The critical group of the Peisert graphs

Peter Sin
University of Florida

Discrete Mathematics Seminar, U. Delaware, October 22nd, 2015.

Outline

Introduction

Chip-firing game

Paley and Peisert graphs
Algebraic setting
The computation of μ_{L}
More on Jacobi sums
The p-elementary divisors
Examples

Critical group

- A integer $m \times n$ matrix defines an abelian group \mathbb{Z}^{m} /\langle columns of $A\rangle$, whose cyclic decomposition is given by the Smith Normal Form of A.
- Let Γ be a graph.
- The group defined by its adjacency matrix A is called the Smith group of Γ.
- Let L be the Laplacian matrix of Γ. The torsion subgroup of the group defined by L is called the critical group, a.k.a sandpile group, Picard group, Jacobian, denoted $K(\Gamma)$.
- By Kirchhoff's Matrix-Tree Theorem, $|K(\Gamma)|$ is the number of spanning trees in Γ.

Critical group

- A integer $m \times n$ matrix defines an abelian group \mathbb{Z}^{m} /\langle columns of $A\rangle$, whose cyclic decomposition is given by the Smith Normal Form of A.
- Let Γ be a graph.
- The group defined by its adjacency matrix A is called the Smith group of Γ.
- Let L be the Laplacian matrix of Γ. The torsion subgroup of the group defined by L is called the critical group, a.k.a sandpile group, Picard group, Jacobian, denoted $K(\Gamma)$.
- By Kirchhoff's Matrix-Tree Theorem, $|K(\Gamma)|$ is the number of spanning trees in 「.

Critical group

- A integer $m \times n$ matrix defines an abelian group \mathbb{Z}^{m} /\langle columns of $A\rangle$, whose cyclic decomposition is given by the Smith Normal Form of A.
- Let Γ be a graph.
- The group defined by its adjacency matrix A is called the Smith group of Γ.
- Let L be the Laplacian matrix of Γ. The torsion subgroup of the group defined by L is called the critical group, a.k.a sandpile group, Picard group, Jacobian, denoted $К(\Gamma)$. - By Kirchhoff's Matrix-Tree Theorem, $|K(\Gamma)|$ is the number of spanning trees in Γ.

Critical group

- A integer $m \times n$ matrix defines an abelian group \mathbb{Z}^{m} /\langle columns of $A\rangle$, whose cyclic decomposition is given by the Smith Normal Form of A.
- Let Γ be a graph.
- The group defined by its adjacency matrix A is called the Smith group of Γ.
- Let L be the Laplacian matrix of Γ. The torsion subgroup of the group defined by L is called the critical group, a.k.a sandpile group, Picard group, Jacobian, denoted $K(\Gamma)$.
of spanning trees in Γ.

Critical group

- A integer $m \times n$ matrix defines an abelian group \mathbb{Z}^{m} /\langle columns of $A\rangle$, whose cyclic decomposition is given by the Smith Normal Form of A.
- Let Γ be a graph.
- The group defined by its adjacency matrix A is called the Smith group of Γ.
- Let L be the Laplacian matrix of Γ. The torsion subgroup of the group defined by L is called the critical group, a.k.a sandpile group, Picard group, Jacobian, denoted $K(\Gamma)$.
- By Kirchhoff's Matrix-Tree Theorem, $|K(\Gamma)|$ is the number of spanning trees in Γ.

Outline

Introduction

Chip-firing game
Paley and Peisert graphs
Algebraic setting
The computation of μ_{L}
More on Jacobi sums
The p-elementary divisors
Examples

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least deg(v) chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.
- A confiquration is critical if it is both recurrent and stable.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.
- A configuration is critical if it is both recurrent and stable.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.
- A configuration is critical if it is both recurrent and stable.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.
- A configuration is critical if it is both recurrent and stable.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.
- A configuration is critical if it is both recurrent and stable.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.
- A configuration is critical if it is both recurrent and stable.

Sample game 1

Sample game 2

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.

Theorem
Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Theorem
The set of critical configurations has a natural group operation
making it isomorphic to the critical group $K(\Gamma)$.

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.
- $s^{\prime}(v)=-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)$

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.
- $s^{\prime}(v)=-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)$
- $s^{\prime}=s-L x$

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.
- $s^{\prime}(v)=-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)$
- $s^{\prime}=s-L x$

Theorem
Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Theorem
The set of critical configurations has a natural group operation making it isomorphic to the critical group $K(\Gamma)$.

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.
- $s^{\prime}(v)=-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)$
- $s^{\prime}=s-L x$

Theorem

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Theorem
The set of critical configurations has a natural group operation making it isomorphic to the critical group $K(\Gamma)$.

Outline

Introduction
 Chip-firing game

Paley and Peisert graphs
Algebraic setting
The computation of μ_{L}
More on Jacobi sums
The p-elementary divisors
Examples

Cayley graphs

- Let G be a group, and $S \subseteq G$ be a subset closed under inverses and not containing the identity.
- the Cayley graph $\Gamma(G, S)$ has vertex set G and (g, h) is an edge iff $g^{-1} h \in S$.
- Gacts by left multiplication as a regular group of automorphisms of $\Gamma(G, S)$.

Cayley graphs

- Let G be a group, and $S \subseteq G$ be a subset closed under inverses and not containing the identity.
- the Cayley graph $\Gamma(G, S)$ has vertex set G and (g, h) is an edge iff $g^{-1} h \in S$.
- G acts by left multiplication as a regular group of automorphisms of $\Gamma(G, S)$.

Cayley graphs

- Let G be a group, and $S \subseteq G$ be a subset closed under inverses and not containing the identity.
- the Cayley graph $\Gamma(G, S)$ has vertex set G and (g, h) is an edge iff $g^{-1} h \in S$.
- G acts by left multiplication as a regular group of automorphisms of $\Gamma(G, S)$.

Paley graphs, Peisert graphs

- $G=\mathbb{F}_{q}, q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. Then $\Gamma(G, S)$ is the Paley graph Paley (q).
- $G=\mathbb{F}_{q}, q=p^{2 t}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times} Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. Then $\Gamma\left(G, S^{\prime}\right)$ is the Peisert graph $P^{*}(q)$.
- Both types are conference graphs i.e. self-complementary strongly regular graphs. For the same q they are cospectral.
- The Smith and critical groups of Paley (q) were computed by Chandler-Sin-Xiang (2014) [1].
- All Cayley graphs on an elementary abelian group of order q that are cospectral with Paley (q) have isomorphic Smith groups. Also the p^{\prime}-parts of their critical groups are isomorphic.
- Our problem is to determine the isomorphism type of $K\left(P^{*}(q)\right)$.

Paley graphs, Peisert graphs

- $G=\mathbb{F}_{q}, q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. Then $\Gamma(G, S)$ is the Paley graph Paley (q).
- $G=\mathbb{F}_{q}, q=p^{2 t}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. Then $\Gamma\left(G, S^{\prime}\right)$ is the Peisert graph $P^{*}(q)$.
- Both types are conference graphs i.e. self-complementary strongly regular graphs. For the same q they are cospectral.
- The Smith and critical groups of Paley (q) were computed by Chandler-Sin-Xiang (2014) [1].
- All Cayley graphs on an elementary abelian group of order q that are cospectral with Paley (q) have isomorphic Smith groups. Also the p^{\prime}-parts of their critical groups are isomorphic.

Paley graphs, Peisert graphs

- $G=\mathbb{F}_{q}, q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. Then $\Gamma(G, S)$ is the Paley graph Paley (q).
- $G=\mathbb{F}_{q}, q=p^{2 t}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. Then $\Gamma\left(G, S^{\prime}\right)$ is the Peisert graph $P^{*}(q)$.
- Both types are conference graphs i.e. self-complementary strongly regular graphs. For the same q they are cospectral.
- The Smith and critical groups of Paley (q) were computed by Chandler-Sin-Xiang (2014) [1].
- All Cayley graphs on an elementary abelian group of order q that are cospectral with $\operatorname{Paley}(q)$ have isomorphic Smith groups. Also the p^{\prime}-parts of their critical groups are isomorphic.

Paley graphs, Peisert graphs

- $G=\mathbb{F}_{q}, q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. Then $\Gamma(G, S)$ is the Paley graph Paley (q).
- $G=\mathbb{F}_{q}, q=p^{2 t}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. Then $\Gamma\left(G, S^{\prime}\right)$ is the Peisert graph $P^{*}(q)$.
- Both types are conference graphs i.e. self-complementary strongly regular graphs. For the same q they are cospectral.
- The Smith and critical groups of $\operatorname{Paley}(q)$ were computed by Chandler-Sin-Xiang (2014) [1].
q that are cospectral with $\operatorname{Paley}(q)$ have isomorphic Smith
groups. Also the p^{\prime}-parts of their critical groups are isomorphic.

Paley graphs, Peisert graphs

- $G=\mathbb{F}_{q}, q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. Then $\Gamma(G, S)$ is the Paley graph Paley (q).
- $G=\mathbb{F}_{q}, q=p^{2 t}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. Then $\Gamma\left(G, S^{\prime}\right)$ is the Peisert graph $P^{*}(q)$.
- Both types are conference graphs i.e. self-complementary strongly regular graphs. For the same q they are cospectral.
- The Smith and critical groups of $\operatorname{Paley}(q)$ were computed by Chandler-Sin-Xiang (2014) [1].
- All Cayley graphs on an elementary abelian group of order q that are cospectral with Paley (q) have isomorphic Smith groups. Also the p^{\prime}-parts of their critical groups are isomorphic.

Paley graphs, Peisert graphs

- $G=\mathbb{F}_{q}, q \equiv 1(\bmod 4), S=\mathbb{F}_{q}^{\times 2}$. Then $\Gamma(G, S)$ is the Paley graph Paley (q).
- $G=\mathbb{F}_{q}, q=p^{2 t}, p \equiv 3(\bmod 4)$. and β a generator of \mathbb{F}_{q}^{\times}. Set $S^{\prime}=\mathbb{F}_{q}^{\times 4} \cup \beta \mathbb{F}_{q}^{\times 4}$. Then $\Gamma\left(G, S^{\prime}\right)$ is the Peisert graph $P^{*}(q)$.
- Both types are conference graphs i.e. self-complementary strongly regular graphs. For the same q they are cospectral.
- The Smith and critical groups of $\operatorname{Paley}(q)$ were computed by Chandler-Sin-Xiang (2014) [1].
- All Cayley graphs on an elementary abelian group of order q that are cospectral with Paley (q) have isomorphic Smith groups. Also the p^{\prime}-parts of their critical groups are isomorphic.
- Our problem is to determine the isomorphism type of $K\left(P^{*}(q)\right)$.

Outline

Introduction
Chip-firing game
Paley and Peisert graphs
Algebraic setting
The computation of μ_{L}
More on Jacobi sums
The p-elementary divisors
Examples

The module $R^{\mathbb{F}_{q}}$

- Recall $q=p^{2 t}$ and $p \equiv 3(\bmod 4)$.
- $R=\mathbb{Z}_{p}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
- R is a local PID with maximal ideal $p R$.
- $R^{\mathbb{F} q}$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.
- $\mu_{L}: R^{\mathbb{F} q} \rightarrow R^{\mathbb{F} q}$, left multiplication by L.

The module $R^{\mathbb{F}_{q}}$

- Recall $q=p^{2 t}$ and $p \equiv 3(\bmod 4)$.
- $R=\mathbb{Z}_{p}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
$\Rightarrow R$ is a local PID with maximal ideal $p R$.
- $R^{\mathbb{F}} q$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.
- $\mu_{L}: R^{\mathbb{F} q} \rightarrow R^{\mathbb{F} q}$, left multiplication by L.

The module $R^{\mathbb{F}_{q}}$

- Recall $q=p^{2 t}$ and $p \equiv 3(\bmod 4)$.
- $R=\mathbb{Z}_{p}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
- R is a local PID with maximal ideal $p R$.
- $R^{\mathbb{F}}$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.
$-\mu_{L}: R^{\mathbb{F} q} \rightarrow R^{\mathbb{F} q}$, left multiplication by L.

The module $R^{\mathbb{F}_{q}}$

- Recall $q=p^{2 t}$ and $p \equiv 3(\bmod 4)$.
- $R=\mathbb{Z}_{p}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
- R is a local PID with maximal ideal $p R$.
- $R^{\mathbb{F} q}$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.

The module $R^{\mathbb{F}_{q}}$

- Recall $q=p^{2 t}$ and $p \equiv 3(\bmod 4)$.
- $R=\mathbb{Z}_{p}[\xi], \xi$ a primitive $(q-1)$-st root of unity.
- R is a local PID with maximal ideal $p R$.
- $R^{\mathbb{F}} q$ has basis elements $[x]$ for $x \in \mathbb{F}_{q}$.
- $\mu_{L}: R^{\mathbb{F} q} \rightarrow R^{\mathbb{F} q}$, left multiplication by L.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}}{ }^{\hat{q}}$
- $R^{\mathbb{F}^{\times}}$decomposes further into the direct sum of \mathbb{F}_{q}^{\times}-invariant components of rank 1 , affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\left\{e_{0},[0]\right\}$,
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$
- $\mathbb{R}^{\mathbb{F}}{ }^{\times}$decomposes further into the direct sum of
\mathbb{F}_{q}^{\times}-invariant components of rank 1, affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\left\{e_{0},[0]\right\}$,
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$
- $R^{\mathbb{F}^{\times}}$decomposes further into the direct sum of \mathbb{F}_{q}^{\times}-invariant components of rank 1 , affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\left\{e_{0},[0]\right\}$,
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$
- $R^{\mathbb{F}^{\times}}$decomposes further into the direct sum of \mathbb{F}_{q}^{\times}-invariant components of rank 1 , affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

$$
e_{i}=\sum_{x \in \mathbb{F}_{q}^{\times}} T^{i}\left(x^{-1}\right)[x] .
$$

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\left\{e_{0},[0]\right\}$,
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, T\left(\beta^{j}\right)=\xi^{j}$, Teichmüller character, generates $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}=R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$
- $R^{\mathbb{F}^{\times}}$decomposes further into the direct sum of \mathbb{F}_{q}^{\times}-invariant components of rank 1 , affording the characters $T^{i}, i=0, \ldots, q-2$.
- The component affording T^{i} is spanned by

$$
e_{i}=\sum_{x \in \mathbb{F}_{q}^{\times}} T^{i}\left(x^{-1}\right)[x] .
$$

- New basis $\left\{e_{i} \mid i=1, \ldots q-2\right\} \cup\left\{e_{0},[0]\right\}$,

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$.

- $T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H
- For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H-isotypic component

$$
M_{i}=\left\{m \in \mathbb{R}^{\mathbb{F}} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $1=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
- $R^{\mathbb{F} q}=M_{0} \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_{i}$.
- We have $\mu_{L}\left(M_{i}\right) \subseteq M_{i}$ as μ_{L} is an $R H$-module homomophism.
- Can re-order new basis so that the matrix of μ_{L} is block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5 block.

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$.

- $T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H
- For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H-isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F}_{q}} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $1=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
\square
- We have $\mu_{L}\left(M_{i}\right) \subseteq M_{i}$ as μ_{L} is an $R H$-module homomophism.
- Can re-order new basis so that the matrix of μ_{L} is block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$.

- $T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H
- For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H -isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F} q} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $1=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
- We have $\mu_{L}\left(M_{i}\right) \subseteq M_{i}$ as μ_{L} is an $R H$-module homomophism.
- Can re-order new basis so that the matrix of μ_{L} is block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$.

- $T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H
- For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H -isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F} q} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $1=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
- $R^{\mathbb{F} q}=M_{0} \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_{i}$.
homomophism.
- Can re-order new basis so that the matrix of μ_{L} is block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$.

- $T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H
- For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H -isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F}_{q}} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $\mathbf{1}=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
- $R^{\mathbb{F} q}=M_{0} \oplus \bigoplus_{i=1}^{\frac{q-5}{-5}} M_{i}$.
- We have $\mu_{L}\left(M_{i}\right) \subseteq M_{i}$ as μ_{L} is an $R H$-module homomophism.
- Can re-order new basis so that the matrix of μ_{L} is block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5

$\mathbb{F}_{q}^{\times 4}$-decomposition

Next consider the action of the subgroup $H=\mathbb{F}_{q}^{\times 4}$.

- $T^{i}, T^{i+r}, T^{i+2 r}$, and $T^{i+3 r}$ are equal on H
- For $i \notin\{0, r, 2 r, 3 r\}$ the elements $e_{i}, e_{i+r}, e_{i+2 r}$ and $e_{i+3 r}$ span the H -isotypic component

$$
M_{i}=\left\{m \in R^{\mathbb{F} q} \mid y m=T^{i}(y) m, \quad \forall y \in H\right\}
$$

of $R^{\mathbb{F} q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_{0}, the submodule of H-fixed points in $R^{\mathbb{F} q}$. Basis elements $\mathbf{1}=\sum_{x \in \mathbb{F}_{q}} x=e_{0}+[0],[0], e_{r}, e_{2 r}$ and $e_{3} r$.
- $R^{\mathbb{F} q}=M_{0} \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_{i}$.
- We have $\mu_{L}\left(M_{i}\right) \subseteq M_{i}$ as μ_{L} is an $R H$-module homomophism.
- Can re-order new basis so that the matrix of μ_{L} is block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5 block.

Outline

Introduction
Chip-firing game
Paley and Peisert graphs
Algebraic settingThe computation of μ_{L}More on Jacobi sumsThe p-elementary divisors
Examples

Jacobi Sums

Definition

Let θ and ψ be multiplicative characters of \mathbb{F}_{q}^{\times}taking values in R^{\times}. The Jacobi sum is

$$
J(\theta, \psi)=\sum_{x \in \mathbb{F}_{q}} \theta(x) \psi(1-x)
$$

(At $x=0$, nonprinc. chars take value 0 , princ. char takes value 1.)

Notation

- $r=\frac{(q-1)}{4}$
$\Rightarrow \eta=\beta^{r}, \alpha=\frac{(\eta-1)}{2}, \bar{\alpha}=\frac{(\eta+1)}{2}$
$\delta_{0}: \mathbb{F}_{q} \rightarrow R$ takes the value 1 at 0 and 0 elsewhere.
- characteristic function of S^{\prime} is

$$
\delta_{S^{\prime}}=\frac{1}{2}\left(T^{0}-\delta_{0}+\alpha T^{r}+\bar{\alpha} T^{-r}\right),
$$

Notation

- $r=\frac{(q-1)}{4}$
- $\eta=\beta^{r}, \alpha=\frac{(\eta-1)}{2}, \bar{\alpha}=\frac{(\eta+1)}{2}$
$\delta_{0}: \mathbb{F}_{q} \rightarrow R$ takes the value 1 at 0 and 0 elsewhere.
- characteristic function of S^{\prime} is

$$
\delta_{S^{\prime}}=\frac{1}{2}\left(T^{0}-\delta_{0}+a T^{r}+\bar{a} T^{-r}\right),
$$

Notation

- $r=\frac{(q-1)}{4}$
- $\eta=\beta^{r}, \alpha=\frac{(\eta-1)}{2}, \bar{\alpha}=\frac{(\eta+1)}{2}$
- $\delta_{0}: \mathbb{F}_{q} \rightarrow R$ takes the value 1 at 0 and 0 elsewhere.
- characteristic function of S^{\prime} is

Notation

- $r=\frac{(q-1)}{4}$
- $\eta=\beta^{r}, \alpha=\frac{(\eta-1)}{2}, \bar{\alpha}=\frac{(\eta+1)}{2}$
- $\delta_{0}: \mathbb{F}_{q} \rightarrow R$ takes the value 1 at 0 and 0 elsewhere.
- characteristic function of S^{\prime} is

$$
\delta_{S^{\prime}}=\frac{1}{2}\left(T^{0}-\delta_{0}+\alpha T^{r}+\bar{\alpha} T^{-r}\right)
$$

Lemma
Suppose $i \notin\{0, r, 3 r\}$. Then

$$
\mu_{L}\left(e_{i}\right)=\frac{1}{2}\left(q e_{i}-\bar{\alpha} J\left(T^{-i}, T^{-r}\right) e_{i+r}-\alpha J\left(T^{-i}, T^{-3 r}\right) e_{i+3 r}\right) .
$$

Proof.

Lemma
Suppose $i \notin\{0, r, 3 r\}$. Then

$$
\mu_{L}\left(e_{i}\right)=\frac{1}{2}\left(q e_{i}-\bar{\alpha} J\left(T^{-i}, T^{-r}\right) e_{i+r}-\alpha J\left(T^{-i}, T^{-3 r}\right) e_{i+3 r}\right) .
$$

Proof.

$$
2 \mu_{A}\left(e_{i}\right)=2 \sum_{x \in \mathbb{P}_{q}^{\times}} T^{-i}(x) \sum_{y \in \mathbb{F}_{q}} \delta_{S^{\prime}}(y)[x+y]
$$

Lemma
Suppose $i \notin\{0, r, 3 r\}$. Then

$$
\mu_{L}\left(e_{i}\right)=\frac{1}{2}\left(q e_{i}-\bar{\alpha} J\left(T^{-i}, T^{-r}\right) e_{i+r}-\alpha J\left(T^{-i}, T^{-3 r}\right) e_{i+3 r}\right) .
$$

Proof.

$$
\begin{aligned}
& 2 \mu_{A}\left(e_{i}\right)=2 \sum_{x \in \mathbb{F}_{q}^{\times}} T^{-i}(x) \sum_{y \in \mathbb{F}_{q}} \delta_{S^{\prime}}(y)[x+y] \\
& =\sum_{x \in \mathbb{F}_{q}^{\times}} T^{-i}(x) \sum_{y \in \mathbb{F}_{q}}\left(T^{0}(y)-\delta_{0}(y)+\alpha T^{r}(y)+\bar{\alpha} T^{-r}(y)\right)[x+y]
\end{aligned}
$$

The matrix of $\mu_{L \mid M_{i}}$ is

$$
\left[\begin{array}{cccc}
q & -\alpha J\left(T^{-i-r}, T^{-3 r}\right) & 0 & -\bar{\alpha} J\left(T^{-i-3 r}, T^{-r}\right) \\
-\bar{\alpha} J\left(T^{-i}, T^{-r}\right) & q & -\alpha J\left(T^{-i-2 r}, T^{-3 r}\right) & 0 \\
0 & -\bar{\alpha} J\left(T^{-i-r}, T^{-r}\right) & q & -\alpha J\left(T^{-i-3 r}, T^{-3 r}\right) \\
-\alpha J\left(T^{-i}, T^{-3 r}\right) & 0 & -\bar{\alpha} J\left(T^{-i-2 r}, T^{-r}\right) & q
\end{array}\right]
$$

The matrix $\mu_{L \mid M_{0}}$ is

$$
\left[\begin{array}{ccccc}
0 & -1 & \alpha & 0 & \bar{\alpha} \\
0 & q & -q \alpha & 0 & -q \bar{\alpha} \\
0 & -\bar{\alpha} & q & -\alpha J\left(T^{-2 r}, T^{-3 r}\right) & 0 \\
0 & 0 & -\bar{\alpha} J\left(T^{-r}, T^{-r}\right) & q & -\alpha J\left(T^{-3 r}, T^{-3 r}\right) \\
0 & -\alpha & 0 & -\bar{\alpha} J\left(T^{-2 r}, T^{-r}\right) & q
\end{array}\right]
$$

Outline

Introduction
Chip-firing game
Paley and Peisert graphs
Algebraic setting
The computation of μ_{L}

More on Jacobi sums
The p-elementary divisors
Examples

p-adic valuation of Jacobi Sums

- Let $j \in \mathbb{Z}$ with $j \not \equiv 0(\bmod (q-1))$.

- Write as $\left(a_{0}, a_{1}, \ldots, a_{2 t-1}\right)$.
- Let $s(j)$ denote the sum $\sum_{i} a_{i}$ of the p-digits of j modulo $q-1$.
$>r=\frac{q-1}{4}=\left(\frac{3 p-1}{4}, \frac{p-3}{4}, \frac{3 p-1}{4}, \frac{p-3}{4}, \ldots\right)$
- $3 r=\frac{q-1}{4}=\left(\frac{p-3}{4}, \frac{3 p-1}{4}, \frac{p-3}{4}, \frac{3 p-1}{4}, \ldots\right)$
- $s(r)=s(3 r)=t(p-1)$.

p-adic valuation of Jacobi Sums

- Let $j \in \mathbb{Z}$ with $j \not \equiv 0(\bmod (q-1))$.
- p-digit expresssion: $j=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{2 t-1} p^{2 t-1}$, $0 \leq a_{i} \leq p-1$.
- Write as $\left(a_{0}, a_{1}, \ldots, a_{2 t-1}\right)$.
- Let $s(j)$ denote the sum $\sum_{i} a_{i}$ of the p-digits of j modulo

- $3 r=\frac{q-1}{4}=\left(\frac{p-3}{4}, \frac{3 p-1}{4}, \frac{p-3}{4}, \frac{3 p-1}{4}, \ldots\right)$
- $s(r)=s(3 r)=t(p-1)$.

p-adic valuation of Jacobi Sums

- Let $j \in \mathbb{Z}$ with $j \not \equiv 0(\bmod (q-1))$.
- p-digit expresssion: $j=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{2 t-1} p^{2 t-1}$, $0 \leq a_{i} \leq p-1$.
- Write as $\left(a_{0}, a_{1}, \ldots, a_{2 t-1}\right)$.
- Let $s(j)$ denote the sum $\sum_{i} a_{i}$ of the p-digits of j modulo

p-adic valuation of Jacobi Sums

- Let $j \in \mathbb{Z}$ with $j \not \equiv 0(\bmod (q-1))$.
- p-digit expresssion: $j=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{2 t-1} p^{2 t-1}$, $0 \leq a_{i} \leq p-1$.
- Write as $\left(a_{0}, a_{1}, \ldots, a_{2 t-1}\right)$.
- Let $s(j)$ denote the sum $\sum_{i} a_{i}$ of the p-digits of j modulo $q-1$.

- $s(r)=s(3 r)=t(p-1)$.

p-adic valuation of Jacobi Sums

- Let $j \in \mathbb{Z}$ with $j \not \equiv 0(\bmod (q-1))$.
- p-digit expresssion: $j=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{2 t-1} p^{2 t-1}$, $0 \leq a_{i} \leq p-1$.
- Write as $\left(a_{0}, a_{1}, \ldots, a_{2 t-1}\right)$.
- Let $s(j)$ denote the sum $\sum_{i} a_{i}$ of the p-digits of j modulo $q-1$.
- $r=\frac{q-1}{4}=\left(\frac{3 p-1}{4}, \frac{p-3}{4}, \frac{3 p-1}{4}, \frac{p-3}{4}, \ldots\right)$

p-adic valuation of Jacobi Sums

- Let $j \in \mathbb{Z}$ with $j \not \equiv 0(\bmod (q-1))$.
- p-digit expresssion: $j=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{2 t-1} p^{2 t-1}$, $0 \leq a_{i} \leq p-1$.
- Write as $\left(a_{0}, a_{1}, \ldots, a_{2 t-1}\right)$.
- Let $s(j)$ denote the sum $\sum_{i} a_{i}$ of the p-digits of j modulo $q-1$.
- $r=\frac{q-1}{4}=\left(\frac{3 p-1}{4}, \frac{p-3}{4}, \frac{3 p-1}{4}, \frac{p-3}{4}, \ldots\right)$
- $3 r=\frac{q-1}{4}=\left(\frac{p-3}{4}, \frac{3 p-1}{4}, \frac{p-3}{4}, \frac{3 p-1}{4}, \ldots\right)$

p-adic valuation of Jacobi Sums

- Let $j \in \mathbb{Z}$ with $j \not \equiv 0(\bmod (q-1))$.
- p-digit expresssion: $j=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{2 t-1} p^{2 t-1}$, $0 \leq a_{i} \leq p-1$.
- Write as $\left(a_{0}, a_{1}, \ldots, a_{2 t-1}\right)$.
- Let $s(j)$ denote the sum $\sum_{i} a_{i}$ of the p-digits of j modulo $q-1$.
- $r=\frac{q-1}{4}=\left(\frac{3 p-1}{4}, \frac{p-3}{4}, \frac{3 p-1}{4}, \frac{p-3}{4}, \ldots\right)$
- $3 r=\frac{q-1}{4}=\left(\frac{p-3}{4}, \frac{3 p-1}{4}, \frac{p-3}{4}, \frac{3 p-1}{4}, \ldots\right)$
- $s(r)=s(3 r)=t(p-1)$.
- By Stickelberger's Theorem and relation between Gauss sums and Jacobi sums, we know that when i, j and $i+j$ are not divisible by $q-1$ the p-adic valuation of $J\left(T^{-i}, T^{-j}\right)$ is equal to

$$
c(i, j):=\frac{1}{p-1}(s(i)+s(j)-s(i+j))
$$

- This valuation can be viewed as the number of carries, when adding the p-expansions of i and k, modulo $q-1$.
- By Stickelberger's Theorem and relation between Gauss sums and Jacobi sums, we know that when i, j and $i+j$ are not divisible by $q-1$ the p-adic valuation of $J\left(T^{-i}, T^{-j}\right)$ is equal to

$$
c(i, j):=\frac{1}{p-1}(s(i)+s(j)-s(i+j))
$$

- This valuation can be viewed as the number of carries, when adding the p-expansions of i and k, modulo $q-1$.

Outline

Introduction
Chip-firing game
Paley and Peisert graphs
Algebraic setting
The computation of μ_{L}
More on Jacobi sums

The p-elementary divisors
Examples

Main Theorem

Theorem

1. The p-elementary divisors of $\left(\mu_{L}\right)_{\mid M_{0}}$ are $0,1,1, p^{t}, p^{t}$.
2. For $1 \leq i \leq \frac{q-5}{4}$, consider the two lists
$\{c(i, r), c(i+r, 3 r), c(i+2 r, r), c(i+3 r, 3 r)\}$ and $\{c(i, 3 r), c(i+r, r), c(i+2 r, 3 r), c(i+3 r, r)\}$ and let C_{i} be the list that contains the smallest element. Then the four p-elementary divisors of $\left(\mu_{L}\right)_{M_{i}}$ are p^{c} for c in C_{i}.

General remarks on proof

- If X is a matrix with entries in R let $m_{j}(X)$ denote the multiplicity of p^{j} as a p-elementary divisor and let $\kappa(X)$ denote the product of the nonzero p-elementary divisors.

- We shall obtain a lower bound for $v_{p}(\kappa(L))$ by looking at L modulo q.
- Then we shall see that as this lower bound coincides with the actual value of $v_{p}(\kappa(L))$ known from the Matrix-Tree Theorem.

General remarks on proof

- If X is a matrix with entries in R let $m_{j}(X)$ denote the multiplicity of p^{j} as a p-elementary divisor and let $\kappa(X)$ denote the product of the nonzero p-elementary divisors.
- $v_{p}(\kappa(X))=\sum_{j} j m_{j}(X)$,
$\kappa(L)=\kappa\left(\mu_{L}\right)=\mid K\left(\left.P^{*}(q)\right|_{p}\right.$ We first note that for any given
power p^{s}, if two matrices X and X^{\prime} over R are equal
modulo p^{s} then $m_{j}(X)=m_{j}\left(X^{\prime}\right)$ for every $j<s$.

- We shall obtain a lower bound for $v_{p}(\kappa(L))$ by looking at L modulo q.
- Then we shall see that as this lower bound coincides with the actual value of $v_{p}(\kappa(L))$ known from the Matrix-Tree

General remarks on proof

- If X is a matrix with entries in R let $m_{j}(X)$ denote the multiplicity of p^{j} as a p-elementary divisor and let $\kappa(X)$ denote the product of the nonzero p-elementary divisors.
- $v_{p}(\kappa(X))=\sum_{j} j m_{j}(X)$,
- $\kappa(L)=\kappa\left(\mu_{L}\right)=\mid K\left(\left.P^{*}(q)\right|_{p}\right.$ We first note that for any given power p^{s}, if two matrices X and X^{\prime} over R are equal modulo p^{s} then $m_{j}(X)=m_{j}\left(X^{\prime}\right)$ for every $j<s$.
- We shall obtain a lower bound for $v_{p}(\kappa(L))$ by looking at L modulo q.
Then we shall see that as this lower bound coincides with the actual value of $v_{p}(\kappa(L))$ known from the Matrix-Tree Theorem.

General remarks on proof

- If X is a matrix with entries in R let $m_{j}(X)$ denote the multiplicity of p^{j} as a p-elementary divisor and let $\kappa(X)$ denote the product of the nonzero p-elementary divisors.
- $v_{p}(\kappa(X))=\sum_{j} j m_{j}(X)$,
- $\kappa(L)=\kappa\left(\mu_{L}\right)=\mid K\left(\left.P^{*}(q)\right|_{p}\right.$ We first note that for any given power p^{s}, if two matrices X and X^{\prime} over R are equal modulo p^{s} then $m_{j}(X)=m_{j}\left(X^{\prime}\right)$ for every $j<s$.

$$
v_{p}(\kappa(X)) \geq \sum_{j=0}^{s-1} j m_{j}(X)+s\left(\operatorname{rank}(X)-\sum_{j=0}^{s-1} m_{j}(X)\right)
$$

- We shall obtain a lower bound for $v_{p}(\kappa(L))$ by looking at L modulo q.
Then we shall see that as this lower bound coincides with the actual value of $v_{p}(\kappa(L))$ known from the Matrix-Tree Theorem.

General remarks on proof

- If X is a matrix with entries in R let $m_{j}(X)$ denote the multiplicity of p^{j} as a p-elementary divisor and let $\kappa(X)$ denote the product of the nonzero p-elementary divisors.
- $v_{p}(\kappa(X))=\sum_{j} j m_{j}(X)$,
- $\kappa(L)=\kappa\left(\mu_{L}\right)=\mid K\left(\left.P^{*}(q)\right|_{p}\right.$ We first note that for any given power p^{s}, if two matrices X and X^{\prime} over R are equal modulo p^{s} then $m_{j}(X)=m_{j}\left(X^{\prime}\right)$ for every $j<s$.

$$
v_{p}(\kappa(X)) \geq \sum_{j=0}^{s-1} j m_{j}(X)+s\left(\operatorname{rank}(X)-\sum_{j=0}^{s-1} m_{j}(X)\right)
$$

- We shall obtain a lower bound for $v_{p}(\kappa(L))$ by looking at L modulo q.
- Then we shall see that as this lower bound coincides with the actual value of $v_{p}(\kappa(L))$ known from the Matrix-Tree Theorem.

General remarks on proof

- If X is a matrix with entries in R let $m_{j}(X)$ denote the multiplicity of p^{j} as a p-elementary divisor and let $\kappa(X)$ denote the product of the nonzero p-elementary divisors.
- $v_{p}(\kappa(X))=\sum_{j} j m_{j}(X)$,
- $\kappa(L)=\kappa\left(\mu_{L}\right)=\mid K\left(\left.P^{*}(q)\right|_{p}\right.$ We first note that for any given power p^{s}, if two matrices X and X^{\prime} over R are equal modulo p^{s} then $m_{j}(X)=m_{j}\left(X^{\prime}\right)$ for every $j<s$.

$$
v_{p}(\kappa(X)) \geq \sum_{j=0}^{s-1} j m_{j}(X)+s\left(\operatorname{rank}(X)-\sum_{j=0}^{s-1} m_{j}(X)\right)
$$

- We shall obtain a lower bound for $v_{p}(\kappa(L))$ by looking at L modulo q.
- Then we shall see that as this lower bound coincides with the actual value of $v_{p}(\kappa(L))$ known from the Matrix-Tree Theorem.

Outline of proof of Theorem

If we work modulo q, this matrix is R-equivalent to

$$
B=\left[\begin{array}{cccc}
u_{11} J\left(T^{-i}, T^{-r}\right) & u_{12} J\left(T^{-i-2 r}, T^{-3 r}\right) & 0 & 0 \\
u_{21} J\left(T^{-i}, T^{-3 r}\right) & u_{22} J\left(T^{-i-2 r}, T^{-r}\right) & 0 & 0 \\
0 & 0 & v_{11} J\left(T^{-i-3}, T^{-3 r}\right) & v_{12} J\left(T^{-i-3 r}, T^{-r}\right) \\
0 & 0 & v_{21} J\left(T^{-i-r}, T^{-r}\right) & v_{22} J\left(T^{-i-r}, T^{-3 r}\right),
\end{array}\right]
$$

where the $u_{m n}$ and $v_{m n}$ are units of R.

Carries

Consider the matrix

$$
C=\left[\begin{array}{cccc}
c(i, r) & c(i+2 r, 3 r) & \cdot & \cdot \\
c(i, 3 r) & c(i+2 r, r) & \cdot & \cdot \\
\cdot & \cdot & c(i+3 r, 3 r) & c(i+3 r, r) \\
\cdot & \cdot & c(i+r, r) & c(i+r, 3 r)
\end{array}\right]
$$

of the valuations of the nonzero entries of B. These entries are integers in the range $[0,2 t]$.
Lemma
Suppose $1 \leq i \leq q-2$ and $i \neq r, 2 r, 3 r$. Then
(i) $c(i, r)+c(a-1-i, r)=2 t$.
(ii) $c(i, r)+c(i+r, 3 r)+c(i+2 r, r)+c(i+3 r, 3 r)=4 t$. (iii) $c(i, r)+c(i+2 r, r)=c(i+2 r, r)+c(i+2 r, 3 r)$.

Carries

Consider the matrix

$$
C=\left[\begin{array}{cccc}
c(i, r) & c(i+2 r, 3 r) & \cdot & \cdot \\
c(i, 3 r) & c(i+2 r, r) & \cdot & \cdot \\
\cdot & \cdot & c(i+3 r, 3 r) & c(i+3 r, r) \\
\cdot & \cdot & c(i+r, r) & c(i+r, 3 r)
\end{array}\right]
$$

of the valuations of the nonzero entries of B. These entries are integers in the range $[0,2 t]$.
Lemma
Suppose $1 \leq i \leq q-2$ and $i \neq r, 2 r$, 3r. Then
(i) $c(i, r)+c(q-1-i, r)=2 t$.
(ii) $c(i, r)+c(i+r, 3 r)+c(i+2 r, r)+c(i+3 r, 3 r)=4 t$.
(iii) $c(i, r)+c(i+2 r, r)=c(i+2 r, r)+c(i+2 r, 3 r)$.

Lower bounds on valuations

- By lemma, the diagonal sum of each 2×2 block is equal to the antidiagonal sum. This implies that

$$
v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right) \geq c(i, r)+c(i+r, 3 r)+c(i+2 r, r)+c(i+3 r, 3 r)=4 t
$$

$$
v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right) \geq=2 t
$$

- Combining our bounds for $v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right)$ and $v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right)$ we see that

Lower bounds on valuations

- By lemma, the diagonal sum of each 2×2 block is equal to the antidiagonal sum. This implies that

$$
v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right) \geq c(i, r)+c(i+r, 3 r)+c(i+2 r, r)+c(i+3 r, 3 r)=4 t .
$$

$$
v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right) \geq=2 t
$$

we see that

Lower bounds on valuations

- By lemma, the diagonal sum of each 2×2 block is equal to the antidiagonal sum. This implies that

$$
v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right) \geq c(i, r)+c(i+r, 3 r)+c(i+2 r, r)+c(i+3 r, 3 r)=4 t
$$

$$
v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right) \geq=2 t
$$

- Combining our bounds for $v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right)$ and $v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right)$ we see that

$$
\begin{aligned}
v_{p}\left(\kappa\left(\mu_{L}\right)\right) & =v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right)+\sum_{i=1}^{\frac{q-5}{4}} v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right) \\
& \geq 2 t+\frac{q-5}{4} 4 t \\
& =(q-3) t \\
& =v_{p}\left(\kappa\left(\mu_{L}\right)\right)
\end{aligned}
$$

Lower bounds on valuations

- By lemma, the diagonal sum of each 2×2 block is equal to the antidiagonal sum. This implies that

$$
v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right) \geq c(i, r)+c(i+r, 3 r)+c(i+2 r, r)+c(i+3 r, 3 r)=4 t
$$

$$
v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right) \geq=2 t
$$

- Combining our bounds for $v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right)$ and $v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right)$ we see that

$$
\begin{aligned}
v_{p}\left(\kappa\left(\mu_{L}\right)\right) & =v_{p}\left(\kappa\left(\mu_{L \mid M_{0}}\right)\right)+\sum_{i=1}^{\frac{q-5}{4}} v_{p}\left(\kappa\left(\mu_{L \mid M_{i}}\right)\right) \\
& \geq 2 t+\frac{q-5}{4} 4 t \\
& =(q-3) t \\
& =v_{p}\left(\kappa\left(\mu_{L}\right)\right)
\end{aligned}
$$

- All inequalities must be equalities!

Conclusion

The theorem now follows from the observations:

- The p-elementary divisors of each 2×2 block is determined by the miniumum p-adic valuation of an entry, and the determinant.

Conclusion

The theorem now follows from the observations:

- The p-elementary divisors of each 2×2 block is determined by the miniumum p-adic valuation of an entry, and the determinant.
- Each entry in the lower block of C equal to the sum of the corresponding entry of the upper block plus

$$
s(i)-s(i+r)+s(i+2 r)-s(s+3 r)
$$

Corollaries

Corollary
Let $m(i)$ denote the multiplicity of p^{i} as a p-elementary divisor of L. Then for $1 \leq i \leq 2 t-1$ we have $m(i)=m(2 t-i)$, and $m(0)=m(2 t)+2$.

Proof.

The corollary follows from the main theorem and part (i) of lemma on carries

We can get a formula for the p-rank (first obtained by Weng-Qiu-Wang-Xiang [2] (2007))
Corollary
$\operatorname{rank}_{p} L=2\left(3^{t}-1\right)\left(\frac{p+1}{4}\right)^{2 t}$

Outline

IntroductionChip-firing game
Paley and Peisert graphs
Algebraic setting
The computation of μ_{L}
More on Jacobi sums
The p-elementary divisors
Examples

Example

Let $q=9^{2}$. Then from [1], we have

$$
\begin{aligned}
& K\left(\text { Paley }\left(9^{2}\right)\right) \cong(\mathbb{Z} / 20 \mathbb{Z})^{40} \oplus\left[(\mathbb{Z} / 3 Z)^{16} \oplus(\mathbb{Z} / 9 \mathbb{Z})^{18}\right. \\
& \\
& \left.\oplus(\mathbb{Z} / 27 \mathbb{Z})^{16} \oplus(\mathbb{Z} / 81 \mathbb{Z})^{14}\right],
\end{aligned}
$$

while our result shows

$$
\begin{aligned}
& K\left(P^{*}\left(9^{2}\right)\right) \cong(\mathbb{Z} / 20 \mathbb{Z})^{40} \oplus\left[(\mathbb{Z} / 3 Z)^{20} \oplus(\mathbb{Z} / 9 \mathbb{Z})^{10}\right. \\
& \left.\quad \oplus(\mathbb{Z} / 27 \mathbb{Z})^{20} \oplus(\mathbb{Z} / 81 \mathbb{Z})^{14}\right] .
\end{aligned}
$$

This is a new way to see that $P^{*}\left(9^{2}\right)$ and Paley $\left(9^{2}\right)$ are not isomorphic.

Example

The critical group $K\left(P^{*}\left(3^{12}\right)\right)$ is isomorphic to
$(\mathbb{Z} / 132860 \mathbb{Z})^{265720} \oplus\left[(\mathbb{Z} / 3 \mathbb{Z})^{11376} \oplus\left(\mathbb{Z} / 3^{2} \mathbb{Z}\right)^{33408} \oplus\left(\mathbb{Z} / 3^{3} \mathbb{Z}\right)^{54176}\right.$

$$
\begin{aligned}
& \oplus\left(\mathbb{Z} / 3^{4} \mathbb{Z}\right)^{66852} \oplus\left(\mathbb{Z} / 3^{5} \mathbb{Z}\right)^{66420} \oplus\left(\mathbb{Z} / 3^{6} \mathbb{Z}\right)^{64066} \\
& \oplus\left(\mathbb{Z} / 3^{7} \mathbb{Z}\right)^{66420} \oplus\left(\mathbb{Z} / 3^{8} \mathbb{Z}\right)^{66852} \oplus\left(\mathbb{Z} / 3^{9} \mathbb{Z}\right)^{54176}
\end{aligned}
$$

$$
\left.\oplus\left(\mathbb{Z} / 3^{10} \mathbb{Z}\right)^{33408} \oplus\left(\mathbb{Z} / 3^{11} \mathbb{Z}\right)^{11376} \oplus\left(\mathbb{Z} / 3^{12} \mathbb{Z}\right)^{1454}\right]
$$

Thank you for your attention!

References

[1] David B. Chandler, Peter Sin, and Qing Xiang. "The Smith and critical groups of Paley graphs". J. Algebraic Combin. 41.4 (2015), pp. 1013-1022.
[2] Guobiao Weng, Weisheng Qiu, Zeying Wang, and Qing Xiang. "Pseudo-Paley graphs and skew Hadamard difference sets from presemifields". Des. Codes Cryptogr. 44.1-3 (2007), pp. 49-62.

