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Ainteger m x n matrix defines an abelian group
Z™/( columns of A ), whose cyclic decomposition is given
by the Smith Normal Form of A.

Let I be a graph.

The group defined by its adjacency matrix A is called the
Smith group of T

Let L be the Laplacian matrix of I'. The torsion subgroup of
the group defined by L is called the critical group, a.k.a
sandpile group, Picard group, Jacobian, denoted K(I').

By Kirchhoff’s Matrix-Tree Theorem, |K(I')| is the number
of spanning trees in I".
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» A configuration is an assignment of a nonnegative integer
s(v) to each round vertex v and — », s(v) to the square
vertex.

» A round vertex v can be fired if it has at least deg(v) chips.
» The square vertex is fired only when no others can be fired.
» A configuration is stable if no round vertex can be fired.

» A configuration is recurrent if there is a sequence of firings
that lead to the same configuration.

» A configuration is critical if it is both recurrent and stable.
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Relation with Laplacian

» Start with a configuration s and fire vertices in a sequence
where each vertex v is fired x(v) times, ending up with
configuration s'.

> s'(v) = —x(v)deg(v) + > (y wyce X(W)
» § =s—Lx

Theorem

Let s be a configuration in the chip-firing game on a connected
graph G. Then there is a unique critical configuration which can
be reached from s.

Theorem
The set of critical configurations has a natural group operation
making it isomorphic to the critical group K(T').
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» Let G be a group, and S C G be a subset closed under
inverses and not containing the identity.

» the Cayley graph I'(G, S) has vertex set G and (g, h) is an
edgeiff g 'he S.

» @G acts by left multiplication as a regular group of
automorphisms of I'(G, S).
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>

G=TFq g=1 (mod 4), S=F;°. Then (G, S) is the
Paley graph Paley(q).

G =Fq, q=p*, p=3 (mod 4). and 3 a generator of F;;.
Set &' = F§4 U ﬁFf. Then I'(G, ') is the Peisert graph
P*(q).

Both types are conference graphs i.e. self-complementary
strongly regular graphs. For the same g they are
cospectral.

The Smith and critical groups of Paley(q) were computed
by Chandler-Sin-Xiang (2014) [1].

All Cayley graphs on an elementary abelian group of order
g that are cospectral with Paley(q) have isomorphic Smith
groups. Also the p’-parts of their critical groups are
isomorphic.

Our problem is to determine the isomorphism type of
K(P*(q)).
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Recall g = p?! and p = 3 (mod 4).

R = Zp[€], € a primitive (g — 1)-st root of unity.
R is a local PID with maximal ideal pR.

R¥e has basis elements [x] for x € Fg.

p - B¥a — RFa left multiplication by L.

v

v

v
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» T:Fy — R*, T(8/) = ¢, Teichmdller character, generates
Hom(Fj, R*).
> F} acts on R™ = R[0] & R"a

» RFa decomposes further into the direct sum of
Iﬁ‘g—invariant components of rank 1, affording the

characters T, i = 0,...,q — 2.
» The component affording T’ is spanned by

6= T(x M.
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T:Fy; — R*, T(8) = ¢, Teichmdller character, generates
Hom(Fj, R*).

F; acts on R = R[0] & R

RFa decomposes further into the direct sum of
Iﬁ‘g—invariant components of rank 1, affording the
characters T, i = 0,...,q — 2.

The component affording T’ is spanned by

6= T(x M.

X
x€Fg

New basis {e; | i=1,...q9—2} U{ey,[0]},
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T/ THT T2 and T3 are equal on H
Fori ¢ {0,r,2r,3r} the elements e;, €., €i12, and e, 3,
span the H-isotypic component

M, ={me R |ym=T'(y)m, Vye H}

of Rfafor 1 < i< 92,
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elements 1 =3, X = & + [0], [0], &, €2r and e5r.
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]Fg“-decomposition

Next consider the action of the subgroup H = IF§4.
T! T Ti+2r and T3 are equal on H

Fori ¢ {0,r,2r,3r} the elements e;, €., €i12, and e, 3,
span the H-isotypic component

v

v

M, ={me R |ym=T'(y)m, Vye H}

of Rfafor 1 < i< 92,
» My, the submodule of H-fixed points in R"7. Basis
elements 1 =3, X = & + [0], [0], &, €2r and e5r.

» Rfa = My @ @E M;.

» We have u;(M;) C M; as yu, is an RH-module
homomophism.

» Can re-order new basis so that the matrix of y; is

block-diagonal with 9;° 4 x 4 blocks and a single 5 x 5
block.
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Jacobi Sums

Definition
Let 6 and ¢ be multiplicative characters of IF; taking values in
R*. The Jacobi sumis

Z@ (1 — x).

x€lFq

(At x = 0, nonprinc. chars take value 0, princ. char takes value

1)



»n=08"a= (7751),@: (7721)
>

do : Fq — R takes the value 1 at 0 and 0 elsewhere.
characteristic function of S’ is

v
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Notation

> r— (qZU

n=p8"a= (77;1)’ T = (77;1)
do : Fq — R takes the value 1 at 0 and 0 elsewhere.

characteristic function of S’ is

v

v

v

Sg = %(TO —do+aT +aT™"),



Lemma
Suppose i ¢ {0,r,3r}. Then

1 i i
pi(en) = 5(qe —ad(T. T ei, —ad(T. T ¥eiar).

Proof.
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Suppose i ¢ {0,r,3r}. Then

1 P i
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Proof.
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Lemma

Suppose i ¢ {0,r,3r}. Then

p(er) =

Proof.

2ua(e)

:ZT

X
x€Fg

1 . .
é(qei —ad(T, T Neiyr —ad(T, T3 ery3).

=23 T7(x) Y ss()x+y]

X€Fy yeFq

) D> (T°(y) = do(y) + T (y) +a@T " (y)x + ]

yeFq



The matrix of 11|y, is

q —aJ(T—i=r, T3 0 —aJ(T—=3,T-1)
—a(T~1,T-") q —aJ(T—1=2r T-3r) 0
0 —aJ(T—=r,T-7) q —aJ(T—i=3r T3

—aJd(T~1, T3 0 —aJ(T—i=2r,T-) q



The matrix i1y, is

0 -1 « 0 «@

0 gq —qu 0 —qa

0 —a q —ad(T72, T3 0

0 0 —aJ(T ", TN q —aJ(T73, T3
0 —«a 0 —aJ(T?, T q
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p-adic valuation of Jacobi Sums

v

Letj € Z withj# 0 (mod (q — 1)).

p-digit expresssion: j = ay + a1 p + ap® + - - - + agr_1 P21,
0<ag<p-1.

v

» Write as (ap, a1, ..., as 1)
» Let s(j) denote the sum ), a; of the p-digits of j modulo
q-1
—1 3p—1 p-3 3p—1 p-3
>r:qT:(pTapT7pTapT7 )
—1 -3 3p—1 p-3 3p—1
>3/’:L:(Lp7pTapTv )



» By Stickelberger’'s Theorem and relation between Gauss
sums and Jacobi sums, we know that when i, jand i + j
are not divisible by g — 1 the p-adic valuation of
J(T~!, T)is equal to

el ) i= (500 + 50) = i+ )



» By Stickelberger’'s Theorem and relation between Gauss
sums and Jacobi sums, we know that when i, jand i + j
are not divisible by g — 1 the p-adic valuation of
J(T~!, T)is equal to

(s(1) + s(j) — s(i + ),

c(i,j) = b

» This valuation can be viewed as the number of carries,
when adding the p-expansions of / and k, modulo g — 1.
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Main Theorem

Theorem
1. The p-elementary divisors of (u..)m, are 0, 1, 1, p', p'.

2. For1<i< 92, consider the two lists
{c(i,r),c(i+r,3r),c(i+2r,r),c(i+3r,3r)} and
{c(i,3r),c(i+r,r),c(i+2r,3r),c(i+3r,r)} and let C; be
the list that contains the smallest element. Then the four
p-elementary divisors of (u.)y, are p° for ¢ in C;.
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General remarks on proof

>

If X is @ matrix with entries in A let m;(X) denote the
multiplicity of p/ as a p-elementary divisor and let x(X)
denote the product of the nonzero p-elementary divisors.

Vp(r(X)) = 22;imi(X),

k(L) = k() = |[K(P*(q)|p We first note that for any given
power p®, if two matrices X and X’ over R are equal
modulo p® then m;(X) = m;(X’) for every j < s.

s—1
) > ijj( + S(rank(X Z m;(X
j=0

We shall obtain a lower bound for vp(x(L)) by looking at L
modulo g.

Then we shall see that as this lower bound coincides with
the actual value of vp(x(L)) known from the Matrix-Tree
Theorem.



Outline of proof of Theorem

If we work modulo q, this matrix is R-equivalent to

U11J(T7i,T7r) U12J(T7i72r,7—73r) 0 0

B | et (T T3 upd(T~12,T77) 0 0
- 0 0 Vit (T3, T=37) vypd(T—I=37, T-T)

0 0 Vor J(T=I=T T=T) vppd(T—1=7,T=37),

where the um, and vy, are units of R.



Carries

Consider the matrix

c(i,r) c(i+2r3r)
c_ c(i,3r) c(i+2r,r) .
N : : c(i+3r,3r) c(i+3r,r)
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of the valuations of the nonzero entries of B. These entries are
integers in the range [0, 21].



Carries

Consider the matrix
c(i,r) c(i+2r,3r)
c_ c(i,3r) c(i+2r,r) .
N . . c(i+3r,3r) c(i+3r,r)
c(i+r,r) c(i+r3r)
of the valuations of the nonzero entries of B. These entries are
integers in the range [0, 21].
Lemma
Suppose1 <i<q-2andi#r,2r,3r. Then
(i) e(i,ry+c(g—1—1i,r)=2t
(i) c(i,r)+c(i+r,3r)+c(i+2r,r)+ c(i+3r,3r) = 4t.
(ii)y e(i,r)+c(i+2r,r)y=c(i+2r,r)+c(i+2r,3r).



Lower bounds on valuations

» By lemma, the diagonal sum of each 2 x 2 block is equal to
the antidiagonal sum. This implies that

Vp(/i(ML\M,)) > c(i, r)+c(i+r,3r)+c(i+2r, r)+c(i+3r,3r) = 4t.



Lower bounds on valuations

» By lemma, the diagonal sum of each 2 x 2 block is equal to
the antidiagonal sum. This implies that

Vp(/i(ML\M,)) > c(i, r)+c(i+r,3r)+c(i+2r, r)+c(i+3r,3r) = 4t.

Vol ) >= 2t



Lower bounds on valuations

» By lemma, the diagonal sum of each 2 x 2 block is equal to
the antidiagonal sum. This implies that

Vp(ﬁ(ML\M,)) > c(i, r)+c(i+r,3r)+c(i+2r, r)+c(i+3r,3r) = 4t.

Vol(juL ) == 2t.
» Combining our bounds for vp(rx(1eium,)) @and vp(rk(ucim,))
we see that
q—5

Vo(k (1)) = Vo(K(ieimy)) + Y Vo(kpeim,))
i=1
> ot 4 %541‘
=(q-3)t
= Vp(k(pL)),



Lower bounds on valuations

» By lemma, the diagonal sum of each 2 x 2 block is equal to
the antidiagonal sum. This implies that

Vp(ﬁ(ML\M,)) > c(i, r)+c(i+r,3r)+c(i+2r, r)+c(i+3r,3r) = 4t.

Vo(rk(iLimy)) >= 2t
» Combining our bounds for vp(rx(1eium,)) @and vp(rk(ucim,))
we see that
q—5

4
Vo(k(e)) = Vo(k(im,)) + Z Vo(r(pem,))
i=1
g—>5
> DL
> 2t+ ) 4t
=(q-3)t
= VP(K‘(ML))a
» All inequalities must be equalities!



Conclusion

The theorem now follows from the observations:
» The p-elementary divisors of each 2 x 2 block is
determined by the miniumum p-adic valuation of an entry,
and the determinant.



Conclusion

The theorem now follows from the observations:

» The p-elementary divisors of each 2 x 2 block is
determined by the miniumum p-adic valuation of an entry,
and the determinant.

» Each entry in the lower block of C equal to the sum of the
corresponding entry of the upper block plus
s(i)—s(i+r)+s(i+2r)—s(s+3r).



Corollaries

Corollary

Let m(i) denote the multiplicity of p' as a p-elementary divisor
of L. Then for1 <i<2t—1 we have m(i) = m(2t — i), and
m(0) = m(2t) + 2.

Proof.
The corollary follows from the main theorem and part (i) of
lemma on carries O



We can get a formula for the p-rank (first obtained by
Weng-Qiu-Wang-Xiang [2] (2007))

Corollary
rankp L = 2(3 — 1)(251)
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Example
Let g = 92. Then from [1], we have

K(Paley(9?)) = (Z/20Z2)* & [(2/3Z)"® @ (7./97,)'®
& (2/277)'® @ (2./8172)1],

while our result shows

K(P*(9%)) = (2/20Z2)" & [(Z/32)%° @ (2./97.)'°
@ (2/272)%° & (z/812)'4).

This is a new way to see that P*(92) and Paley(92) are not
isomorphic.



Example
The critical group K(P*(3'2)) is isomorphic to

(Z/1 328602)265720@[(2/32)1 1376@(Z/SZZ)33408@(Z/33Z)54176
® (Z/34Z)66852 @ (Z/SSZ)66420 ® (Z/36Z)64066
® (Z/37Z)66420 @ (Z/SSZ)66852 ® (Z/39Z)54176
® (Z/310Z)33408 ® (Z/311Z)11376 ® (Z/312Z)1454].



Thank you for your attention!
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