Oppositeness in Buildings and Simple Modules for Finite Groups of Lie Type

Peter Sin

University of Florida

International Conference on Buildings,
Finite Geometries and Groups, Bangalore, August 30th, 2010.

Introduction

In this talk we consider the oppositeness relations in a Tits building of a finite group of Lie type from the point of view of representation theory.

Groups with BN-pairs

- $G=G(q)$ group with a split BN-pair ($B=U H, N$), characteristic p, rank ℓ
- $I=\{1, \ldots, \ell\}$
- W, Weyl group euclidean reflection group in a real vector space V
- root system R, positive roots R^{+}, simple roots $S=\left\{\alpha_{i} \mid i \in I\right\}$
- w_{i} reflection in hyperplane perpendicular to α_{i}
- $W=\left\langle w_{i} \mid i \in I\right\rangle$ Coxeter group
- $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_{i}
- $\ell(w)=$ the number of positive roots which w transforms to negative roots.
- w_{0} unique longest element of W, sends all positive roots to negative roots

Parabolic subgroups

- $J \subseteq 1$
- $W_{J}:=\left\langle w_{i} \mid i \in J\right\rangle$ standard parabolic subgroup of W
- $P_{J}=B W_{J} B$, standard parabolic subgroup of G

Types and objects of the building

- A type simply a subset of I its cotype is its complement.
- An object of cotype J is a right coset of P_{J} in G.

Opposite types

Definition

Two types J and K are opposite if

$$
\left\{-w_{0}\left(\alpha_{i}\right) \mid i \in J\right\}=\left\{\alpha_{j} \mid j \in K\right\},
$$

or, equivalently, if

$$
\left\{w_{0} w_{i} w_{0} \mid i \in J\right\}=\left\{w_{i} \mid i \in K\right\} .
$$

A_{3}, skew lines in $P G(3, q)$

D_{5}, flags in oriflamme geometry

E_{6}

Opposite objects

Let J and K be fixed opposite types.
Definition
An object $P_{J} g$ of cotype J is opposite an object $P_{K} h$ of cotype K if $P_{K} h g^{-1} P_{J}=P_{K} w_{0} P_{J}$.
$\left(\Longleftrightarrow P_{K} h \subseteq P_{\jmath} w_{0} P_{K} g \Longleftrightarrow P_{\jmath} g \subseteq P_{K} w_{0} P_{\jmath} h\right)$.

Example. Type $A_{\ell}, J=I \backslash\{i\}$.

- $G \cong \operatorname{SL}(V), \operatorname{dim} V=(\ell+1)$
- Objects of cotype J are i-dimensional subspaces.
- Objects of the opposite cotype $K=I \backslash\{\ell+1-i\}$ are $\ell+1$ - i-dimensional subspaces.
- A subspace of cotype J is opposite one of cotype K if their intersection is the zero subspace.
- A familar special case is when $\ell=3$ and $i=\ell+1-i=2$. Thinking projectively, the objects are lines in space and the oppositeness relation is skewness.

Example. Opposite Flags, type A_{ℓ}

- Object of cotype $J=I \backslash\left\{j_{1}, \ldots, j_{m}\right\}$ is a flag

$$
V_{j_{1}} \subset V_{j_{2}} \subset \cdots \subset V_{j_{m}}
$$

with $\operatorname{dim} V_{i_{j}}=i_{j}$

- If $V_{k_{1}}^{\prime} \supset V_{k_{2}}^{\prime} \supset \cdots \supset V_{k_{m}}^{\prime}$ is an object of the opposite cotype, then the two flags are opposite iff $V_{i_{j}} \cap V_{k_{j}}^{\prime}=\{0\}$, for $j=1$,
\ldots, m.

Example: Classical modules

- G be of type B_{ℓ}, C_{ℓ}, or D_{ℓ} and $J=I \backslash\{1\}$.
- J is opposite to itself.
- In the B_{ℓ} case, objects of cotype J can be identified with singular points (one-dimensional subspaces) with respect to a nondegenerate quadratic form in a finite vector space of dimension $2 \ell+1$. singular points are opposite if and only if they are not orthogonal.
- For C_{ℓ} and D_{ℓ} the objects of cotype J can be viewed as singular points of a 2ℓ-dimensional vector space with respect to a symplectic symplectic form or a split quadratic form. Two points are opposite if and only if they do not lie on a singular line.

The oppositeness matrix

- The oppositeness graph $\Gamma_{J, K}$ is the bipartite graph whose parts are the sets of objects of cotypes J and K respectively, with two vertices adjacent when the objects are opposite.
- Let $A=A(J, K)$ be the oppositeness matrix for objects of cotypes J and K.
- Then the adjacency matrix of $\Gamma_{J, K}$ is $\left[\begin{array}{cc}0 & A \\ A^{\prime} & 0\end{array}\right]$, where A^{\prime} is the transpose of A.
Theorem
(Brouwer, 2009) If G is defined over \mathbf{F}_{q}, then the square of every eigenvalue λ of A is a power of q.

Topics for today

- One can consider other invariants of the incidence matrix A such as its Smith normal form or its p-rank. We'll consider the p-rank.
- We'll show that the p-rank is the dimension of an irreducible p-modular representation of G.
- This follows from a general theorem of Carter and Lusztig (1976).
- Then we'll describe the simple module in terms of its highest weight and discuss methods for computing its character.

Permutation modules on flags

- Let k be a field of characteristic p. Let \mathcal{F}_{J} denote the space of functions from the set $P_{J} \backslash G$ of objects of cotype J to k. Then \mathcal{F}_{J} is a left $k G$-module by the rule

$$
(x f)\left(P_{J} g\right)=f\left(P_{J} g x\right), \quad f \in \mathcal{F}_{J}, \quad g, x \in G
$$

Let $\delta_{P_{J g}}$ denote the characteristic function of the object $P_{J} g \in P_{J} \backslash G$. Then \mathcal{F}_{J} is generated as a $k G$-module by $\delta_{P_{J}}$

The oppositeness homomorphism

- The relation of oppositeness defines a $k G$-homomorphism $\eta: \mathcal{F}_{J} \rightarrow \mathcal{F}_{K}$ given by

$$
\begin{equation*}
\eta(f)\left(P_{K} h\right)=\sum_{P_{J} g \subseteq P_{J} w_{0} P_{K} h} f\left(P_{J} g\right) \tag{1}
\end{equation*}
$$

- We have

$$
\eta\left(\delta_{P_{J} g}\right)=\sum_{P_{K} h \subseteq P_{K} w_{0} P J g} \delta_{P_{K} h} .
$$

so the characteristic function of an object of cotype J is sent to the sum of the characteristic functions of all objects opposite to it.

Simplicity of oppositeness modules

Theorem
The image of η is a simple module, uniquely characterized by the property that its one-dimensional \cup-invariant subspace has full stablizer equal to P_{J}, which acts trivially on it.
This result is essentially a corollary of a more general result of Carter and Lusztig (1976) on the Iwahori-Hecke Algebra $\operatorname{End}_{k G}\left(\mathcal{F}_{\emptyset}\right)$. We next describe their result.

The Iwahori-Hecke Algebra

- $\mathcal{F}=\mathcal{F}_{\emptyset}$.
- For $w \in W$ define $T_{w} \in \operatorname{End}_{k}(\mathcal{F})$ by

$$
T_{w}(f)(B g)=\sum_{B g^{\prime} \subseteq B w^{-1} B g} f\left(B g^{\prime}\right) .
$$

- Then

$$
T_{w} \in \operatorname{End}_{k G}(\mathcal{F}), \quad \text { for all } w \in W
$$

- One can show that

$$
T_{w w^{\prime}}=T_{w} T_{w^{\prime}} \quad \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)
$$

- Let $w \in W$ have reduced expression

$$
w_{j_{n}} \cdots w_{j_{1}} .
$$

- We consider the partial products $w_{j_{1}}, w_{j_{2}} w_{j_{1}}, \ldots w_{j_{n}} \cdots w_{j_{1}}$.
- Each partial product sends exactly one more positive root to a negative root than its predecessors, namely $w_{j_{1}} \cdots w_{j_{i-1}}\left(r_{j_{i}}\right)$.
- Let J be a subset of I.
- $V_{J}:=$ subspace of V spanned by $S_{J}=\left\{\alpha_{i} \mid i \in J\right\}$.
- For any reduced expression

$$
w_{0}=w_{j_{k}} \cdots w_{j_{1}}
$$

define

$$
\Theta_{j_{i}}=\left\{\begin{array}{l}
T_{w_{j i}} \quad \text { if } w_{j_{1}} \cdots w_{j_{i-1}}\left(r_{j_{i}}\right) \notin V_{J} \tag{2}\\
I+T_{w_{j_{i}}} \quad \text { if } w_{j_{1}} \cdots w_{j_{i-1}}\left(r_{j_{i}}\right) \in V_{J}
\end{array}\right.
$$

and set

$$
\Theta_{w_{0}}^{J}=\Theta_{j_{k}} \Theta_{j_{k-1}} \cdots \Theta_{j_{k}} .
$$

- The definition depends on the choice of reduced expression but it can be seen that different expressions give the same endomorphism up to a nonzero scalar multiple.

Theorem

(Carter,Lusztig) The image $\Theta_{w_{0}}^{J}(\mathcal{F})$ is a simple kG-module. The full stablizer of the one-dimensional subspace of U-fixed points in this module is P_{J} and the action of P_{J} on this one-dimensional subspace is trivial.

Deduction of Theorem

- the first step is to choose a special expression for w_{0} to define $\Theta_{w_{0}}^{J}(\mathcal{F})$.
- $R_{J}=R \cap V_{J}$ is a root system in V_{J} with simple system S_{J} and Weyl group W_{J}.
- w_{J} be the longest element in W_{J}.
- Let

$$
\begin{equation*}
w_{J}=w_{i_{m}} \cdots w_{i_{2}} w_{i_{1}} \tag{3}
\end{equation*}
$$

be a reduced expression for w_{J}. The above expression can be extended to a reduced expresion

$$
\begin{equation*}
w_{0}=w_{i_{k}} \cdots w_{i_{m+1}} w_{i_{m}} \cdots w_{i_{1}} \tag{4}
\end{equation*}
$$

of w_{0}. Thus $m=\left|R_{j}^{+}\right|$and $k=\left|R^{+}\right|$.
Then

$$
\begin{equation*}
w^{*}=w_{i_{k}} \cdots w_{i_{m+1}} \tag{5}
\end{equation*}
$$

is a reduced expression for w^{*}.

- Use above expression for w_{0} to define $\Theta_{w_{0}}^{J}$.
- Since w_{J} sends all positive roots in V_{J} to negative roots and w_{0} sends all roots to positive roots, it is clear that for the first m partial products the new positive root sent to a negative root belongs to V_{J}, and that the new positive roots for the remaining partial products are the elements of $R^{+} \backslash R_{J}^{+}$, so do not belong to V_{J}. Thus we have

$$
\begin{equation*}
\Theta_{w_{0}}^{J}=T_{w^{*}}\left(1+T_{i_{m}}\right) \cdots\left(1+T_{i_{1}}\right) \tag{6}
\end{equation*}
$$

- Since $\ell\left(w^{*} w\right)=\ell\left(w^{*}\right)+\ell(w)$ for all $w \in W_{J}$, we see that $\Theta_{w_{0}}^{J}$ is a sum of endomorphisms of the form $T_{w^{*} w}$, for certain elements $w \in W_{J}$, with exactly one term of this sum equal to $T_{w^{*}}$.

The projections π_{J} and π_{K}

- Let $\pi_{J}: \mathcal{F} \rightarrow \mathcal{F}_{J}$ be defined by

$$
\left(\pi_{J}(f)\right)\left(P_{J} g\right)=\sum_{B h \subseteq P_{J} g} f(B h)
$$

and π_{K} defined similarly. It is easily checked that π_{J} and π_{K} are $k G$-module homomorphisms and they are surjective since $\pi_{J}\left(\delta_{B}\right)=\delta_{P_{J}}$.

- The main step is to compare $\eta \pi_{J}$ with $\pi_{K} T_{w^{*} w}$ for $w \in W_{J}$. For $f \in \mathcal{F}$, we compute

$$
\begin{align*}
{\left[\eta\left(\pi_{J}(f)\right)\right]\left(P_{K} g\right) } & =\sum_{P_{J} h \subseteq P_{J} w^{*-1} P_{K} g} \sum_{B x \subseteq P_{J} h} f(B x) \\
& =\sum_{B x \subseteq P_{J} w^{*-1} P_{K} g} f(B x) . \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
{\left[\pi_{K}\left(T_{w^{*} w}(f)\right)\right]\left(P_{K} h\right) } & =\sum_{B g \subseteq P_{K} h}\left(T_{w^{*} w} f\right)(B g) \\
& =\sum_{B g \subseteq P_{K} h} \sum_{B x \subseteq B\left(w^{*} w\right)^{-1} B g} f(B x) \tag{8}\\
& =\sum_{B g \subseteq P_{K} h} \sum_{B g \subseteq B\left(w^{*} w\right) B x} f(B x) \\
& =q^{\ell(w)} \sum_{B x \subseteq P_{J} w^{*-1} P_{K} g} f(B x) .
\end{align*}
$$

- Thus, we have for each $w \in W_{J}$ a commutative diagram
- If $w \neq 1$ we have $\pi_{K} T_{w w^{*}}=0$.
- Hence $\pi \Theta_{w_{0}}^{J}=\pi T_{w^{*}}=\eta \pi$.
- Therefore, since $\Theta_{w_{0}}^{J}(\mathcal{F})$ is simple $\eta \pi\left(\mathcal{F}_{J}\right) \neq 0$, we see that $\eta \pi\left(\mathcal{F}_{J}\right) \cong \Theta_{w_{0}}^{J}(\mathcal{F})$.
- Since π is surjective, we have $\eta\left(\mathcal{F}_{J}\right) \cong \Theta_{w_{0}}^{J}(\mathcal{F})$.

Highest weights of oppositeness modules

- $G=G(q)$ is a Chevalley group of universal type or a twisted subgroup.
- Simple modules are restrictions of certain simple rational modules $L(\lambda)$ of the ambient algebraic group, so we want to identify the highest weight $\lambda_{o p p}$ of the oppositeness modules.

Highest weights of oppositeness modules

- If G is an untwisted group, then the fundamental weights ω_{i} for the ambient algebraic group are indexed by I.
- $\lambda_{\text {opp }}=\sum_{i \in \backslash J}(q-1) \omega_{i}$.

Highest weights of oppositeness modules

- There are two cases when G is a twisted group,
- Suppose that all roots of G^{*} have the same length $\left({ }^{2} A_{\ell}\right.$, $\left.{ }^{2} D_{\ell},{ }^{3} D_{4},{ }^{2} E_{6}\right)$. Then G arises from a symmetry ρ of the Dynkin diagram of $G^{*}=G^{*}\left(q^{e}\right)$, where e is the order of ρ. Let $I^{*}=\left\{1, \ldots, \ell^{*}\right\}$ index the fundamental roots of G^{*}. The index set I for G labels the ρ-orbits on I^{*}. Let $\omega_{i}, i \in I^{*}$ be the fundamental weights of the ambient algebraic group. For $J \subseteq I$, let $J^{*} \subset I^{*}$ be the union of the orbits in J.
- $\lambda_{o p p}=\sum_{i \in I^{*} \backslash J^{*}}(q-1) \omega_{i}$.
- If G is a Suzuki or Ree group, then the untwisted group $G^{*}(q)$ has two root lengths. Then the set $/$ for G indexes the subset of fundamental weights of the ambient algebraic group which are orthogonal to the long simple roots. and for $J \subset I$.
- $\lambda_{o p p}=\sum_{i \in \backslash J}(q-1) \omega_{i}$.

Extreme cases

- $\lambda_{\text {opp }}=(q-1) \tilde{\omega}$, with $\tilde{\omega}$ a sum of fundamental weights.
- We can consider the extreme cases. If $J=K=\emptyset$, then $L\left(\lambda_{\text {opp }}\right) \cong k$. If $J=K=I, L\left(\lambda_{\text {opp }}\right)$ is the Steinberg module, of dimension equal to the p-part of $|G|$.

Reduction to prime fields

- If $q=p^{t}$, then by Steinberg's Tensor Product Theorem,

$$
L((q-1) \tilde{\omega}) \cong L((p-1) \tilde{\omega}) \otimes L((p-1) \tilde{\omega})^{(p)} \otimes \cdots \otimes L((p-1) \tilde{\omega})^{\left(p^{t-1}\right)}
$$

(Superscripts indicate twisting by powers of Frobenius.)

Reduction to prime fields

Proposition

Let the root system R and opposite types J and K be given and let $A(q)=A(q)_{J, K}$ denote the oppositeness incidence matrix for objects of cotypes J and K in the building over $F(q)$, where $q=p^{t}$. Then $\operatorname{rank}_{p} A(q)=\left(\operatorname{rank}_{p} A(p)\right)^{t}$.

This reduction of the to the prime case is significant because Weyl modules with highest weight $(p-1) \tilde{\omega}$ are much less complex in structure than those of highest weight $(q-1) \tilde{\omega}$, say.

Jantzen Sum Formula

The Weyl module $V(\lambda)$ has a descending filtration, of submodules $V(\lambda)^{i}, i>0$, such that

$$
V(\lambda)^{1}=\operatorname{rad} V(\lambda), \quad \text { so } \quad V(\lambda) / V(\lambda)^{1} \cong L(\lambda) .
$$

and

$$
\sum_{i>0} \operatorname{Ch}\left(V(\lambda)^{i}\right)=-\sum_{\alpha>0} \sum_{\left\{m: 0<m p<\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle\right\}} v_{p}(m p) \chi(\lambda-m p \alpha)
$$

Notation key

- $V(\lambda)$, Weyl module of highest weight λ,
- $L(\lambda)$, its simple quotient.
- ρ is the half-sum of the positive roots
- $v_{p}(m) p$-adic valuation of m.
- $\chi(\mu)$, Weyl character; there is a unique weight fo the form $\mu^{\prime}=w(\mu+\rho)-\rho$ in the region $\left\{\nu:\left\langle\nu+\rho, \alpha^{\vee}\right\rangle \geq 0, \forall \alpha \in R^{+}\right\}$, where $w \in W$. Then $\chi(\mu)$ is the sign (w) Ch $V\left(\mu^{\prime}\right)$ if μ^{\prime} is dominant, and zero otherwise.
- The usefulness of the sum formula comes from the fact that the characters of the Weyl modules themselves are given by Weyl's Character Formula, so that the right hand side can be computed from p, R and λ.
- The Jantzen sum gives an upper estimate on the composition multiplicities in the radical of the Weyl module $V(\lambda)$ in terms of the composition factors of Weyl modules which have lower highest weights.
- Sometimes, for weights of a special form, it may be that the highest weights of the Weyl characters $\chi(\mu)$ in the Jantzen sum are very few in number or all have a similar form. In such cases, it is possible to deduce the character of $L((p-1) \tilde{\omega})$.

Subspaces: Type $A_{\ell}, J=I \backslash\{i\}$

- In this case, the simple modules $L\left((p-1) \omega_{i}\right)$ can be found without reference to Weyl modules.
- $S(i(p-1)):=$ degree $i(p-1)$ homogeneous component of the truncated polynomial ring $k\left[x_{0}, \ldots, x_{\ell}\right] /\left(x_{i}^{p} ; 0 \leq i \leq \ell\right)$
- $S(i(p-1))$ is a simple $k G$-module.
- By highest weights, $S(i(p-1)) \cong L\left((p-1) \omega_{\ell+1-i}\right)$, for $i=1, \ldots, \ell$.
- There is also work (Chandler-PS-Xiang (2006), Brouwer (2010), Ducey-PS (2010)) on some cases of the Smith normal form.

Classical modules: Types $B_{\ell}, C_{\ell} D_{\ell}, J=I \backslash\{1\}$

- p-ranks have been computed by Arslan-PS (2009) using Weyl modules.
- The Weyl modules in question are $V\left((p-1) \omega_{1}\right)$.
- For type C_{ℓ} they are simple.
- For B_{ℓ} and D_{ℓ}, use sum formula.
- Method extends to clasical modules of non-split orthogonal groups (type ${ }^{2} D_{\ell}$) unitary groups (type ${ }^{2} A_{\ell}$).
- In the twisted cases the relevant Weyl module is $V\left((p-1)\left(\omega_{1}+\omega_{\ell}\right)\right)$.

An E_{6} Example

- $G=E_{6}(q)$, group of isometries of a certain 3-form on a 27-dimensional vector space V. The geometry of this space has been studied in great detail. (Dickson, Aschbacher, Buekenhout-Cohen, Cooperstein, Pasini.)
- Consider the objects of type 1 and the opposite type 6. We can view these, respectively, as the singular points and singular (in a dual sense) hyperplanes of V. A singular point $\langle v\rangle$ is opposite a singular hyperplane H if and only $v \notin H$.

Point-hyperplane oppositeness for $E_{6}(q)$

- $\left.\left.\operatorname{rank}_{p} A=\operatorname{dim} L\left((q-1) \omega_{1}\right)\right)=\operatorname{dim} L\left((p-1) \omega_{1}\right)\right)^{t}$, where $q=p^{t}$. (Steinberg's tensor product theorem)
- Work out $\left.\operatorname{dim} L\left((p-1) \omega_{1}\right)\right)$ using Weyl modules, Weyl Character formula, Jantzen sum formula).

Repeated use of Jantzen Sum Formula yields an exact sequence

$$
\begin{aligned}
& 0 \rightarrow V\left((p-11) \omega_{1}+2 \omega_{2}\right) \rightarrow V\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right) \\
& \rightarrow V\left((p-9) \omega_{1}+\omega_{3}+\omega_{6}\right) \rightarrow V\left((p-8) \omega_{1}+\omega_{4}+2 \omega_{6}\right) \\
& \rightarrow V\left((p-7) \omega_{1}+3 \omega_{6}\right) \rightarrow V\left((p-1) \omega_{1}\right) \rightarrow L\left((p-1) \omega_{1}\right) \rightarrow 0
\end{aligned}
$$

The dimensions of the $V(\mu)$ are given by Weyl's formula. Hence

$$
\begin{aligned}
& \operatorname{dim} L\left((p-1) \omega_{1}\right)=\frac{1}{2^{7} \cdot 3.5 .11} p(p+1)(p+3) \\
& \times\left(3 p^{8}-12 p^{7}+39 p^{6}+320 p^{5}\right. \\
&-\left.550 p^{4}+1240 p^{3}+2080 p^{2}-1920 p+1440\right)
\end{aligned}
$$

2,	27
3,	351
5,	19305
7,	439439
11,	45822672
13,	274187550
17,	5030354043
19,	16937278357
23,	137112098409
29,	1744146121068
31,	3628038332724
37,	25349391871621
41,	78345931447980
43,	132256396016732
47,	351675426454470
53,	1317968719988571
59,	4286665842359706
61,	6185074367788952
67,	17356733399472663
71,	32843689463427543
73,	44580694495895104
79,	106281498207828698
83,	182978611275724173
89,	394284508288312914
97,	1016219651834875565

Concluding Remarks

- The oppositeness relations of the building of a finite group of Lie type give rise to simple modules.
- We have considered some basic examples of oppositeness relations and described their associated modules, but the general case remains open.
- The p-rank problem for oppositeness relations has been reduced to groups over the prime field and equivalent to the dimension problem for simple modules for the algebraic group whose highest weights have coefficients $(p-1)$ and 0.
- When $p=2$ every restricted highest weight is of this form.
- Thank you for your attention!

