Permutation modules and p-ranks of Incidence Matrices Part 3: Cross-characteristic

Peter Sin

University of Florida

Groups and Geometries, ISI Bangalore, December 2012

Permutation modules and p-ranks of Incidence Matrices Part 3: Cross-characteristic

Peter Sin

University of Florida

Groups and Geometries, ISI Bangalore, December 2012

Outline

A cross-characteristic example

Permutation modules for classical groups

Characteristic zero

Results of Liebeck

The cases $c=d$

Some Applications

Outline

A cross-characteristic example

Permutation modules for classical groups

Characteristic zero

Results of Liebeck

The cases $c=d$

Some Applications

$\mathbf{G L}(V)$ acting on $\mathbf{P}(V)$

- V a vector space over F_{q}.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- F^{P} the FG-permutation module.
- If $\ell \nmid|P|, F^{P}=F \oplus X$

$\mathbf{G L}(V)$ acting on $\mathbf{P}(V)$

- V a vector space over F_{q}.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- F^{P} the FG-permutation module.

$\mathbf{G L}(V)$ acting on $\mathbf{P}(V)$

- V a vector space over F_{q}.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- F^{P} the $F G$-permutation module.

$\mathbf{G L}(V)$ acting on $\mathbf{P}(V)$

- V a vector space over F_{q}.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- F^{P} the $F G$-permutation module.

$\mathbf{G L}(V)$ acting on $\mathbf{P}(V)$

- V a vector space over F_{q}.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- F^{P} the $F G$-permutation module.
- If $\ell \nmid|P|, F^{P}=F \oplus X$

$\mathbf{G L}(V)$ acting on $\mathbf{P}(V)$

- V a vector space over F_{q}.
- GL(V) acts doubly transitively on the set P of 1-dimensional subspaces of V.
- F an algebraically closed field of characteristic $\ell \nmid q$.
- F^{P} the $F G$-permutation module.
- If $\ell \nmid|P|, F^{P}=F \oplus X$

Figure: F^{P} when $\ell||P|$

Outline

A cross-characteristic example

Permutation modules for classical groups

Characteristic zero

Results of Liebeck

The cases $c=d$

Some Applications

- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over $F_{q^{2}}$ with a nonsingular hermitian form.
- G, the subgroup of $\mathrm{GL}(V)$ preserving the form.
- \mathbf{P}_{0} the set of singular 1-spaces (points).
- Action of G on \mathbf{P}_{0} is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on $P_{0} \times P_{0}$, with Φ the set of singular pairs.
- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over $F_{q^{2}}$ with a nonsingular hermitian form.
- G, the subgroup of $\mathbf{G L}(V)$ preserving the form.
$>P_{0}$ the set of singular 1-spaces (points).
- Action of G on P_{0} is transitive of rank 3
- Let ψ, Φ be the nondiagonal orbits of G on $P_{0} \times P_{0}$, with Φ the set of singular pairs.
- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over $F_{q^{2}}$ with a nonsingular hermitian form.
- G, the subgroup of $\mathbf{G L}(V)$ preserving the form.
- \mathbf{P}_{0} the set of singular 1-spaces (points).
- Action of G on P_{0} is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on $\mathbf{P}_{0} \times \mathbf{P}_{0}$, with Φ the set of singular pairs.
- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over $\mathbf{F}_{q^{2}}$ with a nonsingular hermitian form.
- G, the subgroup of $\mathbf{G L}(V)$ preserving the form.
- \mathbf{P}_{0} the set of singular 1-spaces (points).
- Action of G on P_{0} is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on $P_{0} \times \mathbf{P}_{0}$, with Φ the set of singular pairs.
- Suppose V has a non-dengenerate quadratic form or symplectic form, or a vector space over $F_{q^{2}}$ with a nonsingular hermitian form.
- G, the subgroup of $\mathbf{G L}(V)$ preserving the form.
- \mathbf{P}_{0} the set of singular 1-spaces (points).
- Action of G on P_{0} is transitive of rank 3
- Let Ψ, Φ be the nondiagonal orbits of G on $\mathbf{P}_{0} \times \mathbf{P}_{0}$, with Φ the set of singular pairs.

Outline

A cross-characteristic example
 Permutation modules for classical groups

Characteristic zero

Results of Liebeck

The cases $c=d$

Some Applications

Characteristic zero

$-\Delta: F^{\mathbf{P}_{0}} \rightarrow F^{\mathbf{P}_{0}}, x \mapsto \sum_{(x, y) \in \Psi} y$
$\Rightarrow F^{P_{0}}=\mathrm{F} 1 \oplus X \oplus Y$

- D. G. Higman (1960s)
- The summands are the eigenspaces \triangle.
- Let k be the eigenvalue of $1, c$ and d the other eigenvalues.
- Δ is adjacency map of a strongly regular graph

Characteristic zero

$-\Delta: F^{\mathbf{P}_{0}} \rightarrow F^{\mathbf{P}_{0}}, x \mapsto \sum_{(x, y) \in \Psi} y$

- $F^{\mathbf{P}_{0}}=\mathbf{F} \mathbf{1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ.
- Let k be the eigenvalue of $\mathbf{1}, c$ and d the other eigenvalues.
- Δ is adjacency map of a strongly regular graph

Characteristic zero

$-\Delta: F^{\mathbf{P}_{0}} \rightarrow F^{\mathbf{P}_{0}}, x \mapsto \sum_{(x, y) \in \Psi} y$

- $F^{\mathbf{P}_{0}}=\mathbf{F} \mathbf{1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces \triangle.
- Let k be the eigenvalue of $\mathbf{1}, c$ and d the other eigenvalues.
- Δ is adjacency map of a strongly regular graph

Characteristic zero

$-\Delta: F^{\mathbf{P}_{0}} \rightarrow F^{\mathbf{P}_{0}}, x \mapsto \sum_{(x, y) \in \Psi} y$

- $F^{\mathbf{P}_{0}}=\mathbf{F} 1 \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ.
- Let k be the eigenvalue of $1, c$ and d the other eigenvalues.
- Δ is adjacency map of a strongly regular graph

Characteristic zero

$\Delta: F^{\mathbf{P}_{0}} \rightarrow F^{\mathbf{P}_{0}}, x \mapsto \sum_{(x, y) \in \Psi} y$

- $F^{\mathbf{P}_{0}}=\mathbf{F} 1 \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ.
- Let k be the eigenvalue of $\mathbf{1}, c$ and d the other eigenvalues.
$\rightarrow \Delta$ is adjacency map of a strongly regular graph

Characteristic zero

$\Delta \Delta: F^{\mathbf{P}_{0}} \rightarrow F^{\mathbf{P}_{0}}, x \mapsto \sum_{(x, y) \in \Psi} y$

- $F^{\mathbf{P}_{0}}=\mathbf{F 1} \oplus X \oplus Y$
- D. G. Higman (1960s)
- The summands are the eigenspaces Δ.
- Let k be the eigenvalue of $\mathbf{1}, c$ and d the other eigenvalues.
- Δ is adjacency map of a strongly regular graph

Outline

> A cross-characteristic example

> Permutation modules for classical groups

> Characteristic zero

Results of Liebeck

The cases $c=d$

Some Applications

- Liebeck (1980-81) studied $F^{P_{0}}$ under the assumption $c \neq d$
- graph submodules $U_{c}^{\prime}, U_{d}^{\prime}$, where $U_{\lambda}^{\prime}=\left\langle(\Delta-\lambda I)\left(x-x^{\prime}\right) \mid, x, x^{\prime} \in X\right\rangle$
- Found the submodule structures of F^{χ} in these cases.
- Liebeck (1980-81) studied $F^{P_{0}}$ under the assumption $c \neq d$
- graph submodules $U_{c}^{\prime}, U_{d}^{\prime}$, where

$$
U_{\lambda}^{\prime}=\left\langle(\Delta-\lambda I)\left(x-x^{\prime}\right) \mid, x, x^{\prime} \in X\right\rangle
$$

- Found the submodule structures of F^{X} in these cases.
- Liebeck (1980-81) studied $F^{P_{0}}$ under the assumption $c \neq d$
- graph submodules $U_{c}^{\prime}, U_{d}^{\prime}$, where $U_{\lambda}^{\prime}=\left\langle(\Delta-\lambda I)\left(x-x^{\prime}\right) \mid, x, x^{\prime} \in X\right\rangle$
- Found the submodule structures of F^{X} in these cases.

Structure of $F^{\mathrm{P}_{0}}$ when $c \neq d$

$$
\begin{array}{lllll}
a \notin\{c, d\}: & & a \in\{c, d\}: & & F \\
& F \oplus X \oplus Y & & X \oplus \begin{array}{l}
1 \\
Y \\
\end{array} & \\
& & & \\
& & &
\end{array}
$$

Figure: The cases $c \neq d$

Outline

A cross－characteristic example
 Permutation modules for classical groups
 Characteristic zero
 Results of Liebeck

The cases $c=d$

Some Applications

4 $\square>4$ 司 >4 三 >4 三

$F^{P_{0}}$ when $c=d$

- $\operatorname{Sp}(2 m, q) q$ odd, $\ell=2$ (Lataille-Sin-Tiep (2003))

$F^{P_{0}}$ when $c=d$

- $\operatorname{Sp}(2 m, q) q$ odd, $\ell=2$ (Lataille-Sin-Tiep (2003))
- m even:

Figure: $\mathbf{S p}(2 m, q), q$ odd, $\ell=2$

Structure of module of lines for $m=2, \ell=2$

Figure: lines for $\mathbf{S p}(4, q), q$ odd, $\ell=2$

Related work on GQ codes

The \mathbf{F}_{2}-permutation modules for rank 2 groups of odd characteristic have been studied in small ranks by Bagchi-Brouwer-Wilbrink (1991), and Brouwer-Haemers-Wilbrink (1992) in connection with the \mathbf{F}_{2}-codes associated with generalized quadrangles.

$F^{\mathbf{P}_{0}}$, remaining $c=d$ cases

- Sin-Tiep (2005)
- $\operatorname{GU}\left(2 m, q^{2}\right)$ with $m \geq 2$ and $\ell(q+1)$
- $\mathbf{G U}\left(2 m+1, q^{2}\right)$ when $m \geq 2, \ell \mid(q+1)$
- GO($2 m+1, q)$ with $m \geq 3, q$ odd and $\ell=2$
- $\mathrm{GO}^{+}(2 m, q)$ with $m \geq 3$ and $\ell \mid(q+1)$
- $\mathbf{G O}^{-}(2 m, q)$ with $m \geq 3$ and $\ell \mid(q+1)$

$F^{\mathbf{P}_{0}}$, remaining $c=d$ cases

- Sin-Tiep (2005)
- $\mathbf{G U}\left(2 m, q^{2}\right)$ with $m \geq 2$ and $\ell \mid(q+1)$
- $\mathrm{GU}\left(2 m+1, q^{2}\right)$ when $m \geq 2, \ell \mid(q+1)$
- GO(2m+1, q) with $m \geq 3, q$ odd and $\ell=2$
- $\mathbf{G O}^{+}(2 m, a)$ with $m>3$ and $\ell \mid(a+1)$
- $\mathrm{GO}^{-}(2 m, q)$ with $m \geq 3$ and $\ell \mid(q+1)$

$F^{\mathrm{P}_{0}}$, remaining $c=d$ cases

- Sin-Tiep (2005)
- $\mathbf{G U}\left(2 m, q^{2}\right)$ with $m \geq 2$ and $\ell \mid(q+1)$
- $\mathbf{G U}\left(2 m+1, q^{2}\right)$ when $m \geq 2, \ell \mid(q+1)$
- GO($2 m+1, q)$ with $m \geq 3, q$ odd and $\ell=2$
- $\mathbf{G O}^{+}(2 m, q)$ with $m \geq 3$ and $\ell \mid(q+1)$
- $\mathbf{G O}^{-}(2 m, q)$ with $m>3$ and $\ell \mid(q+1)$

$F^{P_{0}}$, remaining $c=d$ cases

- Sin-Tiep (2005)
- $\mathbf{G U}\left(2 m, q^{2}\right)$ with $m \geq 2$ and $\ell \mid(q+1)$
- $\mathbf{G U}\left(2 m+1, q^{2}\right)$ when $m \geq 2, \ell \mid(q+1)$
- GO($2 m+1, q)$ with $m \geq 3, q$ odd and $\ell=2$
- $\mathrm{GO}^{+}(2 m, q)$ with $m \geq 3$ and $\ell(q+1)$

$F^{\mathrm{P}_{0}}$, remaining $c=d$ cases

- Sin-Tiep (2005)
- $\mathbf{G U}\left(2 m, q^{2}\right)$ with $m \geq 2$ and $\ell \mid(q+1)$
- $\mathbf{G U}\left(2 m+1, q^{2}\right)$ when $m \geq 2, \ell \mid(q+1)$
- GO($2 m+1, q)$ with $m \geq 3, q$ odd and $\ell=2$
- $\mathbf{G O}^{+}(2 m, q)$ with $m \geq 3$ and $\ell \mid(q+1)$
- $\mathrm{GO}^{-}(2 m, q)$ with $m \geq 3$ and $\ell \mid(q+1)$

$F^{P_{0}}$, remaining $c=d$ cases

- Sin-Tiep (2005)
- $\mathbf{G U}\left(2 m, q^{2}\right)$ with $m \geq 2$ and $\ell \mid(q+1)$
- $\mathbf{G U}\left(2 m+1, q^{2}\right)$ when $m \geq 2, \ell \mid(q+1)$
- GO($2 m+1, q)$ with $m \geq 3, q$ odd and $\ell=2$
- $\mathbf{G O}^{+}(2 m, q)$ with $m \geq 3$ and $\ell \mid(q+1)$
- $\mathbf{G O}^{-}(2 m, q)$ with $m \geq 3$ and $\ell \mid(q+1)$

Unitary groups in even dimension

Figure: $F^{\mathbf{P}_{0}}$ for $\mathbf{G U}\left(2 m, q^{2}\right)$ when $\ell \mid(q+1)$.

Unitary groups in odd dimension

Figure: Submodule structure of $F^{\mathbf{P}_{0}}$ for $\mathbf{G U}\left(2 m+1, q^{2}\right)$ when $\ell \mid(q+1)$ and ℓ is odd or $\ell=2$ and $q \equiv 3(\bmod 4)$.

Unitary groups in odd dimension

modd :

m even :

Figure: Submodule structure of $F^{\mathbf{P}_{0}}$ for $\mathbf{G U}\left(2 m+1, q^{2}\right)$ when $\quad \ell=2$ and $q \equiv 1(\bmod 4)$.

Orthogonal groups in odd dimension

Figure: Submodule structure of $F^{\mathbf{P}_{0}}$ for $\mathbf{G O}(2 m+1, q), q$ odd, when $\ell=2$.

Orthogonal groups in even dimension, maximal index

modd :

Figure: Submodule structure of $F^{\mathbf{P}_{0}}$ for $\mathbf{G O}^{+}(2 m, q)$ when $\ell \neq 2$ and $\ell \mid(q+1)$.

Orthogonal groups in even diemsnion, maximal index

 modd :

Figure: Submodule structure of $F^{\mathbf{P}_{0}}$ for $\mathbf{G O}^{+}(2 m, q), q$ odd, when $\ell=2$.

Orthogonal groups in even dimension, minimal index

m even :

Figure: Submodule structure of $F^{\mathbf{P}_{0}}$ for $\mathbf{G O}^{-}(2 m, q)$ when $\ell \neq 2$ and $\ell \mid(q+1)$.

Orthogonal groups in even dimension, minimal index

Figure: Submodule structure of $F^{\mathbf{P}_{0}}$ for $\mathbf{G O}^{-}(2 m, q), q$ odd, when $\ell=2$.

Remarks

- In all cases, the dimensions and Brauer characters of the composition factors are computed.
- One can identify the "geometric" submodules, such as those generated by the characteristic vectors of the max. isotropic subspaces.

Remarks

- In all cases, the dimensions and Brauer characters of the composition factors are computed.
- One can identify the "geometric" submodules, such as those generated by the characteristic vectors of the max. isotropic subspaces.

Further work

- Hall-Nguyen, rank 3 permutation modules on nonsingular points, $O_{2 m}^{ \pm}(2), m \geq 2$ and $U_{m}(2), m \geq 4$.
- There are two rank 3 permutation modules for $E_{6}(q)$, related by an automorphism.

Further work

- Hall-Nguyen, rank 3 permutation modules on nonsingular points, $O_{2 m}^{ \pm}(2), m \geq 2$ and $U_{m}(2), m \geq 4$.
- There are two rank 3 permutation modules for $E_{6}(q)$, related by an automorphism.

Outline

A cross-characteristic example
 Permutation modules for classical groups
 Characteristic zero
 Results of Liebeck
 The cases $c=d$

Some Applications

Coding theory examples

The cross-characteristic theory, in particular $\ell=2$, shows up in coding theory, in connection with structured Low Density Parity Check (LDPC) Codes. These may use the F_{2}-incidence matrices of a family of geometrically defined incidence relations as generator or parity-check matrices.

$L U(3, q)$ codes

- V a 4-dimensional vector space over the field F_{q}
- Assume V has a nonsingular alternating bilinear form.
- $P=\mathbf{P}(V), L=$ the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_{0} and a line ℓ_{0} through p_{0}.

- $L_{1}=$ set of lines that do not meet ℓ_{0}.
- Consider the incidence systems (P_{1}, L_{1}),
- $M(P, L), M\left(P_{1}, L_{1}\right)$ incidence matrices with F_{2} entries.

$L U(3, q)$ codes

- V a 4-dimensional vector space over the field F_{q}
- Assume V has a nonsingular alternating bilinear form.
- $P=P(V), L=$ the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_{0} and a line ℓ_{0} through p_{0}.

- $L_{1}=$ set of lines that do not meet ℓ_{0}.
- Consider the incidence systems (P_{1}, L_{1}),
- $M(P, L), M\left(P_{1}, L_{1}\right)$ incidence matrices with F_{2} entries.

$L U(3, q)$ codes

- V a 4-dimensional vector space over the field F_{q}
- Assume V has a nonsingular alternating bilinear form.
- $P=\mathbf{P}(V), L=$ the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_{0} and a line ℓ_{0} through p_{0}.

- $L_{1}=$ set of lines that do not meet ℓ_{0}.
- Consider the incidence systems (P_{1}, L_{1}),
- $M(P, L), M\left(P_{1}, L_{1}\right)$ incidence matrices with F_{2} entries.

$L U(3, q)$ codes

- V a 4-dimensional vector space over the field F_{q}
- Assume V has a nonsingular alternating bilinear form.
- $P=\mathbf{P}(V), L=$ the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_{0} and a line ℓ_{0} through p_{0}.

- $L_{1}=$ set of lines that do not meet ℓ_{0}.
- Consider the incidence systems (P_{1}, L_{1}),
- $M(P, L), M\left(P_{1}, L_{1}\right)$ incidence matrices with F_{2} entries.

$L U(3, q)$ codes

- V a 4-dimensional vector space over the field F_{q}
- Assume V has a nonsingular alternating bilinear form.
- $P=\mathbf{P}(V), L=$ the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_{0} and a line ℓ_{0} through p_{0}.
- $P_{1}=P \backslash p_{0}^{\perp}$,
- $L_{1}=$ set of lines that do not meet ℓ_{0}.
- Consider the incidence systems (P_{1}, L_{1}),
- $M(P, L), M\left(P_{1}, L_{1}\right)$ incidence matrices with F_{2} entries.

$L U(3, q)$ codes

- V a 4-dimensional vector space over the field F_{q}
- Assume V has a nonsingular alternating bilinear form.
- $P=\mathbf{P}(V), L=$ the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_{0} and a line ℓ_{0} through p_{0}.
- $P_{1}=P \backslash p_{0}^{\perp}$,
- $L_{1}=$ set of lines that do not meet ℓ_{0}.
- Consider the incidence systems (P_{1}, L_{1}),
- $M(P, L), M\left(P_{1}, L_{1}\right)$ incidence matrices with \mathbf{F}_{2} entries.

$L U(3, q)$ codes

- V a 4-dimensional vector space over the field F_{q}
- Assume V has a nonsingular alternating bilinear form.
- $P=\mathbf{P}(V), L=$ the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_{0} and a line ℓ_{0} through p_{0}.
- $P_{1}=P \backslash p_{0}^{\perp}$,
- $L_{1}=$ set of lines that do not meet ℓ_{0}.
- Consider the incidence systems $\left(P_{1}, L_{1}\right)$,
- $M(P, L), M\left(P_{1}, L_{1}\right)$ incidence matrices with F_{2} entries.

$L U(3, q)$ codes

- V a 4-dimensional vector space over the field F_{q}
- Assume V has a nonsingular alternating bilinear form.
- $P=\mathbf{P}(V), L=$ the set of totally isotropic 2-dimensional subspaces, lines in P.
- Fix a point p_{0} and a line ℓ_{0} through p_{0}.
- $P_{1}=P \backslash p_{0}^{\perp}$,
- $L_{1}=$ set of lines that do not meet ℓ_{0}.
- Consider the incidence systems $\left(P_{1}, L_{1}\right)$,
- $M(P, L), M\left(P_{1}, L_{1}\right)$ incidence matrices with F_{2} entries.

$L U(3, q)$ codes

- LU($3, q$) codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^{*} and L^{*} sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ iff
- The $L U(3, q)$ codes are defined using the incidence matrix and its transpose as parity check matrices.
- Kim et. al. gave a conjecture for $\operatorname{dim} L U(3, q)$, q odd.
- One can show the incidence systems $\left(P^{*}, L^{*}\right)$ is equivalent to (P_{1}, L_{1}).

$L U(3, q)$ codes

- $\operatorname{LU}(3, q)$ codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^{*} and L^{*} sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- The $L U(3, q)$ codes are defined using the incidence matrix and its transpose as parity check matrices.
- Kim et. al. gave a conjecture for $\operatorname{dim} L U(3, q)$, q odd.
- One can show the incidence systems $\left(P^{*}, L^{*}\right)$ is equivalent to (P_{1}, L_{1}).

$L U(3, q)$ codes

- $\operatorname{LU}(3, q)$ codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^{*} and L^{*} sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ iff

$$
y=a x+b \quad \text { and } \quad z=a y+c
$$

- The $L U(3, q)$ codes are defined using the incidence matrix and its transpose as parity check matrices.
- Kim et. al. gave a conjecture for $\operatorname{dim} L U(3, q)$, q odd.
- One can show the incidence systems $\left(P^{*}, L^{*}\right)$ is equivalent to (P_{1}, L_{1}).

$L U(3, q)$ codes

- $\operatorname{LU}(3, q)$ codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^{*} and L^{*} sets in bijection with $F_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ iff

$$
y=a x+b \quad \text { and } \quad z=a y+c
$$

- The $L U(3, q)$ codes are defined using the incidence matrix and its transpose as parity check matrices.
- Kim et. al. gave a conjecture for $\operatorname{dim} L U(3, q)$, q odd.
- One can show the incidence systems $\left(P^{*}, L^{*}\right)$ is equivalent to (P_{1}, L_{1}).

$L U(3, q)$ codes

- $\operatorname{LU}(3, q)$ codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^{*} and L^{*} sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ iff

$$
y=a x+b \quad \text { and } \quad z=a y+c
$$

- The $L U(3, q)$ codes are defined using the incidence matrix and its transpose as parity check matrices.
- Kim et. al. gave a conjecture for $\operatorname{dim} L U(3, q), q$ odd.
- One can show the incidence systems $\left(P^{*}, L^{*}\right)$ is equivalent to (P_{1}, L_{1}).

$L U(3, q)$ codes

- $\operatorname{LU}(3, q)$ codes defined by Kim, Peled, Perepelitsa, Pless, Friedland (2004)
- P^{*} and L^{*} sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ iff

$$
y=a x+b \quad \text { and } \quad z=a y+c
$$

- The $L U(3, q)$ codes are defined using the incidence matrix and its transpose as parity check matrices.
- Kim et. al. gave a conjecture for $\operatorname{dim} L U(3, q), q$ odd.
- One can show the incidence systems $\left(P^{*}, L^{*}\right)$ is equivalent to (P_{1}, L_{1}).
- If q is odd, $\operatorname{rank}_{2} M(P, L)=\left(q^{3}+2 q^{2}+q+2\right) / 2$. (Bagchi-Brouwer-Wilbrink, 1991)
- If q is even, $\operatorname{rank}_{2} M(P, L)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}$. (Sastry-Sin)
- If a is odd, $\operatorname{rank}_{2} M\left(P_{1}, L_{1}\right)=\operatorname{rank}_{2} M(P, L)-2 q$. (Sin-Xiang, 2006)
- If q is even, $\operatorname{rank}_{2} M\left(P_{1}, L_{1}\right)=\operatorname{rank}_{2} M(P, L)-2 q$. (Arslan, 2009)
- If q is odd, $\operatorname{rank}_{2} M(P, L)=\left(q^{3}+2 q^{2}+q+2\right) / 2$. (Bagchi-Brouwer-Wilbrink, 1991)
- If q is even, $\operatorname{rank}_{2} M(P, L)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}$. (Sastry-Sin)
- If q is odd, $\operatorname{rank}_{2} M\left(P_{1}, L_{1}\right)=\operatorname{rank}_{2} M(P, L)-2 q$. (Sin-Xiang, 2006)
- If a is even, $\operatorname{rank}_{2} M\left(P_{1}, L_{1}\right)=\operatorname{rank}_{2} M(P, L)-2 q$. (Arslan, 2009)
- If q is odd, $\operatorname{rank}_{2} M(P, L)=\left(q^{3}+2 q^{2}+q+2\right) / 2$. (Bagchi-Brouwer-Wilbrink, 1991)
- If q is even, $\operatorname{rank}_{2} M(P, L)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}$. (Sastry-Sin)
- If q is odd, $\operatorname{rank}_{2} M\left(P_{1}, L_{1}\right)=\operatorname{rank}_{2} M(P, L)-2 q$. (Sin-Xiang, 2006)
- If q is even, $\operatorname{rank}_{2} M\left(P_{1}, L_{1}\right)=\operatorname{rank}_{2} M(P, L)-2 q$. (Arslan, 2009)
- If q is odd, $\operatorname{rank}_{2} M(P, L)=\left(q^{3}+2 q^{2}+q+2\right) / 2$. (Bagchi-Brouwer-Wilbrink, 1991)
- If q is even, $\operatorname{rank}_{2} M(P, L)=1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t}$. (Sastry-Sin)
- If q is odd, $\operatorname{rank}_{2} M\left(P_{1}, L_{1}\right)=\operatorname{rank}_{2} M(P, L)-2 q$. (Sin-Xiang, 2006)
- If q is even, $\operatorname{rank}_{2} M\left(P_{1}, L_{1}\right)=\operatorname{rank}_{2} M(P, L)-2 q$. (Arslan, 2009)

Codes from a conic

- $P G(2, q), q$ odd.
- \mathcal{O} conic.
- Points: \mathcal{O}, E (external) I (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.
- Conjectures for dimensions based on computer calculations.

Codes from a conic

- $P G(2, q), q$ odd.
- \mathcal{O} conic.
- Points: \mathcal{O}, E (external) / (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.
- Conjectures for dimensions based on computer calculations.

Codes from a conic

- $P G(2, q), q$ odd.
- \mathcal{O} conic.
- Points: \mathcal{O}, E (external) I (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.
- Conjectures for dimensions based on computer calculations.

Codes from a conic

- $P G(2, q), q$ odd.
- \mathcal{O} conic.
- Points: \mathcal{O}, E (external) I (internal)
- Lines: Ta (tangent) , Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.
- Conjectures for dimensions based on computer calculations.

Codes from a conic

- $P G(2, q), q$ odd.
- \mathcal{O} conic.
- Points: \mathcal{O}, E (external) I (internal)
- Lines: Ta (tangent), Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.
- Conjectures for dimensions based on computer calculations.

Codes from a conic

- $P G(2, q), q$ odd.
- \mathcal{O} conic.
- Points: \mathcal{O}, E (external) I (internal)
- Lines: Ta (tangent) , Se (secant), Pa (passant)
- Droms and Mellinger used the various point-line incidence matrices to define families of LDPC codes.
- Conjectures for dimensions based on computer calculations.

Conjectures of Droms and Mellinger

$$
\operatorname{rank}_{2} A(E, S e)=\left\{\begin{array}{lll}
\frac{1}{4}(q-1)^{2}+1, & \text { if } q \equiv 1 & (\bmod 4) \\
\frac{1}{4}(q-1)^{2}-1, & \text { if } q \equiv 3 & (\bmod 4)
\end{array}\right.
$$

- Sin-Xiang-Wu (2011) gave a proof.
- Proof uses detailed information about 2-blocks of SL(2, q) (Landrock 1980).
- Wu has recently solved the corresponding 2-rank conjectures of Droms and Mellinger for the other possible incidences of points and lines.

Conjectures of Droms and Mellinger

$$
\operatorname{rank}_{2} A(E, S e)=\left\{\begin{array}{lll}
\frac{1}{4}(q-1)^{2}+1, & \text { if } q \equiv 1 & (\bmod 4) \\
\frac{1}{4}(q-1)^{2}-1, & \text { if } q \equiv 3 & (\bmod 4)
\end{array}\right.
$$

- Sin-Xiang-Wu (2011) gave a proof.
- Proof uses detailed information about 2-blocks of SL(2, q) (Landrock 1980).
- Wu has recently solved the corresponding 2-rank
conjectures of Droms and Mellinger for the other possible incidences of points and lines.

Conjectures of Droms and Mellinger

$$
\operatorname{rank}_{2} A(E, \text { Se })=\left\{\begin{array}{lll}
\frac{1}{4}(q-1)^{2}+1, & \text { if } q \equiv 1 & (\bmod 4) \\
\frac{1}{4}(q-1)^{2}-1, & \text { if } q \equiv 3 & (\bmod 4)
\end{array}\right.
$$

- Sin-Xiang-Wu (2011) gave a proof.
- Proof uses detailed information about 2-blocks of SL(2, q) (Landrock 1980).
- Wu has recently solved the corresponding 2-rank
conjectures of Droms and Mellinger for the other possible incidences of points and lines.

Conjectures of Droms and Mellinger

$$
\operatorname{rank}_{2} A(E, S e)= \begin{cases}\frac{1}{4}(q-1)^{2}+1, & \text { if } q \equiv 1(\bmod 4), \\ \frac{1}{4}(q-1)^{2}-1, & \text { if } q \equiv 3(\bmod 4) .\end{cases}
$$

- Sin-Xiang-Wu (2011) gave a proof.
- Proof uses detailed information about 2-blocks of $\mathbf{S L}(2, q)$ (Landrock 1980).
- Wu has recently solved the corresponding 2-rank conjectures of Droms and Mellinger for the other possible incidences of points and lines.

