3
- (*a*, *b*, *c*) ∈ *P*^{*} is incident with [*x*, *y*, *z*] ∈ *L*^{*} iff

- The LU(3, q) codes are defined using the incidence matrix and its transpose as parity check matrices.
- Find the Kim et. al. gave a conjecture for dim LU(3, q), q odd.
- ► One can show the incidence systems (P*, L*) is equivalent to (P₁, L₁).

- LU(3, q) codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^* and L^* sets in bijection with \mathbf{F}_q^3
- (*a*, *b*, *c*) ∈ *P*^{*} is incident with [*x*, *y*, *z*] ∈ *L*^{*} iff

- The LU(3, q) codes are defined using the incidence matrix and its transpose as parity check matrices.
- Kim et. al. gave a conjecture for dim LU(3, q), q odd.
- ► One can show the incidence systems (P*, L*) is equivalent to (P₁, L₁).

- LU(3, q) codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^* and L^* sets in bijection with \mathbf{F}_q^3
- (*a*, *b*, *c*) ∈ *P*^{*} is incident with [*x*, *y*, *z*] ∈ *L*^{*} iff

- The LU(3, q) codes are defined using the incidence matrix and its transpose as parity check matrices.
- Kim et. al. gave a conjecture for dim LU(3, q), q odd.
- ► One can show the incidence systems (P*, L*) is equivalent to (P₁, L₁).

- If q is odd, $\operatorname{rank}_2 M(P, L) = (q^3 + 2q^2 + q + 2)/2$. (Bagchi-Brouwer-Wilbrink, 1991)
- ▶ If q is even, $\operatorname{rank}_2 M(P, L) = 1 + (\frac{1+\sqrt{17}}{2})^{2t} + (\frac{1-\sqrt{17}}{2})^{2t}$. (Sastry-Sin)
- ► If q is odd, $\operatorname{rank}_2 M(P_1, L_1) = \operatorname{rank}_2 M(P, L) 2q$. (Sin-Xiang, 2006)
- ▶ If q is even, $\operatorname{rank}_2 M(P_1, L_1) = \operatorname{rank}_2 M(P, L) 2q$. (Arslan, 2009)

- If q is odd, $\operatorname{rank}_2 M(P, L) = (q^3 + 2q^2 + q + 2)/2$. (Bagchi-Brouwer-Wilbrink, 1991)
- If q is even, rank₂ $M(P, L) = 1 + (\frac{1+\sqrt{17}}{2})^{2t} + (\frac{1-\sqrt{17}}{2})^{2t}$. (Sastry-Sin)
- ► If q is odd, $\operatorname{rank}_2 M(P_1, L_1) = \operatorname{rank}_2 M(P, L) 2q$. (Sin-Xiang, 2006)
- ▶ If q is even, $\operatorname{rank}_2 M(P_1, L_1) = \operatorname{rank}_2 M(P, L) 2q$. (Arslan, 2009)

- ► If q is odd, $\operatorname{rank}_2 M(P, L) = (q^3 + 2q^2 + q + 2)/2$. (Bagchi-Brouwer-Wilbrink, 1991)
- ► If q is even, $\operatorname{rank}_2 M(P, L) = 1 + (\frac{1+\sqrt{17}}{2})^{2t} + (\frac{1-\sqrt{17}}{2})^{2t}$. (Sastry-Sin)
- If q is odd, $\operatorname{rank}_2 M(P_1, L_1) = \operatorname{rank}_2 M(P, L) 2q$. (Sin-Xiang, 2006)
- ▶ If q is even, $\operatorname{rank}_2 M(P_1, L_1) = \operatorname{rank}_2 M(P, L) 2q$. (Arslan, 2009)

- ► If q is odd, $\operatorname{rank}_2 M(P, L) = (q^3 + 2q^2 + q + 2)/2$. (Bagchi-Brouwer-Wilbrink, 1991)
- ► If q is even, $\operatorname{rank}_2 M(P, L) = 1 + (\frac{1+\sqrt{17}}{2})^{2t} + (\frac{1-\sqrt{17}}{2})^{2t}$. (Sastry-Sin)
- ► If q is odd, $\operatorname{rank}_2 M(P_1, L_1) = \operatorname{rank}_2 M(P, L) 2q$. (Sin-Xiang, 2006)
- ▶ If q is even, $\operatorname{rank}_2 M(P_1, L_1) = \operatorname{rank}_2 M(P, L) 2q$. (Arslan, 2009)

▶ *PG*(2, *q*), *q* odd.

- O conic.
- ▶ Points: *O*, *E* (external) *I* (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- ▶ *PG*(2, *q*), *q* odd.
- O conic.
- ▶ Points: *O*, *E* (external) *I* (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- ▶ *PG*(2, *q*), *q* odd.
- O conic.

Points: O, E (external) I (internal)

- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- ▶ *PG*(2, *q*), *q* odd.
- O conic.
- Points: O, E (external) I (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ► *PG*(2, *q*), *q* odd.
- O conic.
- Points: O, E (external) I (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ▶ *PG*(2, *q*), *q* odd.
- O conic.
- Points: O, E (external) I (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$\operatorname{rank}_2 A(E, Se) = egin{cases} rac{1}{4}(q-1)^2 + 1, & ext{if } q \equiv 1 \pmod{4}, \ rac{1}{4}(q-1)^2 - 1, & ext{if } q \equiv 3 \pmod{4}. \end{cases}$

- Sin-Xiang-Wu (2011) gave a proof.
- Proof uses detailed information about 2-blocks of SL(2, q) (Landrock 1980).
- Wu has recently solved the corresponding 2-rank conjectures of Droms and Mellinger for the other possible incidences of points and lines.

$$\operatorname{rank}_2 A(E, Se) = \begin{cases} \frac{1}{4}(q-1)^2 + 1, & \text{if } q \equiv 1 \pmod{4}, \\ \frac{1}{4}(q-1)^2 - 1, & \text{if } q \equiv 3 \pmod{4}. \end{cases}$$

Sin-Xiang-Wu (2011) gave a proof.

- Proof uses detailed information about 2-blocks of SL(2, q) (Landrock 1980).
- Wu has recently solved the corresponding 2-rank conjectures of Droms and Mellinger for the other possible incidences of points and lines.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\operatorname{rank}_2 A(E, Se) = \begin{cases} \frac{1}{4}(q-1)^2 + 1, & \text{if } q \equiv 1 \pmod{4}, \\ \frac{1}{4}(q-1)^2 - 1, & \text{if } q \equiv 3 \pmod{4}. \end{cases}$$

- Sin-Xiang-Wu (2011) gave a proof.
- Proof uses detailed information about 2-blocks of SL(2, q) (Landrock 1980).
- Wu has recently solved the corresponding 2-rank conjectures of Droms and Mellinger for the other possible incidences of points and lines.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

rank₂
$$A(E, Se) = \begin{cases} \frac{1}{4}(q-1)^2 + 1, & \text{if } q \equiv 1 \pmod{4}, \\ \frac{1}{4}(q-1)^2 - 1, & \text{if } q \equiv 3 \pmod{4}. \end{cases}$$

- Sin-Xiang-Wu (2011) gave a proof.
- Proof uses detailed information about 2-blocks of SL(2, q) (Landrock 1980).
- Wu has recently solved the corresponding 2-rank conjectures of Droms and Mellinger for the other possible incidences of points and lines.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの