Geometry of.
The isogeny τ
The groups $G(n)$
Irreducible.
Extensions of.
The Generalized.
Open Problems.

Geometry and Representation Theory

 of $\mathrm{Sp}\left(4,2^{t}\right)$ and $\mathrm{Sz}\left(2^{t}\right)$Peter Sin, University of Florida

Presented at University of Delaware, 17th November, 2006

1. Geometry of symplectic 3space

We begin with Tits' construction [7].

- V be a 4 -diml. vector space, coordinates $x_{i}, i=0,1$, 2, 3.
- W 2-diml. subspace, $\wedge^{2} W$ is a point of $\mathbb{P}\left(\wedge^{2} V\right)$.
- If W is spanned by $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ then the "Plücker" coordinates. of W are ($p_{01}: p_{02}$: $\left.p_{03}: p_{12}: p_{13}: p_{23}\right)$, with $p_{i j}=a_{i} b_{j}-a_{j} b_{i}$.
- These coordinates satisfy the quadratic form

$$
\begin{equation*}
p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0 \tag{1}
\end{equation*}
$$

and form the Klein Quadric \widehat{Q}

Assume that V has a nonsingular alternating bilinear form and x_{i} are symplectic coordinates so that the matrix of the form is $\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right)$.

- A 2-subspace is t.i. iff $p_{03}+p_{12}=0$.
- The t.i. 2-subspaces form the intersection $Q=\widehat{Q} \cap H$

Geometry of .
The isogeny τ
The groups $G(n)$
Irreducible
Extensions of.
The Generalized
Open Problems.
 of \widehat{Q} with the hyperplane H of the above equation.

- The equation of Q is

$$
\begin{equation*}
p_{01} p_{23}-p_{02} p_{13}-p_{03}^{2}=0 \tag{2}
\end{equation*}
$$

2. The isogeny τ

Suppose the field of V is $k=\overline{\mathbf{F}}_{2}$.

- $z=(0: 0: 1: 1: 0: 0) \in H \backslash Q$ is the radical of the (alternating) bilinear form associated with (2).
- z is the common point of intersection of every tangent hyperplane to Q in H.
- Projection $H \rightarrow V_{1}=H / z$ gives a bijection $Q \rightarrow$ $\mathbb{P}\left(V_{1}\right)$.
$\alpha:\{2$-diml tot. isotropic subspaces of $V\} \cong \mathbb{P}\left(V_{1}\right)$.
- The alternating form induced on V_{1} is nonsingular.
- $y_{0}=\bar{p}_{01}, y_{1}=\bar{p}_{02}, y_{2}=\bar{p}_{13}, y_{3}=\bar{p}_{23}$ are symplectic coords for V_{1}.
V_{1} is a lot like V !
- Identify V with V_{1} by their symplectic coordinates.
- This fixes an isomorphism $\operatorname{Sp}(V) \cong \operatorname{Sp}\left(V_{1}\right)$.
- Under this identification, the induced action on V_{1} induces an endomorphism τ of $\operatorname{Sp}(V)$.
- $x=\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$. Assume for simplicity $a_{0} \neq 0$.
- x^{\perp} is spanned by $x,\left(0: a_{0}: 0: a_{2}\right)$ and $\left(0: 0: a_{0}:\right.$ a_{1}).
- The set of t.i. 2-subspaces which contain x form an isotropic line in Q, spanned by $\left(a_{0}^{2}: 0: a_{0} a_{2}: a_{0} a_{2}\right.$: $\left.a_{0} a_{3}+a_{1} a_{2}: a_{2}^{2}\right)$ and $\left(0: a_{0}^{2}: a_{0} a_{1}: a_{0} a_{1}: a_{1}^{2}:\right.$ $a_{0} a_{3}+a_{1} a_{2}$).
- This line maps to the t.i. line spanned by $\left(a_{0}^{2}: 0\right.$: $a_{0} a_{3}+a_{1} a_{2}: a_{2}^{2}$) and ($0: a_{0}^{2}: a_{1}^{2}: a_{0} a_{3}+a_{1} a_{2}$).
- $\beta: \mathbb{P}(V) \rightarrow\{$ t.i. lines of $\mathbb{P}(V)\}$.
- Compute Pluc̈ker coordinates: $\alpha(\beta(x))=\left(a_{0}^{2}: a_{1}^{2}\right.$: $\left.a_{2}^{2}: a_{3}^{2}\right)$.
- Conclude that β is a bijection and τ^{2} is the Frobenius map, given by squaring all matrix entries.
- τ is an isogeny of algebraic groups.

3. The groups $G(n)$

- $G(n)=$ the subgroup of $\operatorname{Sp}(V)$ fixed by τ^{n}.
- $G(2 t) \cong \operatorname{Sp}\left(4,2^{t}\right)$.
- $G(2 m+1)=\mathrm{Sz}\left(2^{2 m+1}\right)$, Suzuki groups.

For $x=\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$, set $x^{\left(2^{i}\right)}=\left(a_{0}{ }^{2^{i}}: a_{1}{ }^{2^{i}}: a_{2}{ }^{2^{i}}:\right.$ $\left.a_{3}{ }^{{ }^{i}}\right)$. Then $G(2 m+1)$ preserves the set

$$
\mathcal{T}=\left\{x \mid x=x^{\left(2^{2 m+1}\right)}, x^{\left(2^{m+1}\right)} \in \beta(x)\right\} .
$$

This is called the Tits ovoid. It consists of $(0: 0: 0: 1)$ and the points $(1: x: y: z)$ satisfying

Geometry of.
The isogeny τ
The groups $G(n)$
Irreducible.
Extensions of.
The Generalized.
Open Problems.

$\langle 4$	\langle	$>$	\gg

$$
\begin{equation*}
z=x y+x^{2^{m+1}+2}+y^{2^{m+1}} \tag{3}
\end{equation*}
$$

4. Irreducible representations

- $N=\{0,1, \ldots, n-1\}$.
- For $i \in N, V_{i}=V^{\left(\tau^{i}\right)}$, the $\operatorname{Sp}(4, k)$-module V "twisted" by τ^{i}, i.e. an element g acts on V_{i} as $\tau^{i}(g)$ acts on the standard module V.

Geometry of.
The isogeny τ
The groups $G(n)$
Irreducible.
Extensions of
The Generalized
Open Problems.

- For $I \subset N$, set $V_{I}=\bigotimes_{i \in I} V_{i}$.

The 2^{n} modules V_{I} are a complete set of nonisomorphic simple modules for $k G(n)$-modules. (Steinberg's Tensor Product Theorem.)

5. Extensions of simple modules

When does there exist short exact sequence

$$
\begin{equation*}
0 \rightarrow V_{J} \rightarrow E \rightarrow V_{I} \rightarrow 0 \tag{4}
\end{equation*}
$$

which does not split?
Theorem. ([5]) Let $I, J \subseteq N$. Then
$\operatorname{Ext}_{k G(n)}^{1}\left(V_{I}, V_{J}\right) \cong\left\{\begin{array}{l}k, \text { if } I \triangle J=\{i\}, i-1 \notin I \cap J ; \\ 0, \text { otherwise. }\end{array}\right.$

6. The Generalized Quadrangle $W(q)$

Fix $n=2 t, q=2^{t}, V(q) \leq V$, the $\mathbb{F}_{q}-$ span of the given symplectic basis of $V, G=\operatorname{Sp}(V(q)) \cong G(n)$.

- $P=\{1$-diml. subspaces of $V(q)\}$,

- $L=\{2$-diml. tot.isotropic subspaces of $V(q)\}$.
- $W(q)$ is the incidence system (P, L).
- k^{P}, k^{L} vector spaces with bases P, L.
- $\eta: k^{L} \rightarrow k^{P}, \ell \mapsto \sum_{p \in \ell} p$, incidence map.
- η is a homomorphism of $k G$-modules; its image $\mathcal{C} \leq$ k^{P} is the code of $W(q)$.

6.1. Structure of \mathcal{C}

Geometry of.
The isogeny τ
The groups $G(n)$
Irreducible
Extensions of

The Generalized
Open Problems.

$$
\begin{align*}
\operatorname{dim} \mathcal{C} & =1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t} \tag{6}\\
& =1+\sum_{I \in \mathcal{N}} 4^{|I|}
\end{align*}
$$

where \mathcal{N} is the set of subsets of $N=\mathbf{Z} / 2 t \mathbf{Z}$ which contain no two consecutive elements.

6.2. Main ideas of the proof

- $\operatorname{Hom}_{k G}\left(S^{2}(V), k\right) \cong k$, spanned by the trace map.

Geometry of.
The isogeny τ
The groups $G(n)$
Irreducible
Extensions of.
The Generalized.
Open Problems.

- Let $M=\bigotimes_{i=0}^{t-1} U^{\left(2^{i}\right)}$.

Using the theorem on extensions, one shows that M has a submodule R such that the composition factors of R are precisely those composition factors V_{I} of M with $I \notin \mathcal{N}$, and M / R has composition factors V_{J}, one for each $J \in \mathcal{N}$. Finally, using results of [3] and [1], it can be proved that

$$
\mathcal{C} \cong k \oplus M / R .
$$

7. Open Problems.

- Give an analogous construction of ${ }^{2} F_{4}\left(2^{2 m+1}\right)$.
- Compute the code of the $G_{2}\left(3^{t}\right)$ generalized hexagon. The geometric construction was given by Tits [7] and the simple module extensions were classified in [6].
- Compute the integral invariants of the incidence matrix of the symplectic generalized quadrangles.
- Compute the 2-ranks of the incidence matrices for 1subspaces and t.i. subspaces of a fixed dimension in a symplectic vector space (of characteristic 2 and dimension ≥ 6).
- Determine the exact structure of the subcode generated by Tits ovoids in $W(q)$. (Bagchi and Sastry [2] showed that the characteristic function of a Tits ovoid belongs to \mathcal{C}.)

Geometry of

References

[1] J. L. Alperin, Projective modules for SL($2,2^{n}$), J. Pure and Applied Algebra 15 (1979) 219-234.
[2] B. Bagchi, N. S. N. Sastry, Intersection pattern of classical ovoids in symplectic 3-space of even order, J. Algebra 26 (1989) 147-160.
[3] C. W. Curtis, Modular representations of finite groups with split BN-pairs, pages 57-95 in Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, Springer, Berlin (1969).
[4] N. S. N. Sastry, P. Sin, The code of a regular generalized quadrangle of even order, Proc. Symposia in Pure Mathematics 63 (1998), 485-496.

Geometry of.
The isogeny τ
The groups $G(n)$
Irreducible.
Extensions of
The Generalized
Open Problems.

Back
[6] P. Sin, Extensions of simple modules for $G_{2}\left(3^{n}\right)$ and ${ }^{2} G_{2}\left(3^{m}\right)$, Proc. Lond. Math. Soc. 66 (1993), 327-357.
[7] J. Tits, Les Groupes simples de Suzuki et de Ree, Sem. Bourbaki, Exp. 210, (1961). Math. Soc. 24 (1992), 159-164.
[5] P. Sin, Extensions of simple modules for $\mathrm{Sp}_{4}\left(2^{n}\right)$ and $\operatorname{Suz}\left(2^{m}\right)$, Bull. Lond.

