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This paper studies the incidence relation between the points and quadrics in the
projective space of a symplectic vector space over a field of even order. The 2-rank of
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representation theory of this group. The radical series of this module is also
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1. INTRODUCTION

Let q=2t and let V(q) be a vector space of dimension 2n, n�2, defined
over the finite field Fq and endowed with a nonsingular symplectic bilinear
form b. Let P=P(V(q)) be the associated projective space. The codes
studied here are related to the nondegenerate quadrics of the symplectic
geometry of (P, b). Thus, the quadrics of P we consider are those which
have quadratic forms f for which b is the associated bilinear form, in other
words, b equals the polarization %( f ) of f defined by

%( f )(v1 , v2)= f (v1+v2)& f (v1)& f (v2), vi # V(q).
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It is well known [7, Theorem 6] that this set of quadrics splits into two
orbits under the action of the symplectic group G of b: the set of those with
Witt index n (i.e., the dimension of a maximal isotropic subspace contained
in the quadric is n; these are the so-called hyperbolic quadrics) and the set
of those with Witt index n&1 (these are the so-called elliptic quadrics). See
[7, 4.1, p. 218].

Let k be a perfect field of characteristic 2 and let kP be the space of k-valued
functions on P. Let D be the subspace of kP generated by the characteristic
functions of nondegenerate quadrics polarizing to b and of given Witt index.
The dimension of D is equal to the 2-rank of the incidence relation between
P and the set of quadrics in question. In this note we find this dimension
(Theorem 3.1) and give the structure of D as a kG-module (Theorem 4.1). By
Theorem 3.1, the dimension of D plus 1 equals the dimension of the k-span C

of the characteristic functions of the hyperplanes of a projective space P� of
dimension 2n over Fq (see [1, Theorem 5.7, p. 180]). We explain this equality
in Section 5 by producing a kO(2n+1, q)-module homomorphism from
kP� to kP which maps C isomorphically to k1P �D. This together with
Theorem 4.1 also gives the kO(2n+1, q)-module structure of C.

For the dimensions of codes associated with several incidence systems in
the literature, see [1, 4, 11]. The structure of the codes as modules are
discussed for fewer cases; see [12, 2, 13] for some recent examples.

2. BACKGROUND RESULTS ON THE REPRESENTATION
THEORY OF SYMPLECTIC GROUPS

Let k� denote an algebraic closure of k. By choosing a symplectic basis
[e1 , ..., en , fn , ..., f1] of V(q) such that b(ei , fj)=$ij , we may regard the
group G=Sp(V(q)) as the subgroup of Fq -rational points of the algebraic
group Sp(2n, k� ). In this section, we put together a few facts about the
representations of G needed to prove Theorems 3.1 and 4.1. We note that
Lemma 2.1 is the only result from this section which is needed for the proof
of Theorem 3.1, in case the reader wishes to skip the rest. As is well known,
the representation theory of k� G is related in many ways to the theory of
(rational) representations of Sp(2n, k� ), which has been studied in great
detail in [6]. Some of the important basic notions are more general and
belong to the representation theory of reductive groups, as described in [10].

Let T be the diagonal subgroup (a maximal torus) in Sp(2n, k� ) and let
X(T ) denote its character group. Then X(T ) is a free abelian group of rank
n. As a basis we can take the set [|~ 1 , ..., |~ n] where |~ i maps the diagonal
matrix diag(t1 , ..., tn , t&1

n , ..., t&1
1 ) to the scalar t1 } t2 } } } t i . This is called the

set of fundamental weights. The set of nonnegative integral combinations of
the fundamental weights are called the dominant weights. The isomorphism
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classes of simple Sp(2n, k� )-modules are parametrized by the set of dominant
weights in the following way. There is a certain ordering on the group X(T)
and given a simple Sp(2n, k� )-module there is among its weights (the characters
of T which it affords) a unique highest one with respect to this ordering, which
characterizes the simple module. The highest weights of simple modules are
dominant and each dominant weight * occurs as the highest weight of a
simple module L(*). The simple module L(0) is the trivial module.

The fundamantal weight |~ i is the highest weight which occurs in i th
exterior power of the natural module. (The i th exterior power may not
itself be a simple module but it has the composition factor L(|~ i) with
multiplicity one.)

Let e be a positive integer. A dominant weight �i ai|~ i is called 2e-restricted
if all the coefficients ai satisfy 0�ai�2e&1. Steinberg has proved [15,
Theorem 7.4, p. 45] that the restrictions to Sp(2n, 2e) of the 2ne simple
Sp(2n, k� )-modules with 2e-restricted highest weights form a complete set of
nonisomorphic simple k� Sp(2n, 2e)-modules.

Next we recall the celebrated Tensor Product Theorem of Steinberg. This
theorem applies to all Chevalley groups and we shall apply it to certain sym-
plectic groups and spin groups. Since a less well known refinement
concerning symplectic groups in characteristic 2 will be important for us, we
will give here a brief account of both these results as they apply to Sp(2n, k� ).

Let L(*) denote the simple module with highest weight * and let

*=*0+2*1+ } } } +2r*r (1)

be the 2-adic expression for * (in which the *i are 2-restricted weights).
Then L(*) has a tensor factorization in the form

L(*)$L(*0)�L(*1) (2)� } } } �L(*r)
(2 r ). (2)

In the above equation the superscript (2i ) denotes the i th-Frobenius
twist; if U is a vector space over a field F of characteristic 2, then U (2 i ) is
the vector space with the same abelian group structure as U but having
scalar multiplication defined by

* b u=*2&iu (* # F, u # U ).

If U is a module for a group, then the matrices which represent the group
on U (2 i ) are obtained from those for U by raising each matrix entry to its
2i th power.

The sharper form of the Tensor Product Theorem [15, Theorem 11.1, p. 52]
is based on the factorization of the Frobenius endomorphism of Sp(2n, k� )
as the composite of two surjective homomorphisms of algebraic groups,

Sp(2n, k� ) w�
{

Spin(2n+1, k� ) w�
_

Sp(2n, k� ). (3)
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(See [6, Chap. I, Sect. 3] for more details.) These maps are isomorphisms
of the underlying abstract groups, but not isomorphisms of algebraic groups.
For this reason, the rational represenation theories of these groups are
different, though of course closely related.

Now, let * be a 2-restricted weight. We can write

*=++=|~ n , (4)

where + is a combination of the first n&1 fundamental weights and
= # [0, 1]. Steinberg's refinement states that accordingly, we have

L(*)$L(+)�L(=|~ n). (5)

(See [6, Chap. I, Sect. 4] for more details.) The simple module L(|~ n) is the
so-called spin module for Sp(2n, k� ), because it is obtained by composing
the map { in (3) with the spin representation of Spin(2n+1, k� ). It has
dimension 2n.

Let f be a fixed quadratic form on V(q) which has polarization b and let
O( f )/G be its orthogonal group. We may consider f as a quadratic form
on k� �Fq

V(q) and denote the corresponding orthogonal group by O(2n, k� ).
Let 0(2n, k� ) be its commutator subgroup and let 0( f ) be the commutator
subgroup of O( f ). The latter two groups are Chevalley groups, for which
Steinberg's Tensor Product Theorem (usual form) and the classification of
simple modules by highest weights also hold.

Lemma 2.1. Let L be a nontrivial simple kG-module. Then 0( f ) fixes
only the zero vector of L. The same is true (a fortiori ) of O( f ).

Proof. It suffices to prove the result with k replaced by k� because k� �k L
is a semisimple k� G-module. Thus, we assume L is a simple k� G-module.
Then L is the restriction to G of a simple Spin(2n, k� )-module L(*), where
the highest weight * is 2t-restricted. We will consider the restriction of L(*)
first to 0(2n, k� ) and then to 0( f ). Let * be written in its 2-adic expression
as in (1), and for each i, let

*i=+i+=i|~ n , (6)

as in (4).
By the refined version of the Tensor Product Theorem, we have

L(*)$ }
t&1

i=1

L(+ i)
(2 i )� }

t&1

i=0

L(=i |~ n) (2 i ). (7)
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We now describe the restrictions of the L(+i) and L(|~ n) to 0(2n, k� ).
Consider the simply connected algebraic group Spin(2n, k� ) covering 0(2n, k� ).
We label the fundamental weights for this group in the usual way as $1 , ...,
$n&1 , $n , so that $1 corresponds to the natural module for 0(2n, k� ) and the
two weights $n&1 and $n correspond to the half-spin modules. The half-spin
modules are the two 2n&1-dimensional direct summands of the spin module
for Spin(2n, k� ). One should be careful not to confuse this last spin module
with the spin module L(|~ n) for Spin(2n, k� ). The relation between the two
is as follows. The restriction of L(|~ n) from Spin(2n, k� ) to 0(2n, k� ) is
naturally also a module (of dimension 2n) for the covering group Spin(2n, k� ).
This module is not the spin module of Spin(2n, k� ) but rather its first Frobenius
twist, as can be seen by weight calculations. Thus,

L(|~ n)$L$(2$n&1)�L$(2$n), (8)

where we use L$($) to denote the simple Spin(2n, k� )-module with highest
weight $.

It is also known that the restriction of L(+i) to 0(2n, k� ) defines a simple
module for Spin(2n, k� ) which has restricted highest weight not involving
$n&1 or $n . (See [6, Chap. I, Sect. 4]; these +i are called {-restricted there.)

Thus, the first factor 6=} t&1
i=1 L(+i)

(2 i ) from (7) restricts to a simple
module of 0(2n, k� ) whose highest weight is 2t-restricted and does not
involve $n&1 or $n . On the other hand, by (8), the restriction of the second
factor 6$=} t&1

i=0 L(=|~ n) (2 i ) is a direct sum of simple modules, each having
2t-restricted highest weight involving only $n&1 and $n .

Therefore, the restrictions of both 6 and 6$ to 0( f ) are respectively simple
and semisimple and certainly no simple summand of 6$ is isomorphic to
the dual of 6. Thus, the 0( f )-fixed points on L are given by

L(*)0( f )$Homk� 0( f )(k, 6�6$)$Homk� 0( f )(6*, 6$)=0. (9)

The lemma is proved. K

3. DIMENSION OF D

In this section we prove our first main result.

Theorem 3.1. The subcode D of kP generated by the characteristic
functions of nondegenerate quadrics of given Witt index polarizing to b is
independent of the Witt index and is of dimension (2n+1)t.

5QUADRICS OF A SYMPLECTIC SPACE



Proof. Recall that, for a finite dimensional vector space U, the sym-
metric square S2(U*) and the exterior square �2 (U*) of the dual U* of
U describe, respectively, the space of all quadratic forms on U and the
space of all symplectic bilinear forms on U. Let U be defined over a perfect
field F of characteristic 2. As in Section 2, we shall let U (2 i ) denote the i th
Frobenius twist of U. For any finite set I of non-negative integers, let UI

denote }i # I U (2 i ). We have a short exact sequence

0 � U* (2) � S2(U*) w�
%

�
2

(U*) � 0 (10)

of vector spaces, where % is the polarization defined above. (See [14,
Sect. 1] for all this.) In the above equation the space U* (2) of linear forms,
with twisted scalar multiplication, may be identified with the space of
squared linear forms as the squaring map defines a canonical vector space
isomorphism between these spaces. Likewise, we shall always interpret the
space S 2(U*) (2) of quadratic forms with twisted scalar multiplication as the
space of squares of quadratic forms, again through squaring, and we will
denote its elements by f 2, where f is a quadratic form. This convention will
also be extended to higher powers of 2.

Note that b # �2 (V(q)*). We shall be interested in the preimage E(q) of
Fq b in S 2(U*). Thus, we have a nonsplit short exact sequence of modules
for the symplectic group G of b:

0 � V(q)* (2) � E(q) w�
%

Fqb � 0. (11)

Fix a nondegenerate quadratic form f # E(q) on V(q) and let O( f ) be its
orthogonal group. The maps v � b(&, v) � b(&, v)2 � f +b(&, v)2 are
isomorphisms of the O( f )-sets V(q)$V(q)*$V(q)* (2)$%&1(b). Thus, as
a FO( f )-module, E(q)=Fq�V(q)* (2), where the decomposition corre-
sponds to writing f $ # E(q) as f +&2 for & # V(q)*. Thus (11) splits relative
to O( f ). But it does not split relative to G.

Let Q/P be the quadric corresponding to f and Q denote the set of all
quadrics in P having the same Witt index as Q and polarizing to b.

To prove the theorem, we have to compute the rank of the incidence
map

:: kQ � kP. (12)

We observe that since the theorem concerns the rank of a k-linear map
there is no loss in assuming that k contains Fq as a subfield, so we make
this assumption throughout the proof of Theorem 3.1.

Let

M(q)=E(q)�E(q) (2) � } } } �E(q)(2 t&1) (13)
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and M, E, and V denote the tensor product of M(q), E(q), and V(q),
respectvely, with k over Fq .

We define

;: kQ � M (14)

and

#: M � kP (15)

as follows. Let Q$ # Q be the set of zeros in P of the quadratic form f $ # E(q).
Then f $ is defined only up to a nonzero element of Fq , but the element a=
f $� f $2� } } } � f $2 t&1

of M(q) depends only on Q$. The element a�1k of
M is ;Q$. We regard E(q) (2 i ) and kP as spaces of functions from V(q) to
Fq and from P to k, respectively, and define # as the map that sends the
element (g0 �g2

1� } } } �g2 t&1

t&1)�1k of M to the function >i g2 i

i on P.
(Note that the factors g2 i

i of the product do not each, by themselves, define
functions on P but the product does.) These are clearly kG-maps. The com-
posite # b ; is not quite : but rather 1P&:, where 1P is the constant function
1 on P. Now kP=k1P�YP , where the subspace YP consists of all k-valued
functions on P whose values at the points of P sum to zero. Then 1P&: has
image in YP because members of Q have odd cardinality (see [9, Theorem
22.5.1, p. 23]); and the image of : is mapped onto the image of 1P&: under
the projection onto YP . The theorem follows from two facts:

(i) ; is surjective and # is injective.

(ii) 1P is not in the image of :.

From (i) it is immediate that the image of 1P&: is independent of Witt
index and has the claimed dimension. From (ii) it follows that : and 1P&:
have the same rank.

We now prove (i). The splitting of (11) relative to O( f ) noted above
implies that, for i=0, 1, 2, ..., t&1, E(q) (2 i ) is the direct sum of V(q) (2 i+1)

and k as kO( f )-modules. (Note that V(q) (2 t)$V(q) (20)=V(q).) So, as
kO( f )-modules,

M$ �
I�[0, ..., t&1]

VI . (16)

The importance of this is that M is semisimple and multiplicity-free as a
kO( f )-module. Modules of this kind are easy to work with; to check that
a map from such a module is injective it is necessary only to verify that the
restriction to each component is nonzero; and to check that a map into
such a module is surjective, one merely has to check that the image has
nonzero projection into each component.
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In the case of the maps ; and # both these conditions are very easy to
check. For example, for any nonzero &, the image of f $= f+&2 has nonzero
projection onto each factor, so ; is surjective.

Finally, we prove (ii). By Lemma 2.1 and Frobenius reciprocity [8,
Chap. III, Theorem 2.5], we have for any nontrivial simple kG-module L,

HomkG(indG
O( f ) k, L)$HomkO( f )(k, L)=0, (17)

while

HomkG(indG
O( f ) k, k)$HomkO( f )(k, k)$k. (18)

It follows that kQ has a unique maximal submodule, with quotient a one-
dimensional trivial module, hence so does the image of :. In particular, the
image of : is indecomposable. Since this image is clearly not equal to k1P ,
it cannot contain k1P , or else it would decompose as the direct sum of k1P

and the intersection with YP . This establishes (ii) and completes the proof
of the theorem. K

4. THE RADICAL SERIES AND THE SOCLE SERIES OF D

The socle of a module A, denoted by socA, is the maximal semisimple
submodule of A. The higher socles in the socle series (also called the upper
Loewy series) are then defined recursively by

soci+1 A�soci A=soc(A�soci A).

Dually, the radical of A, denoted by rad A, is the intersection of all maximal
submodules of A, so A�rad A is the maximal semisimple quotient of A. The
radical series (also known as the lower Loewy series) is defined by

radi+1 A=rad(rad i A).

The semisimple subquotients soci+1 A�soci A and radi A�radi+1 A are called
the layers of the socle and radical series.

Our second theorem describes the radical and socle layers of the kG-module
D. Let k� be an algebraic closure of k and let Dk� denote the corresponding code
over k� . Then Dk� =k� �k D. Now by [5, 7.9(i), 7.10, and 5.29] a kG-module A
is semisimple if and only if k� �k A is a semisimple k� G-module.

It follows that the socle and radical layers of the k� G-module Dk� are
simply obtained from those of the kG-module D by extending scalars to k� .
If we have a decomposition of the layers of Dk� into simple k� G-modules, we
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can recover the decomposition of D into simple kG-modules in the follow-
ing way. Let A be a layer of D and suppose k� }k A=� i L i . We note that
by (16) k� �k D is multiplicity-free so no two Li are isomorphic. The Galois
group 1 of k� over k acts on k� �k A with A as the set of fixed points.
Conjugation by 1 permutes the isomorphism classes of simple k� G-modules
and so permutes the Li . If B is a simple kG-summand of A, then k� �B is
invariant under 1 hence equal to the sum of those Li belonging to a union
of orbits. On the other hand the sum of all Li in a single orbit is a 1-stable
k� G-submodule of k� �k A and the 1-fixed points of this submodule form a
kG-submodule of A. Therefore the simple kG-summands of A correspond
bijectively with the 1-orbits on the Li and are obtained from them by
taking the fixed points of 1 on the orbit sums of the Li .

In this way, we are reduced to the case k=k� , which is what we shall
assume in our statement and proof of the next theorem

Theorem 4.1. Assume k is algebraically closed. Let S=[0, 1, ..., t&1].
Then radt+1 D=0, soct+1 D=D and for 0�i�t we have

radi D�rad i+1 D=soct+1&iD�soct&iD$ �
I�S, |I |=i

VI . (19)

Proof. Since the kG-modules D (=Im:), Im(1&:) and M are all
isomorphic, we choose to work with M. From the definition of M(q) (see (5)),
one can see that M has a filtration with semisimple layers as in the statement
(take the natural semisimple filtration induced by the composition series of
each tensor factor E (2 i )). So what requires proof is the nonsplitting of the
layers. More precisely, we will prove the following.

Let VJ be a composition factor of M. If J{< and r � J, then the composi-
tion factor VJ appears before VJ _ [r] in every descending composition series
of M.

Since all composition factors of M occur without multiplicity, this will
follow from the existence of a section of M which is a nonsplit extension
of VJ by VJ _ [r] . Without loss, we can assume that r=1. Consider the
section of M obtained by taking E in the first tensor factor in the definition
of M, Vj in the j-th factor whenever j # J, and k in the other factors. This
is certainly an extension of VJ by VJ _ [1] , so the point is to prove that it
does not split. To put it another way, we must prove that if 1 � J then
E�VJ is a nonsplit extension of VJ with VJ _ [1] . This is then reduced to
proving

HomkG(VJ �VJ , E )=0, (20)
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The structure of V�V is described in [6, Chap. I, Sect. 5.4]. To begin with
we shall use only the fact that its composition factors are, ignoring multi-
plicities: k, V1 and the unique nontrivial composition factor L=L(|~ 2) of
�2 (V ). It follows that VJ �VJ has a filtration all subquotients of which
have the form LI �VK+1 , where I and K are disjoint subsets of J and
K+1 denotes the set [k+1 : k # K]. Suppose first 0 � J. Then

HomkG(LI �VK+1 , V1)=HomkG(LI , V(K _ [0])+1)=0. (21)

Therefore, if there is a nonzero map from LI �VK+1 to E, then it must be
surjective, since E has a unique maximal submodule isomorphic to V1 .
Now any module which has E as a quotient also has a trivial quotient. But,
except when I and K are both empty we have

HomkG(LI �VK+1 , k)=HomkG(LI , VK+1)=0. (22)

Furthermore, in the case that I and K are empty it is clear that E is not
a homomorphic image of LI �VK+1 . We therefore conclude that if 0 � J,
there are no (nonzero) kG-maps from any LI �VK+1 to E and hence none
from VJ �VJ .

So we must consider the case 0 # J. We write

VJ �VJ=(V�V )� (VJ"[0]�VJ"[0]). (23)

As above, the module VJ"[0] �VJ"[0] has a filtration in which the sub-
quotients have the form LI�VK+1 , where I and K are disjoint subsets of
J"[0]. Suppose that I and K are not both empty. Then we obtain

HomkG(k�LI �VK+1 , k)=HomkG(LI , VK+1)=0, (24)

HomkG(L�LI �VK+1 , k)=HomkG(LI _ [0] , VK+1)=0, (25)

HomkG(V1 �LI �VK+1 , k)=HomkG(LI _ [0] , V(K _ [0])+1)=0. (26)

From (24), (25), and (26) we see that HomkG((V�V )�LI�VK+1 , E )
=0, unless I=K=<.

It remains to consider the case I=K=<. Then (V�V )�LI �VK+1

reduces to V�V. From the submodule structure of V�V one can see that
neither E nor V (2)$soc(E ) is a homomorphic image of V. Therefore,
HomkG(V�V, E )=0. The theorem is proved. K

Remark 4.1. The case n=2 of Theorems 3.1 and 4.1 appears as Theorem
13 in [12, p. 493].
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5. AN APPLICATION

Let V� (q) be a (2n+1)-dimensional vector space over Fq and P� the
corresponding projective space. Let g denote a nondegenerate quadratic
form on V� (q) as well as the one induced by it on P� . Let Q/P� be the quadric
defined by g and (v) be its nucleus [9, Corollary 2, p. 10]. We identify the
orthogonal geometry of (Q, g) with the symplectic geometry of (P, b) con-
sidered in Section 1 by taking V(q) to be V� (q)�(v) and b to be the symplectic
bilinear form induced by g on P(V(q)), the identification being done via
the natural map from V� (q) to V(q). We also identify the orthogonal group
O(g) with G, always via this map and talk about O(g)-modules. The set H

of hyperplanes of P� has three O(g)-orbits: the set H (t) of (q2n&1)�(q&1)
tangent hyperplanes to Q, the set H (e) of ( qn

2 ) hyperplanes intersecting Q
in a nondegenerate elliptic quadric and the set H (h) of ( (1+q n)

2 ) hyper-
planes meeting Q in a nondegenerate hyperbolic quadric, see [9, Theorem
22.6.6 (a)(iii), (ii), p. 28, and Theorem 22.9.2, p. 44].

Let C(t), C(e), C(h) denote the kO(g)-submodules of C generated by the
characteristic functions of the hyperplanes in H(t), H(e), and H(h),
respectively. We have

C=C(t)+C(e)+C(h).

We note that 1P� , being the sum of characteristic functions on P� of elements
of H(t), is in C(t) and so also in C. But it is not in C(e)+C(h) because
no element of H(e) _ H(h) contains the nucleus.

Let C0 denote the subcode of kP� generated by the characteristic functions
of complements of hyperplanes of P� . Then,

C(t)=k1P� �C0(t)

and

C0=C0(t)+C0(e)+C0(h),

where C0(t), C0(e) and C0(h) carry their obvious meanings as the subcodes
generated by the complements of the three types of hyperplanes.

Consider

kP� w�
' kQ w�

` kP, (27)

where ' is the O(g)-module morphism taking a k-valued function on P� to
its restriction to Q and ` is the isomorphism defined by the identification
described above.

11QUADRICS OF A SYMPLECTIC SPACE



Proposition 5.1. (i) C(e)=C(h)&D as kO(g)-modules.

(ii) C0 and C(e) are distinct kO(g)-module complements to k1P� in C.
However, C0=C0(e).

(iii) C0(t)=soc(C0)=soc(C(e)). Moreover, this is a simple kO(g)-module
of dimension (2n)t.

Proof. (i) Since nondegenerate elliptic (respectively, hyperbolic) quadrics
in Q are intersections with Q of elements of H(e) (respectively, H(h)) and
they correspond to nondegenerate elliptic (respectively, hyperbolic) quad-
rics of the symplectic geometry of (P, b), Theorem 3.1 implies that ` b '
maps both C(e) and C(h) onto D. Since dim C=dim D+1, the codimen-
sion of C(e) as well as that of C(h) in C can be at most one. As noted
before their sum does not contain 1P� but C does. It follows that
C(e)=C(h) and that

C=k1P� �C(e).

Furthermore, 1P� is mapped to 1P . Therefore C(e) is mapped isomorphi-
cally to D.

(ii) These submodules are distinct because C0 contains words with
the nucleus of Q in their supports and C(e) does not.

Since (1P� , C0(e))=(1P� , C(e))=C, the codimension of C0(e) in C is 1.
So C0=C0(e).

(iii) By Theorem 4.1, we know that soc(D) is a simple module of
dimension (2n)t. Since it is nontrivial, this simple submodule is the unique
complement to k1P in the socle of k1P �D and hence is equal to the socle
of every complement of k1P in k1P�D. By the above isomorphism from
C to k1P�D, we see that C has a unique nontrivial simple submodule in
its socle. This submodule has dimension (2n)t and is equal to the socle of
any complement of k1P� in C. Thus, all statements will be proved if we show
that C0(t) is mapped under ` b ' to soc(D). Now the hyperplanes in H(t)
are precisely those which contain the nucleus of Q, so under the identifica-
tion of the orthogonal geometry of Q with the symplectic geometry of P
they correspond to the hyperplanes of P. Therefore, by definition of ` b ',
the image of C0(t) is equal to the subcode of kP generated by the charac-
teristic functions of the complements of the hyperplanes in P. We must
show that this submodule is equal to the socle of D. This fact seems to be
known but we will give a proof here along the lines of the proof of
Theorem 3.1. Let H* denote the set of hyperplanes in P. We must prove
that the image of the map

:*: kH* � kP (28)
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sending a hyperplane to the characteristic function of its complement is
equal to the socle of D. Let the modules M and E be as in the proof of
Theorem 3.1. Define

;*: kH*
� M (29)

as follows. A hyperplane H, defined by a linear function & may equally well
be regarded as the set of zeros of &2 # V* (2)/E. Then ;* sends H to
&2� } } } �&2 t

# }t
i=1 V* (2 i )�M. Finally, let #: M � kP be as in (15) of the

proof of Theorem 3.1. Then it is straightforward to check that # b ;*=:*.
Since the image of ;* is a simple kG-module and since D has a unique simple
kG-submodule, the proof is complete. K

Remark 5.1. Blokhuis and Moorhouse have also proved the injectivity
of ' on C [3, Theorem 1.2(i)]. In the same paper they also give the dimen-
sion of C(t). Though C(e) depends on the quadratic form g polarizing to
b, interestingly C0(e) does not.

Remark 5.2. For a discussion of the case n=1, see [3, Theorem 1.10].
Note that C(e){C(h) if n=1; in fact the k-ary codes generated by the secant
lines, the tangent lines and the external lines of a conic in a Desarguesian plane
of order 2t are all distinct, as a look at the intersection of the conic with
the supports of the code words reveals.
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