The Divisor Matrix, Dirichlet Series and SL(2, Z)

Peter Sin and John G.Thompson

Chat Yin Ho Memorial Conference,
Gainesville,February 23rd, 2008.

Overview

Introduction and Orientation

The divisor matrix

Ordered factorizations

Jordan form of D

Inverse of Z

- $\mathcal{A}:=$ the ring of matrices $A=\left(a_{i, j}\right)_{i, j \in \mathbf{N}}$, with rational entries, such that each column has only finitely many nonzero entries.
- \mathcal{A} operates by left multiplication on the space E of finitely supported column vectors.
- \mathcal{A} operates by right multiplication on $Q^{N} \cong E^{*}$, the space of sequences of rational numbers.

- $\mathcal{A}:=$ the ring of matrices $A=\left(a_{i, j}\right)_{i, j \in \mathbf{N}}$, with rational entries, such that each column has only finitely many nonzero entries.
- \mathcal{A} operates by left multiplication on the space E of finitely supported column vectors.

- \mathcal{A} operates by right multiplication on $Q^{N} \cong E^{*}$, the space of sequences of rational numbers.

- $\mathcal{A}:=$ the ring of matrices $A=\left(a_{i, j}\right)_{i, j \in \mathbf{N}}$, with rational entries, such that each column has only finitely many nonzero entries.
- \mathcal{A} operates by left multiplication on the space E of finitely supported column vectors.
- \mathcal{A} operates by right multiplication on $Q^{\mathbf{N}} \cong E^{*}$, the space of sequences of rational numbers.

- $\mathcal{A}:=$ the ring of matrices $A=\left(a_{i, j}\right)_{i, j \in \mathbf{N}}$, with rational entries, such that each column has only finitely many nonzero entries.
- \mathcal{A} operates by left multiplication on the space E of finitely supported column vectors.
- \mathcal{A} operates by right multiplication on $Q^{\mathbf{N}} \cong E^{*}$, the space of sequences of rational numbers.

$$
(f A)(n)=\sum_{m \in \mathbf{N}} a_{m, n} f(m), \quad f \in \mathbf{Q}^{\mathbf{N}}, A \in \mathcal{A} .
$$

Dirichlet Space and Dirichlet Ring

$$
\mathcal{D S}:=\left\{f \in \mathbf{Q}^{\mathbf{N}} \mid(\exists C, c>0)(\forall n)\left(|f(n)| \leq C n^{c}\right)\right\}
$$

$\Rightarrow f \in \mathcal{D S}$ if and only if $\sum_{n} f(n) n^{-S}$ converges for some complex number s.

- $\mathcal{D R}$:= the subring of \mathcal{A} consisting of all elements which leave $\mathcal{D S}$ invariant.

Dirichlet Space and Dirichlet Ring

$$
\mathcal{D S}:=\left\{f \in \mathbf{Q}^{\mathbf{N}} \mid(\exists C, c>0)(\forall n)\left(|f(n)| \leq C n^{c}\right)\right\}
$$

- $f \in \mathcal{D S}$ if and only if $\sum_{n} f(n) n^{-s}$ converges for some complex number s.
- $\mathcal{D R}:=$ the subring of \mathcal{A} consisting of all elements which leave $\mathcal{D S}$ invariant.

Dirichlet Space and Dirichlet Ring

$$
\mathcal{D S}:=\left\{f \in \mathbf{Q}^{\mathbf{N}} \mid(\exists C, c>0)(\forall n)\left(|f(n)| \leq C n^{c}\right)\right\}
$$

- $f \in \mathcal{D S}$ if and only if $\sum_{n} f(n) n^{-s}$ converges for some complex number s.
- $\mathcal{D} \mathcal{R}:=$ the subring of \mathcal{A} consisting of all elements which leave $\mathcal{D S}$ invariant.

The divisor matrix $D=\left(d_{i, j}\right)_{i, j \in \mathbf{N}}$ defined by

$$
d_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
G:=\operatorname{SL}(2, \mathbf{Z})=\left\langle S, R \mid S^{4}, R^{6}, S^{2}=R^{3}\right\rangle \\
S=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \text { and } \quad T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
\end{gathered}
$$

Main Theorem

There exists a representation $\rho: \operatorname{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The space E (finitely supported columns) has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset
$$

of $\mathbf{Q S L}(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL (2, Z)-module.
(b) $\rho(T)=D$.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, \mathbf{Z})$.
(d) $\rho(\mathrm{SL}(2, \mathbf{Z})) \subseteq \mathcal{D R}$.

Main Theorem

There exists a representation $\rho: \mathrm{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The space E (finitely supported columns) has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

of \mathbf{Q} SL $(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, \mathbf{Z})$.
(d) $\rho(\mathrm{SL}(2, \mathbf{Z})) \subseteq \mathcal{D R}$.

Main Theorem

There exists a representation $\rho: \mathrm{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The space E (finitely supported columns) has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

of \mathbf{Q} SL $(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\rho(T)=D$.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, Z)$.
(d) $\rho(\mathrm{SL}(2, \mathbf{Z})) \subseteq \mathcal{D R}$.

Main Theorem

There exists a representation $\rho: \mathrm{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The space E (finitely supported columns) has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

of \mathbf{Q} SL $(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\rho(T)=D$.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, \mathbf{Z})$.

Main Theorem

There exists a representation $\rho: \mathrm{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The space E (finitely supported columns) has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

of $\mathbf{Q S L}(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\rho(T)=D$.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, \mathbf{Z})$.
(d) $\rho(\mathrm{SL}(2, \mathbf{Z})) \subseteq \mathcal{D R}$.

Steps in proof:

Steps in proof:

- Find "Jordan canonical form" of D.

Steps in proof:

- Find "Jordan canonical form" of D.
- For each Jordan block B construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ so that T is represented by a matrix similar to B and satisfying the filtration condition.

Steps in proof:

- Find "Jordan canonical form" of D.
- For each Jordan block B construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ so that T is represented by a matrix similar to B and satisfying the filtration condition.
- Form the direct sum.

Steps in proof:

- Find "Jordan canonical form" of D.
- For each Jordan block B construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ so that T is represented by a matrix similar to B and satisfying the filtration condition.
- Form the direct sum.
- But....

Steps in proof:

- Find "Jordan canonical form" of D.
- For each Jordan block B construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ so that T is represented by a matrix similar to B and satisfying the filtration condition.
- Form the direct sum.
- But....
- Membership of $\mathcal{D R}$ is not preserved by similarity!

Steps in proof:

- Find "Jordan canonical form" of D. Compute the change-of-basis matrices and check that they belong to $\mathcal{D R}$.
- For each Jordan block B construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ so that T is represented by a matrix similar to B and satisfying the filtration condition.
- Form the direct sum.
- But....
- Membership of $\mathcal{D R}$ is not preserved by similarity!

Steps in proof:

- Find "Jordan canonical form" of D. Compute the change-of-basis matrices and check that they belong to $\mathcal{D R}$.
- For each Jordan block B construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ so that T is represented by a matrix similar to B and satisfying the filtration condition. Compute the change-of-basis matrices explicitly and check conditions for a suitable direct sum to be in $\mathcal{D R}$.
- Form the direct sum.
- But....
- Membership of $\mathcal{D R}$ is not preserved by similarity!

This talk:

- Find "Jordan canonical form" of D. Compute the change-of-basis matrices and check that they belong to $\mathcal{D R}$.
- For each Jordan block B construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ so that T is represented by a matrix similar to B and satisfying the filtration condition.
- Form the direct sum.
- But....
- Membership of $\mathcal{D R}$ is not preserved by similarity!

Overview

Introduction and Orientation

The divisor matrix

Ordered factorizations

Jordan form of D

Inverse of Z

The divisor matrix

- $D=\left(d_{i, j}\right)_{i, j \in \mathbf{N}}$ defined by

$$
d_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \\ 0 & \text { otherwise }\end{cases}
$$

$\Rightarrow D$ is unitriangular. What is its JCF ?

- Find the transition matrices explicitly.
- The Dirichlet Ring is not closed under taking multiplicative inverses.

The divisor matrix

- $D=\left(d_{i, j}\right)_{i, j \in \mathbf{N}}$ defined by

$$
d_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \\ 0 & \text { otherwise }\end{cases}
$$

- D is unitriangular. What is its JCF ?
- Find the transition matrices explicitly.
- The Dirichlet Ring is not closed under taking multiplicative inverses.

The divisor matrix

- $D=\left(d_{i, j}\right)_{i, j \in \mathbf{N}}$ defined by

$$
d_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \\ 0 & \text { otherwise }\end{cases}
$$

- D is unitriangular. What is its JCF ?
- Find the transition matrices explicitly.
- The Dirichlet Ring is not closed under taking multiplicative inverses.

The divisor matrix

- $D=\left(d_{i, j}\right)_{i, j \in \mathbf{N}}$ defined by

$$
d_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \\ 0 & \text { otherwise }\end{cases}
$$

- D is unitriangular. What is its JCF ?
- Find the transition matrices explicitly.
- The Dirichlet Ring is not closed under taking multiplicative inverses.

Overview

Introduction and Orientation

The divisor matrix

Ordered factorizations

Jordan form of D

Inverse of Z

- For $m, k \in \mathbf{N}$, let

$$
A_{k}(m):=\left\{\left(m_{1}, m_{2}, \ldots, m_{k}\right) \in(\mathbf{N} \backslash\{1\})^{k} \mid m_{1} m_{2} \cdots m_{k}=m\right\}
$$

- For $m, k \in \mathbf{N}$, let

$$
A_{k}(m):=\left\{\left(m_{1}, m_{2}, \ldots, m_{k}\right) \in(\mathbf{N} \backslash\{1\})^{k} \mid m_{1} m_{2} \cdots m_{k}=m\right\}
$$

- $\alpha_{k}(m):=\left|A_{k}(m)\right|$

- For $m, k \in \mathbf{N}$, let

$$
A_{k}(m):=\left\{\left(m_{1}, m_{2}, \ldots, m_{k}\right) \in(\mathbf{N} \backslash\{1\})^{k} \mid m_{1} m_{2} \cdots m_{k}=m\right\}
$$

- $\alpha_{k}(m):=\left|A_{k}(m)\right|$
- $\alpha_{k}(1)=0, \alpha_{k}(m)=0$ if $m<2^{k}$ and $\alpha_{k}\left(2^{k}\right)=1$.

By considering the first $k-1$ entries of elements of $A_{k}(m)$, we see that for $k>1$, we have
Counting Lemma

$$
\alpha_{k}(m)=\left(\sum_{d \mid m} \alpha_{k-1}(d)\right)-\alpha_{k-1}(m)
$$

By considering the first $k-1$ entries of elements of $A_{k}(m)$, we see that for $k>1$, we have
Counting Lemma

$$
\begin{gathered}
\alpha_{k}(m)=\left(\sum_{d \mid m} \alpha_{k-1}(d)\right)-\alpha_{k-1}(m) \\
\sum_{i=1}^{k-1}(-1)^{k-1-i} \sum_{d \mid m} \alpha_{i}(d)=\alpha_{k}(m)+(-1)^{k} \alpha_{1}(m)
\end{gathered}
$$

Relation to D

- The $(1, m)$ entry of $(D-l)^{k}$ is equal to $\alpha_{k}(m)$
- Proof: Let $D-I=\left(t_{i, j}\right)_{i, j \in N}$. Then
$t_{1, j_{1}} t_{j_{1}, j_{2}} \cdots t_{j_{k-1}, m}=1 \Longleftrightarrow\left(j_{1}, j_{2} / j_{1}, \ldots, m / j_{k-1}\right) \in A_{k}(m)$
- More generally,
(d, m) entry of $(D-I)^{k}= \begin{cases}0 & \text { if } d \nmid m, \\ \alpha_{k}(m / d)=(1, m / d) \text { entry, if } d \mid m .\end{cases}$

Relation to D

- The $(1, m)$ entry of $(D-l)^{k}$ is equal to $\alpha_{k}(m)$
- Proof: Let $D-I=\left(t_{i, j}\right)_{i, j \in \mathbf{N}}$. Then
$t_{1, j_{1}} t_{j_{1}, j_{2}} \cdots t_{j_{k-1}, m}=1 \Longleftrightarrow\left(j_{1}, j_{2} / j_{1}, \ldots, m / j_{k-1}\right) \in A_{k}(m)$
- More generally,

Relation to D

- The $(1, m)$ entry of $(D-l)^{k}$ is equal to $\alpha_{k}(m)$
- Proof: Let $D-I=\left(t_{i, j}\right)_{i, j \in \mathbf{N}}$. Then

$$
t_{1, j_{1}} t_{j_{1}, j_{2}} \cdots t_{j_{k-1}, m}=1 \Longleftrightarrow\left(j_{1}, j_{2} / j_{1}, \ldots, m / j_{k-1}\right) \in A_{k}(m)
$$

- More generally,

$$
(d, m) \text { entry of }(D-l)^{k}=\left\{\begin{array}{lr}
0 & \text { if } d \nmid m, \\
\alpha_{k}(m / d)=(1, m / d) \text { entry, if } d \mid m
\end{array}\right.
$$

Overview

Introduction and Orientation

The divisor matrix

Ordered factorizations

Jordan form of D

Inverse of Z

$$
J:=\left(J_{i, j}\right)_{i, j \in \mathbf{N}}, \quad J_{i, j}= \begin{cases}1, & \text { if } j \in\{i, 2 i\} \\ 0 & \text { otherwise }\end{cases}
$$

- Think of J as being the direct sum of infinite Jordan blocks, one for each odd integer.
- Let $Z:=(\alpha(i, j))_{i, j \in \mathbf{N}}$ be the matrix described in the following way.
- Let $i=2^{k} d$ with d odd. Then the $i^{\text {th }}$ row of Z is equal to the $d^{\text {th }}$ row of $(D-I)^{k}$. (Take $(D-I)^{0}=I$.)

$$
J:=\left(J_{i, j}\right)_{i, j \in \mathbf{N}}, \quad J_{i, j}=\left\{\begin{array}{lc}
1, & \text { if } j \in\{i, 2 i\} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Think of J as being the direct sum of infinite Jordan blocks, one for each odd integer.
- Let $Z:=(\alpha(i, j))_{i, j \in N}$ be the matrix described in the following way.
- Let $i=2^{k} d$ with d odd. Then the $i^{\text {th }}$ row of Z is equal to the $d^{\text {th }}$ row of $(D-I)^{k}$. (Take $(D-I)^{0}=I$.)

$$
J:=\left(J_{i, j}\right)_{i, j \in \mathbf{N}}, \quad J_{i, j}= \begin{cases}1, & \text { if } j \in\{i, 2 i\}, \\ 0 & \text { otherwise } .\end{cases}
$$

- Think of J as being the direct sum of infinite Jordan blocks, one for each odd integer.
- Let $\boldsymbol{Z}:=(\alpha(i, j))_{i, j \in \mathbf{N}}$ be the matrix described in the following way.
- Let $i=2^{k} d$ with d odd. Then the $i^{\text {th }}$ row of Z is equal to the $d^{\text {th }}$ row of $(D-I)^{k}$. (Take $(D-I)^{0}=I$.)

$$
J:=\left(J_{i, j}\right)_{i, j \in \mathbf{N}}, \quad J_{i, j}=\left\{\begin{array}{lc}
1, & \text { if } j \in\{i, 2 i\}, \\
0 & \text { otherwise } .
\end{array}\right.
$$

- Think of J as being the direct sum of infinite Jordan blocks, one for each odd integer.
- Let $Z:=(\alpha(i, j))_{i, j \in \mathbf{N}}$ be the matrix described in the following way.
- Let $i=2^{k} d$ with d odd. Then the $i^{\text {th }}$ row of Z is equal to the $d^{\text {th }}$ row of $(D-l)^{k}$. (Take $(D-l)^{0}=l$.)

Lemma
The matrix Z has the following properties:
(a) $\alpha(i, j)=\delta_{i, j}$, if i is odd.
(b) If $i=d 2^{k}$, where d is odd and $k \geq 1$, then

$$
\alpha(i, j)=\left\{\begin{array}{l}
\alpha_{k}(j / d) \text { if } d \mid j, \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

(c) $\alpha(i m, j m)=\alpha(i, j)$ whenever m is odd.
(d) Z is upper unitriangular.
(e)

$$
Z(D-I)=(J-I) Z
$$

(Proof: Look at the i-th row of both sides, $i=2^{k} d$.)
(f)

Moreover, Z is the unique matrix satisfying (a) and (f).

Lemma
The matrix Z has the following properties:
(a) $\alpha(i, j)=\delta_{i, j}$, if i is odd.
(b) If $i=d 2^{k}$, where d is odd and $k \geq 1$, then

(c) $\alpha(i m, j m)=\alpha(i, j)$ whenever m is odd.
(d) Z is upper unitriangular.
(e)

$$
Z(D-I)=(J-I) Z
$$

(Proof: Look at the i-th row of both sides, $i=2^{k}$ d.)
(f)

Lemma
The matrix Z has the following properties:
(a) $\alpha(i, j)=\delta_{i, j}$, if i is odd.
(b) If $i=d 2^{k}$, where d is odd and $k \geq 1$, then

$$
\alpha(i, j)=\left\{\begin{array}{l}
\alpha_{k}(j / d) \quad \text { if } d \mid j, \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

(c) $\alpha(i m, j m)=\alpha(i, j)$ whenever m is odd.
(d) Z is upper unitriangular.

$$
Z(D-I)=(J-I) Z
$$

(Proof: Look at the i-th row of both sides, $i=2^{k} d$.)

Lemma
The matrix Z has the following properties:
(a) $\alpha(i, j)=\delta_{i, j}$, if i is odd.
(b) If $i=d 2^{k}$, where d is odd and $k \geq 1$, then

$$
\alpha(i, j)=\left\{\begin{array}{l}
\alpha_{k}(j / d) \quad \text { if } d \mid j, \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

(c) $\alpha(i m, j m)=\alpha(i, j)$ whenever m is odd. Z is upper unitriangular.

$$
Z(D-I)=(J-I) Z
$$

(Proof: Look at the i-th row of both sides, $i=2^{k} d$.)

Lemma
The matrix Z has the following properties:
(a) $\alpha(i, j)=\delta_{i, j}$, if i is odd.
(b) If $i=d 2^{k}$, where d is odd and $k \geq 1$, then

$$
\alpha(i, j)=\left\{\begin{array}{l}
\alpha_{k}(j / d) \quad \text { if } d \mid j, \\
0 \quad \text { otherwise. } .
\end{array}\right.
$$

(c) $\alpha(i m, j m)=\alpha(i, j)$ whenever m is odd.
(d) Z is upper unitriangular.

$$
Z(D-I)=(J-I) Z
$$

(Proof: Look at the i-th row of both sides, $i=2^{k} d$.)

Lemma

The matrix Z has the following properties:
(a) $\alpha(i, j)=\delta_{i, j}$, if i is odd.
(b) If $i=d 2^{k}$, where d is odd and $k \geq 1$, then

$$
\alpha(i, j)=\left\{\begin{array}{l}
\alpha_{k}(j / d) \quad \text { if } d \mid j, \\
0 \quad \text { otherwise. } .
\end{array}\right.
$$

(c) $\alpha(i m, j m)=\alpha(i, j)$ whenever m is odd.
(d) Z is upper unitriangular.
(e)

$$
Z(D-I)=(J-I) Z
$$

(Proof: Look at the $i-t h$ row of both sides, $i=2^{k} d$.)

Lemma

The matrix Z has the following properties:
(a) $\alpha(i, j)=\delta_{i, j}$, if i is odd.
(b) If $i=d 2^{k}$, where d is odd and $k \geq 1$, then

$$
\alpha(i, j)=\left\{\begin{array}{l}
\alpha_{k}(j / d) \quad \text { if } d \mid j, \\
0 \quad \text { otherwise. } .
\end{array}\right.
$$

(c) $\alpha(i m, j m)=\alpha(i, j)$ whenever m is odd.
(d) Z is upper unitriangular.
(e)

$$
Z(D-I)=(J-I) Z
$$

(Proof: Look at the i-th row of both sides, $i=2^{k} d$.)
(f)

$$
Z D Z^{-1}=J .
$$

Moreover, Z is the unique matrix satisfying (a) and (f).

Overview

Introduction and Orientation

The divisor matrix

Ordered factorizations

Jordan form of D

Inverse of Z

- We still need to find an explicit formula for Z^{-1}.
- Notation: For each prime p and each integer m let $v_{p}(m)$ denote the exponent of the highest power of p which divides m and let $v(m):=\sum_{p} v_{p}(m)$.
- Let X be the diagonal matrix with (i, i) entry equal to $(-1)^{v_{2}(i)}$, for $i \in \mathbf{N}$.
- We still need to find an explicit formula for Z^{-1}.
- Notation: For each prime p and each integer m let $v_{p}(m)$ denote the exponent of the highest power of p which divides m and let $v(m):=\sum_{p} v_{p}(m)$.
- Let X be the diagonal matrix with (i, i) entry equal to $(-1)^{v_{2}(i)}$, for $i \in \mathbf{N}$.
- We still need to find an explicit formula for Z^{-1}.
- Notation: For each prime p and each integer m let $v_{p}(m)$ denote the exponent of the highest power of p which divides m and let $v(m):=\sum_{p} v_{p}(m)$.
- Let X be the diagonal matrix with (i, i) entry equal to $(-1)^{v_{2}(i)}$, for $i \in \mathbf{N}$.

Theorem

$$
z^{-1}=X Z X .
$$

- Discovered with help of computer calculation. (Gnu octave).

Theorem

$$
Z^{-1}=X Z X .
$$

- Discovered with help of computer calculation. (Gnu octave).

Proof of $Z^{-1}=X Z X$

- It suffices to show that

$$
D(X Z X)=(X Z X) J
$$

or, equivalently,

$$
(X D X) Z=Z(X J X)
$$

- $X D X=\left(d_{i, j}^{\prime}\right)_{i, j \in \mathbb{N}}, X J X=\left(c_{i, j}^{\prime}\right)_{i, j \in \mathbb{N}}$

Proof of $Z^{-1}=X Z X$

- It suffices to show that

$$
D(X Z X)=(X Z X) J
$$

or, equivalently,

$$
(X D X) Z=Z(X J X)
$$

- $X D X=\left(d_{i, j}^{\prime}\right)_{i, j \in \mathbf{N}}, X J X=\left(c_{i, j}^{\prime}\right)_{i, j \in \mathbf{N}}$

$$
d_{i, j}^{\prime}=\left\{\begin{array}{l}
(-1)^{v_{2}(i)+v_{2}(j)}, \quad \text { if } i \mid j, \\
0 \text { otherwise. }
\end{array} \quad, \quad c_{i, j}^{\prime}=\left\{\begin{array}{l}
1, \quad \text { if } j=i, \\
-1, \quad \text { if } j=2 i, \\
0 \quad \text { otherwise }
\end{array}\right.\right.
$$

- Thus, we aim for the equation:

$$
\sum_{m \geq 1}(-1)^{v_{2}(m)} \alpha(i m, j)=\left\{\begin{array}{l}
\alpha(i, j), \quad \text { if } j \text { is odd, } \\
\alpha(i, j)-\alpha(i, j / 2), \quad \text { if } j \text { is even. } . ~
\end{array}\right.
$$

- Only need to consider the case $i=2^{k}$, for $k \geq 1$.
- Rewrite the left hand side $\left(m:=d 2^{e}\right)$

$$
=\left\{\begin{array}{l}
\alpha\left(2^{k}, j\right), \quad j \text { odd }, \\
\alpha\left(2^{k}, j\right)-\alpha\left(2^{k}, j / 2\right),
\end{array}\right.
$$

- Thus, we aim for the equation:

$$
\sum_{m \geq 1}(-1)^{v_{2}(m)} \alpha(i m, j)=\left\{\begin{array}{l}
\alpha(i, j), \quad \text { if } j \text { is odd, } \\
\alpha(i, j)-\alpha(i, j / 2), \quad \text { if } j \text { is even. } . ~
\end{array}\right.
$$

- Only need to consider the case $i=2^{k}$, for $k \geq 1$.
- Rewrite the left hand side $\left(m:=d 2^{e}\right)$

- Thus, we aim for the equation:

$$
\sum_{m \geq 1}(-1)^{v_{2}(m)} \alpha(i m, j)=\left\{\begin{array}{l}
\alpha(i, j), \quad \text { if } j \text { is odd, } \\
\alpha(i, j)-\alpha(i, j / 2), \quad \text { if } j \text { is even. }
\end{array}\right.
$$

- Only need to consider the case $i=2^{k}$, for $k \geq 1$.
- Rewrite the left hand side $\left(m:=d 2^{e}\right)$

$$
\begin{aligned}
& \sum_{\begin{array}{c}
d \mid j \\
d \text { odd }
\end{array}}^{\sum_{e=0}^{v(j)-k-v(d)}(-1)^{e} \alpha\left(2^{k+e}, j / d\right)} \\
& = \begin{cases}\alpha\left(2^{k}, j\right), & j \text { odd } \\
\alpha\left(2^{k}, j\right)-\alpha\left(2^{k}, j / 2\right), \quad j \text { even. }\end{cases}
\end{aligned}
$$

- Set $r=k+e$ and use $\alpha\left(2^{r}, n\right)=\alpha_{r}(n)$. Our target equation is:

$$
(-1)^{k} \sum_{\substack{d \mid j \\
d \text { odd }}} \sum_{r=k}^{v(j / d)}(-1)^{r} \alpha_{r}(j / d)=\left\{\begin{array}{l}
\alpha_{k}(j), \quad j \text { odd, }, \\
\alpha_{k}(j)-\alpha_{k}(j / 2), \quad j \text { even. } .
\end{array}\right.
$$

- We claim that for all j,
- Set $r=k+e$ and use $\alpha\left(2^{r}, n\right)=\alpha_{r}(n)$. Our target equation is:

$$
(-1)^{k} \sum_{\substack{d \mid j \\
d \text { odd }}} \sum_{r=k}^{v(j / d)}(-1)^{r} \alpha_{r}(j / d)=\left\{\begin{array}{l}
\alpha_{k}(j), \quad j \text { odd, }, \\
\alpha_{k}(j)-\alpha_{k}(j / 2), \quad j \text { even } .
\end{array}\right.
$$

- We claim that for all j,

$$
(-1)^{k} \sum_{d \mid j} \sum_{r=k}^{v(j / d)}(-1)^{r} \alpha_{r}(j / d)=\alpha_{k}(j)
$$

- The claim yields the target equation if j is odd.
- If j is even, we note that d is a divisor of $j / 2$ if and only if $2 d$ is an even divisor of j, so that the claim implies

- Thus, we see that the target equation also follows from the claim when j is even. It remains to prove the claim.
- The claim yields the target equation if j is odd.
- If j is even, we note that d is a divisor of $j / 2$ if and only if $2 d$ is an even divisor of j, so that the claim implies

$$
\begin{aligned}
\alpha_{k}(j / 2) & =(-1)^{k} \sum_{d \mid(j / 2)} \sum_{r=k}^{v((j / 2) / d)}(-1)^{r} \alpha_{r}((j / 2) / d) \\
& =(-1)^{k} \sum_{\substack{d^{\prime} \mid j \\
d^{\prime} \text { even }}} \sum_{r=k}^{v\left(j / d^{\prime}\right)}(-1)^{r} \alpha_{r}\left(j / d^{\prime}\right)
\end{aligned}
$$

- Thus, we see that the target equation also follows from the claim when j is even. It remains to prove the claim.
- The claim yields the target equation if j is odd.
- If j is even, we note that d is a divisor of $j / 2$ if and only if $2 d$ is an even divisor of j, so that the claim implies

$$
\begin{aligned}
\alpha_{k}(j / 2) & =(-1)^{k} \sum_{d \mid(j / 2)} \sum_{r=k}^{v((j / 2) / d)}(-1)^{r} \alpha_{r}((j / 2) / d) \\
& =(-1)^{k} \sum_{\substack{d^{\prime} \mid j \\
d^{\prime} \text { even }}} \sum_{r=k}^{v\left(j / d^{\prime}\right)}(-1)^{r} \alpha_{r}\left(j / d^{\prime}\right)
\end{aligned}
$$

- Thus, we see that the target equation also follows from the claim when j is even. It remains to prove the claim.

Proof of claim:

$$
(\forall j) \quad(-1)^{k} \sum_{d \mid j} \sum_{r=k}^{v(j / d)}(-1)^{r} \alpha_{r}(j / d)=\alpha_{k}(j)
$$

- We can assume $j>1$.

- Apply the Alternating Sum Lemma to the blue sum in the claim.

Proof of claim:

$$
(\forall j) \quad(-1)^{k} \sum_{d \mid j} \sum_{r=k}^{v(j / d)}(-1)^{r} \alpha_{r}(j / d)=\alpha_{k}(j)
$$

- We can assume $j>1$.

Alternating Sum Lemma
 We have for all $m \in \mathbf{N}$,

- Apply the Alternating Sum Lemma to the blue sum in the claim.

Proof of claim:

$$
(\forall j) \quad(-1)^{k} \sum_{d \mid j} \sum_{r=k}^{v(j / d)}(-1)^{r} \alpha_{r}(j / d)=\alpha_{k}(j) .
$$

- We can assume $j>1$.

Alternating Sum Lemma
We have for all $m \in \mathbf{N}$,
$\sum_{r=1}^{v(m)}(-1)^{r} \alpha_{r}(m)=\left\{\begin{array}{l}(-1)^{v(m)}, \quad \text { if } m \text { is squarefree and } m>1, \\ 0 \\ \text { otherwise. }\end{array}\right.$

- Apply the Alternating Sum Lemma to the blue sum in the claim.

Proof of claim:

$$
(\forall j) \quad(-1)^{k} \sum_{d \mid j} \sum_{r=k}^{v(j / d)}(-1)^{r} \alpha_{r}(j / d)=\alpha_{k}(j) .
$$

- We can assume $j>1$.

Alternating Sum Lemma
We have for all $m \in \mathbf{N}$,
$\sum_{r=1}^{v(m)}(-1)^{r} \alpha_{r}(m)=\left\{\begin{array}{l}(-1)^{v(m)}, \quad \text { if } m \text { is squarefree and } m>1, \\ 0 \\ \text { otherwise. }\end{array}\right.$

- Apply the Alternating Sum Lemma to the blue sum in the claim.
- The total contribution from the squarefree case is

$$
(-1)^{k} \sum_{\substack{d \mid j \\ j / d \text { squarefree } \\ j / d>1}}(-1)^{v(j / d)}=(-1)^{k-1}
$$

- So we get
- The total contribution from the squarefree case is

$$
(-1)^{k} \sum_{\substack{d \mid j \\ j / d \text { squarefree } \\ j / d>1}}(-1)^{v(j / d)}=(-1)^{k-1} .
$$

- So we get

$$
(-1)^{k-1}+(-1)^{k-1} \sum_{d \mid j}\left(\sum_{r=1}^{k-1}(-1)^{r} \alpha_{r}(j / d)\right)
$$

- Finally, rewrite the above expression as

$$
(-1)^{k-1}+\sum_{r=1}^{k-1}(-1)^{k-1-r} \sum_{d \mid j} \alpha_{r}(d)
$$

which, by the Counting Lemma is equal to $\alpha_{k}(j)$. This proves the claim.

Alternating Sum Lemma
We have for all $m \in \mathbf{N}$,
$\sum_{k=1}^{v(m)}(-1)^{k} \alpha_{k}(m)=\left\{\begin{array}{l}(-1)^{v(m)}, \quad \text { if } m \text { is squarefree and } m>1, \\ 0 \\ \text { otherwise } .\end{array}\right.$

- The case $m=1$ is trivial.
$m=p_{1}^{\mu_{1}} p_{2}^{\mu_{2}} \cdots p_{r}^{\mu_{r}}$, with $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{r} \geq 1$. Let $n=v(m)=\mu_{1}+\cdots+\mu_{r}$.
- μ be the partition of n defined by the μ_{i}.
- We will give another combinatorial interpretation of the sets $A_{k}(m)$.
- The case $m=1$ is trivial.
- $m=p_{1}^{\mu_{1}} p_{2}^{\mu_{2}} \cdots p_{r}^{\mu_{r}}$, with $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{r} \geq 1$. Let $n=v(m)=\mu_{1}+\cdots+\mu_{r}$.
- μ be the partition of n defined by the μ_{i}.
- We will give another combinatorial interpretation of the sets $A_{k}(m)$.
- The case $m=1$ is trivial.
- $m=p_{1}^{\mu_{1}} p_{2}^{\mu_{2}} \cdots p_{r}^{\mu_{r}}$, with $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{r} \geq 1$. Let $n=v(m)=\mu_{1}+\cdots+\mu_{r}$.
- μ be the partition of n defined by the μ_{i}.
- We will give another combinatorial interpretation of the sets $A_{k}(m)$.
- The case $m=1$ is trivial.
- $m=p_{1}^{\mu_{1}} p_{2}^{\mu_{2}} \cdots p_{r}^{\mu_{r}}$, with $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{r} \geq 1$. Let $n=v(m)=\mu_{1}+\cdots+\mu_{r}$.
- μ be the partition of n defined by the μ_{i}.
- We will give another combinatorial interpretation of the sets $A_{k}(m)$.
- $N:=\{1, \ldots, n\}$.
- $F_{\mu}:=\left\{h: N \rightarrow\left\{p_{1}, \ldots, p_{r}\right\}| | h^{-1}\left(p_{i}\right) \mid=\mu_{i}\right.$ for $\left.i=1, \ldots, r\right\}$.
- S_{n} acts transitively on the right of $F_{\mu}:(h \sigma)(y)=h(\sigma(y))$, $y \in N, \sigma \in S_{n}$.
> $S_{\mu} \cong S_{\mu_{1}} \times S_{\mu_{2}} \times \cdots \times S_{\mu_{r}}$, stabilizer of the function in F_{μ} mapping the first μ_{1} elements to p_{1}, the next μ_{2} elements to p_{2}, etc.
- $N:=\{1, \ldots, n\}$.
- $F_{\mu}:=\left\{h: N \rightarrow\left\{p_{1}, \ldots, p_{r}\right\}| | h^{-1}\left(p_{i}\right) \mid=\mu_{i}\right.$ for $\left.i=1, \ldots, r\right\}$.
- S_{n} acts transitively on the right of $F_{\mu}:(h \sigma)(y)=h(\sigma(y))$, $y \in N, \sigma \in S_{n}$.
- $S_{\mu} \cong S_{\mu_{1}} \times S_{\mu_{2}} \times \cdots \times S_{\mu_{r},}$ stabilizer of the function in F_{μ} mapping the first μ_{1} elements to p_{1}, the next μ_{2} elements to p_{2}, etc.
- $N:=\{1, \ldots, n\}$.
- $F_{\mu}:=\left\{h: N \rightarrow\left\{p_{1}, \ldots, p_{r}\right\}| | h^{-1}\left(p_{i}\right) \mid=\mu_{i}\right.$ for $\left.i=1, \ldots, r\right\}$.
- S_{n} acts transitively on the right of $F_{\mu}:(h \sigma)(y)=h(\sigma(y))$, $y \in N, \sigma \in S_{n}$.
- $N:=\{1, \ldots, n\}$.
- $F_{\mu}:=\left\{h: N \rightarrow\left\{p_{1}, \ldots, p_{r}\right\}| | h^{-1}\left(p_{i}\right) \mid=\mu_{i}\right.$ for $\left.i=1, \ldots, r\right\}$.
- S_{n} acts transitively on the right of $F_{\mu}:(h \sigma)(y)=h(\sigma(y))$, $y \in N, \sigma \in S_{n}$.
- $S_{\mu} \cong S_{\mu_{1}} \times S_{\mu_{2}} \times \cdots \times S_{\mu_{r}}$, stabilizer of the function in F_{μ} mapping the first μ_{1} elements to p_{1}, the next μ_{2} elements to p_{2}, etc.
- A k-decomposition of n is a k-tuple $\left(n_{1}, \ldots, n_{k}\right)$ of integers $n_{i} \geq 1$ such that $n_{1}+n_{2}+\cdots+n_{k}=n$.
- $\Pi:=\left\{\sigma_{1}, \ldots \sigma_{n-1}\right\}$ be the set of fundamental reflections, with $\sigma_{i}=(i, i+1)$.
- $W_{k} \leq S_{n}$ standard parabolic subgroup of rank |K|. generated by a subset K of Π.
- Given a k-decomposition $\left(n_{1}, \ldots, n_{k}\right)$ of n, we have a set decomposition of N into subsets $N_{1}:=\left\{1, \ldots, n_{1}\right\}$, $N_{2}:=\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}$,
$N_{k}:=\left\{n_{1}+\cdots+n_{k-1}+1, \ldots, n\right\}$. The stabilizer of this decomposition is a standard parabolic subgroup of rank $n-k$ and this correspondence is a bijection between k-decompositions and standard parabolic subgroups of rank $n-k$.
- A k-decomposition of n is a k-tuple $\left(n_{1}, \ldots, n_{k}\right)$ of integers $n_{i} \geq 1$ such that $n_{1}+n_{2}+\cdots+n_{k}=n$.
- $\Pi:=\left\{\sigma_{1}, \ldots \sigma_{n-1}\right\}$ be the set of fundamental reflections, with $\sigma_{i}=(i, i+1)$.
- $W_{K} \leq S_{n}$ standard parabolic subgroup of rank $|K|$. generated by a subset K of Π.
- Given a k-decomposition $\left(n_{1}, \ldots, n_{k}\right)$ of n, we have a set decomposition of N into subsets $N_{1}:=\left\{1, \ldots, n_{1}\right\}$, $N_{2}:=\left\{n_{1}+1\right.$
$N_{k}:=\left\{n_{1}+\cdots+n_{k-1}+1, \ldots, n\right\}$. The stabilizer of this decomposition is a standard parabolic subgroup of rank $n-k$ and this correspondence is a bijection between k-decompositions and standard parabolic subgroups of rank $n-k$.
- A k-decomposition of n is a k-tuple $\left(n_{1}, \ldots, n_{k}\right)$ of integers $n_{i} \geq 1$ such that $n_{1}+n_{2}+\cdots+n_{k}=n$.
- $\Pi:=\left\{\sigma_{1}, \ldots \sigma_{n-1}\right\}$ be the set of fundamental reflections, with $\sigma_{i}=(i, i+1)$.
- $W_{K} \leq S_{n}$ standard parabolic subgroup of rank $|K|$. generated by a subset K of Π.
\rightarrow Given a k-decomposition $\left(n_{1}, \ldots, n_{k}\right)$ of n, we have a set decomposition of N into subsets N_{1} $:=\left\{1, \ldots, n_{1}\right\}$, The stabilizer of this decomposition is a standard parabolic subgroup of rank $n-k$ and this correspondence is a bijection between k-decompositions and standard parabolic subgroups of rank $n-k$.
- A k-decomposition of n is a k-tuple $\left(n_{1}, \ldots, n_{k}\right)$ of integers $n_{i} \geq 1$ such that $n_{1}+n_{2}+\cdots+n_{k}=n$.
- $\Pi:=\left\{\sigma_{1}, \ldots \sigma_{n-1}\right\}$ be the set of fundamental reflections, with $\sigma_{i}=(i, i+1)$.
- $W_{K} \leq S_{n}$ standard parabolic subgroup of rank $|K|$. generated by a subset K of Π.
- Given a k-decomposition $\left(n_{1}, \ldots, n_{k}\right)$ of n, we have a set decomposition of N into subsets $N_{1}:=\left\{1, \ldots, n_{1}\right\}$, $N_{2}:=\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}, \ldots$, $N_{k}:=\left\{n_{1}+\cdots+n_{k-1}+1, \ldots, n\right\}$. The stabilizer of this decomposition is a standard parabolic subgroup of rank $n-k$ and this correspondence is a bijection between k-decompositions and standard parabolic subgroups of rank $n-k$.
- For each pair $\left(\left(n_{1}, \ldots, n_{k}\right), h\right)$ consisting of a k-decomposition and a function $h \in F_{\mu}$, we obtain an element $\left(m_{1}, \ldots, m_{k}\right) \in A_{k}(m)$ by setting $m_{i}:=\prod_{j \in N_{i}} h(j)$.

$$
\begin{aligned}
& \text { Every element of } A_{k}(m) \text { arises in this way and two pairs } \\
& \text { define the same element of } A_{k}(m) \text { if and only if the } \\
& k \text {-decompositions are equal and the corresponding } \\
& \text { functions are in the same orbit under the action of the } \\
& \text { parabolic subgroup of the } k \text {-decomposition. }
\end{aligned}
$$

- For each pair $\left(\left(n_{1}, \ldots, n_{k}\right), h\right)$ consisting of a k-decomposition and a function $h \in F_{\mu}$, we obtain an element $\left(m_{1}, \ldots, m_{k}\right) \in A_{k}(m)$ by setting $m_{i}:=\prod_{j \in N_{i}} h(j)$.
- Every element of $A_{k}(m)$ arises in this way and two pairs define the same element of $A_{k}(m)$ if and only if the k-decompositions are equal and the corresponding functions are in the same orbit under the action of the parabolic subgroup of the k-decomposition.
- For each pair $\left(\left(n_{1}, \ldots, n_{k}\right), h\right)$ consisting of a k-decomposition and a function $h \in F_{\mu}$, we obtain an element $\left(m_{1}, \ldots, m_{k}\right) \in A_{k}(m)$ by setting $m_{i}:=\prod_{j \in N_{i}} h(j)$.
- Every element of $A_{k}(m)$ arises in this way and two pairs define the same element of $A_{k}(m)$ if and only if the k-decompositions are equal and the corresponding functions are in the same orbit under the action of the parabolic subgroup of the k-decomposition.

$$
\alpha_{k}(m)=\left|A_{k}(m)\right|=\sum_{\substack{K \subseteq \Pi \\|K|=n-k}} \mid\left\{W_{K} \text {-orbits on } F_{\mu}\right\} \mid \text {. }
$$

- For each pair $\left(\left(n_{1}, \ldots, n_{k}\right), h\right)$ consisting of a k-decomposition and a function $h \in F_{\mu}$, we obtain an element $\left(m_{1}, \ldots, m_{k}\right) \in A_{k}(m)$ by setting $m_{i}:=\prod_{j \in N_{i}} h(j)$.
- Every element of $A_{k}(m)$ arises in this way and two pairs define the same element of $A_{k}(m)$ if and only if the k-decompositions are equal and the corresponding functions are in the same orbit under the action of the parabolic subgroup of the k-decomposition.

$$
\alpha_{k}(m)=\left|A_{k}(m)\right|=\sum_{\substack{K \subseteq \square \\|K|=n-k}} \mid\left\{W_{K} \text {-orbits on } F_{\mu}\right\} \mid .
$$

$$
\alpha_{k}(m)=\sum_{\substack{K \subseteq \Pi \\|K|=n-k}}\left\langle 1_{W_{K}}^{S_{n}}, 1_{S_{\mu}}^{S_{n}}\right\rangle
$$

- L. Solomon's formula:

$$
\sum_{K \subseteq \Pi}(-1)^{|K|} 1_{W_{K}}^{S_{n}}=\epsilon,
$$

- L. Solomon's formula:

$$
\begin{aligned}
& \sum_{K \subseteq \Pi}(-1)^{|K|} 1_{W_{K}}^{S_{n}}=\epsilon, \\
& \sum_{k=1}^{n}(-1)^{k} \alpha_{k}(m)=(-1)^{n}\left\langle\sum_{K \subseteq \Pi}(-1)^{|K|} 1_{W_{K}}^{S_{n}}, 1_{S_{\mu}}^{S_{n}}\right\rangle \\
&=(-1)^{n}\left\langle\epsilon, 1_{S_{\mu}}^{S_{n}}\right\rangle \\
&=(-1)^{n}\langle\epsilon, 1\rangle_{S_{\mu}} \\
&= \begin{cases}(-1)^{n}, & \text { if } \mu=1^{n}, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

