Geometry of
The isogeny $ au$
The groups $G(n)$
Irreducible
Extensions of
The Generalized
Open Problems.

Back Full Screen Close

Quit

Geometry and Representation Theory of $\text{Sp}(4, 2^t)$ and $\text{Sz}(2^t)$

> Peter Sin, University of Florida

Presented at University of Delaware, 17th November, 2006

1. Geometry of symplectic 3space

We begin with Tits' construction [7].

- V be a 4-diml. vector space, coordinates x_i , i = 0, 1, 2, 3.
- W 2-diml. subspace, $\wedge^2 W$ is a point of $\mathbb{P}(\wedge^2 V)$.
- If W is spanned by (a_0, a_1, a_2, a_3) and (b_0, b_1, b_2, b_3) then the "Plücker" coordinates. of W are $(p_{01} : p_{02} : p_{03} : p_{12} : p_{13} : p_{23})$, with $p_{ij} = a_i b_j - a_j b_i$.
- These coordinates satisfy the quadratic form

$$p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0.$$
 (1)

and form the Klein Quadric \widehat{Q}

Geometry of . . . The isogeny τ The groups G(n)Irreducible . . . Extensions of . . . The Generalized . . . Open Problems.

Back

Full Screen

Close

Assume that V has a nonsingular alternating bilinear form and x_i are symplectic coordinates so that the matrix of the form is $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$.

- A 2-subspace is t.i. iff $p_{03} + p_{12} = 0$.
- The t.i. 2-subspaces form the intersection $Q = \widehat{Q} \cap H$ of \widehat{Q} with the hyperplane H of the above equation.
- The equation of Q is

$$p_{01}p_{23} - p_{02}p_{13} - p_{03}^2 = 0. (2)$$

Geometry of
The isogeny $ au$
The groups $G(n)$
Irreducible
Extensions of
The Generalized
Open Problems.

Back

Full Screen

Close

2. The isogeny τ

Suppose the field of V is $k = \overline{\mathbf{F}}_2$.

- $z = (0:0:1:1:0:0) \in H \setminus Q$ is the radical of the (alternating) bilinear form associated with (2).
- z is the common point of intersection of every tangent hyperplane to Q in H.
- Projection $H \to V_1 = H/z$ gives a bijection $Q \to \mathbb{P}(V_1)$.
 - α : {2-diml tot. isotropic subspaces of V} $\cong \mathbb{P}(V_1)$.
- The alternating form induced on V_1 is nonsingular.
- $y_0 = \overline{p}_{01}, y_1 = \overline{p}_{02}, y_2 = \overline{p}_{13}, y_3 = \overline{p}_{23}$ are symplectic coords for V_1 .

 V_1 is a lot like V !

Geometry of . . . The isogeny τ The groups G(n) Irreducible... Extensions of . . . The Generalized . . . Open Problems.

Back

Full Screen

Close

Geometry of ... The isogeny auThe groups G(n)Irreducible . . . Extensions of ... The Generalized ... Open Problems. Back Full Screen Close

- Identify V with V_1 by their symplectic coordinates.
- This fixes an isomorphism $\operatorname{Sp}(V) \cong \operatorname{Sp}(V_1)$.
- Under this identification, the induced action on V_1 induces an endomorphism τ of Sp(V).

- $x = (a_0 : a_1 : a_2 : a_3)$. Assume for simplicity $a_0 \neq 0$.
- x^{\perp} is spanned by x, $(0: a_0: 0: a_2)$ and $(0: 0: a_0: a_1)$.
- The set of t.i. 2-subspaces which contain x form an isotropic line in Q, spanned by $(a_0^2 : 0 : a_0a_2 : a_0a_2 : a_0a_2 : a_0a_3 + a_1a_2 : a_2^2)$ and $(0 : a_0^2 : a_0a_1 : a_0a_1 : a_1^2 : a_0a_3 + a_1a_2)$.
- This line maps to the t.i. line spanned by $(a_0^2 : 0 : a_0a_3 + a_1a_2 : a_2^2)$ and $(0 : a_0^2 : a_1^2 : a_0a_3 + a_1a_2)$.

•
$$\beta : \mathbb{P}(V) \to \{ \text{t.i. lines of } \mathbb{P}(V) \}$$

- Compute Plučker coordinates: $\alpha(\beta(x)) = (a_0^2 : a_1^2 : a_2^2 : a_3^2).$
- Conclude that β is a bijection and τ^2 is the Frobenius map, given by squaring all matrix entries.
- τ is an *isogeny* of algebraic groups.

Geometry of ... The isogeny τ The groups G(n)Irreducible ... Extensions of ... The Generalized ... Open Problems.

Back

Full Screen

Close

3. The groups G(n)

- G(n) = the subgroup of Sp(V) fixed by τ^n .
- $G(2t) \cong \operatorname{Sp}(4, 2^t).$
- $G(2m+1) = Sz(2^{2m+1})$, Suzuki groups.

For $x = (a_0 : a_1 : a_2 : a_3)$, set $x^{(2^i)} = (a_0^{2^i} : a_1^{2^i} : a_2^{2^i} : a_3^{2^i})$. Then G(2m + 1) preserves the set

$$\mathcal{T} = \{ x \mid x = x^{(2^{2m+1})}, x^{(2^{m+1})} \in \beta(x) \}.$$

This is called the *Tits ovoid*. It consists of (0:0:0:1)and the points (1:x:y:z) satisfying

$$z = xy + x^{2^{m+1}+2} + y^{2^{m+1}}.$$
(3)

Geometry of . . . The isogeny τ The groups G(n)Irreducible . . . Extensions of . . . The Generalized . . . Open Problems.

Back

Full Screen

Close

4. Irreducible representations

•
$$N = \{0, 1, \dots, n-1\}.$$

• For $i \in N$, $V_i = V^{(\tau^i)}$, the Sp(4, k)-module V "twisted" by τ^i , i.e. an element g acts on V_i as $\tau^i(g)$ acts on the standard module V.

• For
$$I \subset N$$
, set $V_I = \bigotimes_{i \in I} V_i$.

The 2^n modules V_I are a complete set of nonisomorphic simple modules for kG(n)-modules. (Steinberg's Tensor Product Theorem.)

Geometry of
The isogeny $ au$
The groups $G(n)$
Irreducible
Extensions of
The Generalized
Open Problems.

Back	
Full Screen	
Close	
Quit	
Quit	

5. Extensions of simple modules

When does there exist short exact sequence

 $0 \to V_J \to E \to V_I \to 0$

which does not split?

Theorem. ([5]) Let $I, J \subseteq N$. Then

$$\operatorname{Ext}_{kG(n)}^{1}(V_{I}, V_{J}) \cong \begin{cases} k, \ if \ I \triangle J = \{i\}, \ i-1 \notin I \cap J; \\ 0, otherwise. \end{cases}$$
(5)

Geometry of
The isogeny $ au$
The groups $G(n)$
Irreducible
Extensions of
The Generalized
Open Problems.

44 A > >>

Back

(4)

Full Screen

Close

6. The Generalized Quadrangle W(q)

Fix n = 2t, $q = 2^t$, $V(q) \leq V$, the \mathbb{F}_q - span of the given symplectic basis of V, $G = \operatorname{Sp}(V(q)) \cong G(n)$.

- $P = \{1 \text{-diml. subspaces of } V(q)\},\$
- $L = \{2\text{-diml. tot.isotropic subspaces of } V(q)\}.$
- W(q) is the incidence system (P, L).
- k^P , k^L vector spaces with bases P, L.
- $\eta: k^L \to k^P, \, \ell \mapsto \sum_{p \in \ell} p$, incidence map.
- η is a homomorphism of kG-modules; its image $\mathcal{C} \leq k^P$ is the *code* of W(q).

Geome The ise	etry o	f	
The is			
	ogeny	$\prime \tau$	
The gr	roups	G(n	ı)
Irreduc	ible .		
Extens	ions	of	
The G	enera	lized	·
Open	Probl	ems.	
44		•	••
••	•	•	••
44	•	Þ	••
••		Þ	••
••	▲ Ba	▶ ock	••
••	▲ Ba	▶ ack	••
••	Ba	▶ ock	
••	▲ Ba Full S	▶ ock 5creer	•••
••	▲ Ba	• ock	••• ,
••	Ba Full S	▶ ock	••
	↓ Ba Full S Clo	▶ Ack Coreer	•••
	Ba Full S Ck	▶ Ock Screer	•••
	Ba Full S Clo	► ock Screen	· · · · · · · · · · · · · · · · · · ·
	↓ Baa Full S Clo	▶ ack Screer	•••

6.1. Structure of C

Theorem. ([4])

$$\dim \mathcal{C} = 1 + \left(\frac{1+\sqrt{17}}{2}\right)^{2t} + \left(\frac{1-\sqrt{17}}{2}\right)^{2t} = 1 + \sum_{I \in \mathcal{N}} 4^{|I|}, \tag{6}$$

where \mathcal{N} is the set of subsets of $N = \mathbf{Z}/2t\mathbf{Z}$ which contain no two consecutive elements.

Geometry of ... The isogeny τ The groups G(n)Irreducible ... Extensions of ... The Generalized ... Open Problems.

Back

Full Screen

Close

6.2. Main ideas of the proof

- Hom_{kG} $(S^2(V), k) \cong k$, spanned by the trace map.
- U = ker(trace), is a uniserial module with descending series V_1 , k, V_2 .
- Let $M = \bigotimes_{i=0}^{t-1} U^{(2^i)}$.

Using the theorem on extensions, one shows that M has a submodule R such that the composition factors of R are precisely those composition factors V_I of M with $I \notin \mathcal{N}$, and M/R has composition factors V_J , one for each $J \in \mathcal{N}$. Finally, using results of [3] and [1], it can be proved that

$$\mathcal{C} \cong k \oplus M/R.$$

Geometry of
The isogeny $ au$
The groups $G(n)$
Irreducible
Extensions of
The Generalized
Open Problems.
Deal
Баск
Full Screen
Close

7. Open Problems.

- Give an analogous construction of ${}^{2}F_{4}(2^{2m+1})$.
- Compute the code of the $G_2(3^t)$ generalized hexagon. The geometric construction was given by Tits [7] and the simple module extensions were classified in [6].
- Compute the integral invariants of the incidence matrix of the symplectic generalized quadrangles.
- Compute the 2-ranks of the incidence matrices for 1subspaces and t.i. subspaces of a fixed dimension in a symplectic vector space (of characteristic 2 and dimension ≥ 6).
- Determine the exact structure of the subcode generated by Tits ovoids in W(q). (Bagchi and Sastry [2] showed that the characteristic function of a Tits ovoid belongs to C.)

Ge Tl	eomei	try c	of		
T					
	he iso	gen	$\gamma \tau$		
T	he gro	oups	G(n	ı)	
Irr	educi	ible .			
E×	tensi	ons	of		
TI	he Ge	enera	lizea	1	
0	pen F	Prob	lems.		
	реп г	TODI	ems.		
	44	◀	►	••	
	••	◀	►	••	
	••	•		••	
	••	•	•	••	
	••	•	•	••	
	••	◀ Ba	• ack	••	
	••	◀ Ba	• ack	••	
	••	◀ Ba	• ack	••	
	••	∢ Ba	• ack	•••	
		∢ Ba	• ack	••	
		◀ Ba	• ack	••• ,	
		◀ Ba	• ack Screet	>>> ,	
		◀ Ba	▶ ack 6cree	•••	
	••	◀ Ba	▶ Ack	, ,	
		 ■ ■ Base Full 5 Ch 	▶ ack 6creer	, ,	
		◀ Ba Full S Clu	▶ ack ∂creer	, ,	
		◀ Ba Full S Clu	▶ Ack Screet	>>	
		◀ Ba Full S Cla	▶ Anck Screen	,	
		◀ Ba Full S Clo	▶ Aack Screen	>>> 	
		 ■ ■ Ba Ba Ba Ch Ch Q 	► ack Gcreen	••• ,	
		 ■ ■ Ba Ba	► ack ose uit	, ,	
		 ■ ■ Ba Ba	► ack bcreen ose	· · · · · · · · · · · · · · · · · · ·	

References

- J. L. Alperin, Projective modules for SL(2, 2ⁿ), J. Pure and Applied Algebra 15 (1979) 219–234.
- B. Bagchi, N. S. N. Sastry, Intersection pattern of classical ovoids in symplectic 3-space of even order, J. Algebra 26 (1989) 147–160.
- [3] C. W. Curtis, Modular representations of finite groups with split BN-pairs, pages 57-95 in Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, Springer, Berlin (1969).
- [4] N. S. N. Sastry, P. Sin, The code of a regular generalized quadrangle of even order, Proc. Symposia in Pure Mathematics 63 (1998), 485–496.
- [5] P. Sin, Extensions of simple modules for $\text{Sp}_4(2^n)$ and $Suz(2^m)$, Bull. Lond. Math. Soc. **24** (1992), 159–164.
- [6] P. Sin, Extensions of simple modules for $G_2(3^n)$ and ${}^2G_2(3^m)$, Proc. Lond. Math. Soc. **66** (1993), 327–357.
- [7] J. Tits, Les Groupes simples de Suzuki et de Ree, Sem. Bourbaki, Exp. 210, (1961).

Geometry of ... The isogeny τ The groups G(n)Irreducible ... Extensions of ... The Generalized ... Open Problems.

Back

Full Screen

Close