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I A := the ring of matrices A = (ai,j)i,j∈N, with rational
entries, such that each column has only finitely many
nonzero entries.

I A operates by left multiplication on the space E of finitely
supported column vectors.

I A operates by right multiplication on QN ∼= E∗, the space of
sequences of rational numbers.

I

(fA)(n) =
∑
m∈N

am,nf (m), f ∈ QN, A ∈ A.
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Dirichlet Space and Dirichlet Ring
I

DS := {f ∈ QN | (∃C, c > 0)(∀n)(|f (n)| ≤ Cnc)}

I f ∈ DS if and only if
∑

n f (n)n−s converges for some
complex number s.

I DR := the subring of A consisting of all elements which
leave DS invariant.
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The divisor matrix D = (di,j)i,j∈N defined by

di,j =

{
1, if i divides j ,
0 otherwise.



G := SL(2, Z) = 〈S, R | S4, R6, S2 = R3〉

S =

[
0 −1
1 0

]
, and T =

[
1 1
0 1

]
.



Main Theorem
There exists a representation ρ : SL(2, Z) → A× with the
following properties.
(a) The space E (finitely supported columns) has an

ascending filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · ·

of Q SL(2, Z)-submodules such that for each i ∈ N, the
quotient module Ei/Ei−1 is isomorphic to the standard
2-dimensional Q SL(2, Z)-module.

(b) ρ(T ) = D.
(c) ρ(Y ) is an integer matrix for every Y ∈ SL(2, Z).
(d) ρ(SL(2, Z)) ⊆ DR.
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Steps in proof:
I Find “Jordan canonical form” of D. Compute the

change-of-basis matrices and check that they belong to
DR.

I For each Jordan block B construct an integral
representation of SL(2, Z) so that T is represented by a
matrix similar to B and satisfying the filtration condition.
Compute the change-of-basis matrices explicitly and check
conditions for a suitable direct sum to be in DR.

I Form the direct sum.
I But....
I Membership of DR is not preserved by similarity!
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The divisor matrix
I D = (di,j)i,j∈N defined by

di,j =

{
1, if i divides j ,
0 otherwise.

I D is unitriangular. What is its JCF ?
I Find the transition matrices explicitly.
I The Dirichlet Ring is not closed under taking multiplicative

inverses.
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I For m, k ∈ N, let

Ak (m) := {(m1, m2, . . . , mk ) ∈ (N\{1})k | m1m2 · · ·mk = m}

I αk (m) := |Ak (m)|
I αk (1) = 0, αk (m) = 0 if m < 2k and αk (2k ) = 1.
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By considering the first k − 1 entries of elements of Ak (m), we
see that for k > 1, we have

Counting Lemma

I

αk (m) =

∑
d |m

αk−1(d)

− αk−1(m).

I
k−1∑
i=1

(−1)k−1−i
∑
d |m

αi(d) = αk (m) + (−1)kα1(m).
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Relation to D
I The (1, m) entry of (D − I)k is equal to αk (m)

I Proof: Let D − I = (ti,j)i,j∈N. Then

t1,j1 tj1,j2 · · · tjk−1,m = 1 ⇐⇒ (j1, j2/j1, . . . , m/jk−1) ∈ Ak (m)

I More generally,

(d , m) entry of (D − I)k =

{
0 if d - m,
αk (m/d) = (1, m/d) entry, if d | m.
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I

J := (Ji,j)i,j∈N, Ji,j =

{
1, if j ∈ {i , 2i},
0 otherwise.

I Think of J as being the direct sum of infinite Jordan blocks,
one for each odd integer.

I Let Z := (α(i , j))i,j∈N be the matrix described in the
following way.

I Let i = 2kd with d odd. Then the i th row of Z is equal to the
d th row of (D − I)k . (Take (D − I)0 = I.)



I

J := (Ji,j)i,j∈N, Ji,j =

{
1, if j ∈ {i , 2i},
0 otherwise.

I Think of J as being the direct sum of infinite Jordan blocks,
one for each odd integer.

I Let Z := (α(i , j))i,j∈N be the matrix described in the
following way.

I Let i = 2kd with d odd. Then the i th row of Z is equal to the
d th row of (D − I)k . (Take (D − I)0 = I.)



I

J := (Ji,j)i,j∈N, Ji,j =

{
1, if j ∈ {i , 2i},
0 otherwise.

I Think of J as being the direct sum of infinite Jordan blocks,
one for each odd integer.

I Let Z := (α(i , j))i,j∈N be the matrix described in the
following way.

I Let i = 2kd with d odd. Then the i th row of Z is equal to the
d th row of (D − I)k . (Take (D − I)0 = I.)



I

J := (Ji,j)i,j∈N, Ji,j =

{
1, if j ∈ {i , 2i},
0 otherwise.

I Think of J as being the direct sum of infinite Jordan blocks,
one for each odd integer.

I Let Z := (α(i , j))i,j∈N be the matrix described in the
following way.

I Let i = 2kd with d odd. Then the i th row of Z is equal to the
d th row of (D − I)k . (Take (D − I)0 = I.)



Lemma
The matrix Z has the following properties:
(a) α(i , j) = δi,j , if i is odd.
(b) If i = d2k , where d is odd and k ≥ 1, then

α(i , j) =

{
αk (j/d) if d | j ,
0 otherwise.

(c) α(im, jm) = α(i , j) whenever m is odd.
(d) Z is upper unitriangular.
(e)

Z (D − I) = (J − I)Z

(Proof: Look at the i-th row of both sides, i = 2kd.)
(f)

ZDZ−1 = J.

Moreover, Z is the unique matrix satisfying (a) and (f).
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I We still need to find an explicit formula for Z−1.
I Notation: For each prime p and each integer m let vp(m)

denote the exponent of the highest power of p which
divides m and let v(m) :=

∑
p vp(m).

I Let X be the diagonal matrix with (i , i) entry equal to
(−1)v2(i), for i ∈ N.
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I Discovered with help of computer calculation. (Gnu
octave).
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Proof of Z−1 = XZX
I It suffices to show that

D(XZX ) = (XZX )J

or, equivalently,

(XDX )Z = Z (XJX ).

I XDX = (d ′i,j)i,j∈N, XJX = (c′i,j)i,j∈N

d ′i,j =

{
(−1)v2(i)+v2(j), if i | j ,
0 otherwise.

, c′i,j =


1, if j = i ,
−1, if j = 2i ,
0 otherwise.
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I Thus, we aim for the equation:

∑
m≥1

(−1)v2(m)α(im, j) =

{
α(i , j), if j is odd,
α(i , j)− α(i , j/2), if j is even.

I Only need to consider the case i = 2k , for k ≥ 1.
I Rewrite the left hand side (m := d2e)

∑
d |j

d odd

v(j)−k−v(d)∑
e=0

(−1)eα(2k+e, j/d)

=

{
α(2k , j), j odd,
α(2k , j)− α(2k , j/2), j even.
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I Set r = k + e and use α(2r , n) = αr (n). Our target
equation is:

(−1)k
∑
d |j

d odd

v(j/d)∑
r=k

(−1)rαr (j/d) =

{
αk (j), j odd,
αk (j)− αk (j/2), j even.

I We claim that for all j ,

(−1)k
∑
d |j

v(j/d)∑
r=k

(−1)rαr (j/d) = αk (j).
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I The claim yields the target equation if j is odd.
I If j is even, we note that d is a divisor of j/2 if and only if

2d is an even divisor of j , so that the claim implies
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Proof of claim:

(∀j) (−1)k
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d |j

v(j/d)∑
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I We can assume j > 1.

Alternating Sum Lemma
We have for all m ∈ N,

v(m)∑
r=1

(−1)rαr (m) =

{
(−1)v(m), if m is squarefree and m > 1,

0 otherwise.

I Apply the Alternating Sum Lemma to the blue sum in the
claim.
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I The total contribution from the squarefree case is

(−1)k
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j/d squarefree
j/d>1

(−1)v(j/d) = (−1)k−1.

I So we get
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∑
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(
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I Finally, rewrite the above expression as

(−1)k−1 +
k−1∑
r=1

(−1)k−1−r
∑
d |j

αr (d),

which, by the Counting Lemma is equal to αk (j). This
proves the claim.



Alternating Sum Lemma
We have for all m ∈ N,

v(m)∑
k=1

(−1)kαk (m) =

{
(−1)v(m), if m is squarefree and m > 1,

0 otherwise.



I The case m = 1 is trivial.
I m = pµ1

1 pµ2
2 · · ·pµr

r , with µ1 ≥ µ2 ≥ · · · ≥ µr ≥ 1. Let
n = v(m) = µ1 + · · ·+ µr .

I µ be the partition of n defined by the µi .
I We will give another combinatorial interpretation of the

sets Ak (m).
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I N := {1, . . . , n}.
I Fµ := {h : N → {p1, . . . , pr} | |h−1(pi)| = µi for i = 1,. . . , r}.
I Sn acts transitively on the right of Fµ: (hσ)(y) = h(σ(y)),

y ∈ N, σ ∈ Sn.
I Sµ

∼= Sµ1 × Sµ2 × · · · × Sµr , stabilizer of the function in Fµ

mapping the first µ1 elements to p1, the next µ2 elements
to p2, etc.
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I A k -decomposition of n is a k -tuple (n1, . . . , nk ) of integers
ni ≥ 1 such that n1 + n2 + · · ·+ nk = n.

I Π := {σ1, . . . σn−1} be the set of fundamental reflections,
with σi = (i , i + 1).

I WK ≤ Sn standard parabolic subgroup of rank |K |.
generated by a subset K of Π.

I Given a k -decomposition (n1, . . . , nk ) of n, we have a set
decomposition of N into subsets N1 := {1, . . . , n1},
N2 := {n1 + 1, . . . , n1 + n2}, . . . ,
Nk := {n1 + · · ·+ nk−1 + 1, . . . , n}. The stabilizer of this
decomposition is a standard parabolic subgroup of rank
n − k and this correspondence is a bijection between
k -decompositions and standard parabolic subgroups of
rank n − k .
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I For each pair ((n1, . . . , nk ), h) consisting of a
k -decomposition and a function h ∈ Fµ, we obtain an
element (m1, . . . , mk ) ∈ Ak (m) by setting mi :=

∏
j∈Ni

h(j).
I Every element of Ak (m) arises in this way and two pairs

define the same element of Ak (m) if and only if the
k -decompositions are equal and the corresponding
functions are in the same orbit under the action of the
parabolic subgroup of the k -decomposition.

I

αk (m) = |Ak (m)| =
∑
K⊆Π

|K |=n−k

|{WK -orbits on Fµ}|.

I

αk (m) =
∑
K⊆Π

|K |=n−k

〈1Sn
WK

, 1Sn
Sµ
〉.
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I L. Solomon’s formula:∑
K⊆Π

(−1)|K |1Sn
WK

= ε,

I
n∑

k=1

(−1)kαk (m) = (−1)n〈
∑
K⊆Π

(−1)|K |1Sn
WK

, 1Sn
Sµ
〉

= (−1)n〈ε, 1Sn
Sµ
〉

= (−1)n〈ε, 1〉Sµ

=

{
(−1)n, if µ = 1n,

0, otherwise.
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