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We begin with Tits’ construction [7].

e I/ be a 4-diml. vector space, coordinates x;, 1 = 0, 1,
S

e W 2-diml. subspace, A*W is a point of P(A*V).

o If W is spanned by (ag, ai, a9, az) and (by, by, ba, b3)
then the “Pliicker” coordinates. of W are (po; : pos
Po3 : P12 © P13 : Pa3), With p;; = a;b; — a;b;.

e These coordinates satisfy the quadratic form

Po1P23 — Po2P13 + Pospr2 = 0. 0y

and form the Klein Quadric @



Assume that V' has a nonsingular alternating bilinear form
and x; are symplectic coordinates so that the matrix of the

0 001
form is ( . 01(1)8)
N0\ 0.0
e A 2-subspace is t.i. iff pg3 + p12 = 0.

e The t.i. 2-subspaces form the intersection ¢) = @\ NH
of () with the hyperplane H of the above equation.

e The equation of () is

Po1P23 — Po2P13 — pﬁg = 0. (2)
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2. The isogeny 7

Suppose the field of V is k = F.

©ez2=(0:0:1:1:0:0) € H\ @ is the radical of the
(alternating) bilinear form associated with (2).

e 2 is the common point of intersection of every tangent
hyperplane to () in H.

e Projection H — V; = H/z gives a bijection @ —
P(V1).

« : {2-diml tot. isotropic subspaces of V'} = P(V}).

e The alternating form induced on V; is nonsingular.

® o — Do, Y1 = Poss Y2 = Di3, Y3 = Doy are symplectic
coords for V;.

V) is a lot like V' !
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e Identify V with V; by their symplectic coordinates.
e This fixes an isomorphism Sp(V') = Sp(V}).

e Under this identification, the induced action on Vj
induces an endomorphism 7 of Sp(V).




xr = (ag: ay: as: as). Assume for simplicity ag # 0.
x+ is spanned by x, (0 : ap: 0 : ay) and (0: 0 : ag
al).

The set of t.i. 2-subspaces which contain x form an
isotropic line in @, spanned by (aj : 0 : apas : agay :
aogas + ajas : a3) and (0 : af : agay : agay : aj :
aopas + CllCLQ).

This line maps to the t.i. line spanned by (af : 0 :
aoas + aray : a3) and (0 : al : a? : apas + aas).

B :P(V) — {t.i. lines of P(V)}.

Compute Plucker coordinates: a(f(x)) = (ag : a7 :
9
as : as).

Conclude that (3 is a bijection and 72 is the Frobenius
map, given by squaring all matrix entries.

T is an 2sogeny of algebraic groups.
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e (G(n) = the subgroup of Sp(V') fixed by 7". e P
o G(2t) = Sp(4,2").
@& O - 1) = Sz(271), Suzuky cuouj

RO (0 a1 : ag : a3), set %) = (Gt NG

as?). Then G(2m + 1) preserves the set
A — 2T, @) e Bl

This is called the Tits ovoid. It consists of (0:0:0: 1)
and the points (1 : z : y : 2) satisfying

S xy _I_ x2m+1+2 —|_ y2m+l. <3)
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4. Irreducible representations

Open Problems.
S0 1,...,n— 1}

SN N V. = V@) the Sp(4, k)-module. V
“twisted” by 7', i.e. an element g acts on V; as 7'(g)
acts on the standard module V.

e For I C N,set Vi=Q)..; V.

icl
The 2" modules V; are a complete set of nonisomorphic

simple modules for kG(n)-modules. (Steinberg’s Tensor
Product Theorem.)



5. Extensions of simple mod-
ules

When does there exist short exact sequence
0—-V, - EFE—-V;—0 (4)

which does not split?
Theorem. ([5]) Let I, J C N. Then

k, if INT={:},i—1¢1InNnJ;

0, otherwise.

Bty (Vr, V) = {
(5)
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6. The Generalized Quadrangle reducble..
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W (C])

Open Problems.

Fixn =2t, q =2, V(q) <V, the F, — span of the given
symplectic basis of V, G = Sp(V (q)) = G(n).

e P = {1-diml. subspaces of V(q)},
e [ = {2-diml. tot.isotropic subspaces of V' (q)}.
e W (q) is the incidence system (P, L).

o k¥ k% vector spaces with bases P, L.
on: kP — kP 4 > e D, incidence map.

e 1) is a homomorphism of £G-modules; its image C <

k" is the code of W(q).
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Theorem. (///)

dimC SN 1_|_ (1+T\/I7)2t N (1 _2ﬂ7)2t
6
= 1 -5 ©)
IeN

where N is the set of subsets of N = Z/2tZ which
contain no two consecutive elements.



6.2. Main ideas of the proof
e Hom,(S?*(V), k) = k, spanned by the trace map.

e U = ker(trace), is a uniserial module with descending

series V1, k, V5.
SRR 501 U@

Using the theorem on extensions, one shows that M has a
submodule R such that the composition factors of R are
precisely those composition factors V7 of M with I ¢ N,
and M /R has composition factors V;, one for each J € N.
Finally, using results of [3] and [1], it can be proved that

C= ko M/R.
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7. Open PrOblemS. The isogeny T
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e Give an analogous construction of 2 Fy(22™*1). Extensions o ..
The Generalized. ..

e Compute the code of the G(3") generalized hexagon.
The geometric construction was given by Tits [/] and
the simple module extensions were classified in [0].

e Compute the integral invariants of the incidence ma-
trix of the symplectic generalized quadrangles.

e Compute the 2-ranks of the incidence matrices for 1-
subspaces and t.i. subspaces of a fixed dimension in
a symplectic vector space (of characteristic 2 and di-
mension > 6).

e Determine the exact structure of the subcode gener-
ated by Tits ovoids in W(q). (Bagchi and Sastry [}
showed that the characteristic function of a Tits ovoid
belongs to C.)
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