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Critical group

I A integer m × n matrix defines an abelian group
Zm/〈 columns of A 〉, whose cyclic decomposition is given
by the Smith Normal Form of A.

I Let Γ be a graph.
I The group defined by its adjacency matrix A is called the

Smith group of Γ.
I Let L be the Laplacian matrix of Γ. The torsion subgroup of

the group defined by L is called the critical group, a.k.a
sandpile group, Picard group, Jacobian, denoted K (Γ).

I By Kirchhoff’s Matrix-Tree Theorem, |K (Γ)| is the number
of spanning trees in Γ.
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I A configuration is an assignment of a nonnegative integer
s(v) to each round vertex v and −

∑
v s(v) to the square

vertex.
I A round vertex v can be fired if it has at least deg(v) chips.
I The square vertex is fired only when no others can be fired.
I A configuration is stable if no round vertex can be fired.
I A configuration is recurrent if there is a sequence of firings

that lead to the same configuration.
I A configuration is critical if it is both recurrent and stable.
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Relation with Laplacian

I Start with a configuration s and fire vertices in a sequence
where each vertex v is fired x(v) times, ending up with
configuration s′.

I s′(v) = −x(v) deg(v) +
∑

(v ,w)∈E x(w)

I s′ = s − Lx

Theorem
Let s be a configuration in the chip-firing game on a connected
graph G. Then there is a unique critical configuration which can
be reached from s.

Theorem
The set of critical configurations has a natural group operation
making it isomorphic to the critical group K (Γ).
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Cayley graphs

I Let G be a group, and S ⊆ G be a subset closed under
inverses and not containing the identity.

I the Cayley graph Γ(G,S) has vertex set G and (g,h) is an
edge iff g−1h ∈ S.

I G acts by left multiplication as a regular group of
automorphisms of Γ(G,S).
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Paley graphs, Peisert graphs

I G = Fq, q ≡ 1 (mod 4), S = F×q
2. Then Γ(G,S) is the

Paley graph Paley(q).
I G = Fq, q = p2t , p ≡ 3 (mod 4). and β a generator of F×q .

Set S′ = F×q
4 ∪ βF×q

4. Then Γ(G,S′) is the Peisert graph
P∗(q).

I Both types are conference graphs i.e. self-complementary
strongly regular graphs. For the same q they are
cospectral.

I The Smith and critical groups of Paley(q) were computed
by Chandler-Sin-Xiang (2014) [1].

I All Cayley graphs on an elementary abelian group of order
q that are cospectral with Paley(q) have isomorphic Smith
groups. Also the p′-parts of their critical groups are
isomorphic.

I Our problem is to determine the isomorphism type of
K (P∗(q)).
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The module RFq

I Recall q = p2t and p ≡ 3 (mod 4).
I R = Zp[ξ], ξ a primitive (q − 1)-st root of unity.
I R is a local PID with maximal ideal pR.
I RFq has basis elements [x ] for x ∈ Fq.
I µL : RFq → RFq , left multiplication by L.
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I T : F×q → R×, T (β j) = ξj , Teichmüller character, generates
Hom(F×q ,R×).

I F×q acts on RFq = R[0]⊕ RF×q

I RF×q decomposes further into the direct sum of
F×q -invariant components of rank 1, affording the
characters T i , i = 0,. . . ,q − 2.

I The component affording T i is spanned by

ei =
∑

x∈F×q

T i(x−1)[x ].

I New basis {ei | i = 1, . . .q − 2} ∪ {e0, [0]},
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F×q
4-decomposition

Next consider the action of the subgroup H = F×q
4.

I T i ,T i+r ,T i+2r , and T i+3r are equal on H
I For i /∈ {0, r ,2r ,3r} the elements ei , ei+r , ei+2r and ei+3r

span the H-isotypic component

Mi = {m ∈ RFq | ym = T i(y)m, ∀y ∈ H}

of RFq for 1 ≤ i ≤ q−5
4 .

I M0, the submodule of H-fixed points in RFq . Basis
elements 1 =

∑
x∈Fq

x = e0 + [0], [0], er , e2r and e3r .

I RFq = M0 ⊕
⊕ q−5

4
i=1 Mi .

I We have µL(Mi) ⊆ Mi as µL is an RH-module
homomophism.

I Can re-order new basis so that the matrix of µL is
block-diagonal with q−5

4 4× 4 blocks and a single 5× 5
block.
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Jacobi Sums

Definition
Let θ and ψ be multiplicative characters of F×q taking values in
R×. The Jacobi sum is

J(θ, ψ) =
∑
x∈Fq

θ(x)ψ(1− x).

(At x = 0, nonprinc. chars take value 0, princ. char takes value
1.)



Notation

I r = (q−1)
4

I η = βr , α = (η−1)
2 , α = (η+1)

2
I δ0 : Fq → R takes the value 1 at 0 and 0 elsewhere.
I characteristic function of S′ is

δS′ =
1
2

(T 0 − δ0 + αT r + αT−r ),
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Lemma
Suppose i /∈ {0, r ,3r}. Then

µL(ei) =
1
2

(qei − αJ(T−i ,T−r )ei+r − αJ(T−i ,T−3r )ei+3r ).

Proof.

2µA(ei) = 2
∑

x∈F×q

T−i(x)
∑
y∈Fq

δS′(y)[x + y ]

=
∑

x∈F×q

T−i(x)
∑
y∈Fq

(T 0(y)− δ0(y) + αT r (y) + αT−r (y))[x + y ]

. . .

. . .
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The matrix of µL|Mi
is q −αJ(T−i−r ,T−3r ) 0 −αJ(T−i−3r ,T−r )

−αJ(T−i ,T−r ) q −αJ(T−i−2r ,T−3r ) 0
0 −αJ(T−i−r ,T−r ) q −αJ(T−i−3r ,T−3r )

−αJ(T−i ,T−3r ) 0 −αJ(T−i−2r ,T−r ) q





The matrix µL|M0
is

0 −1 α 0 α
0 q −qα 0 −qα
0 −α q −αJ(T−2r ,T−3r ) 0
0 0 −αJ(T−r ,T−r ) q −αJ(T−3r ,T−3r )
0 −α 0 −αJ(T−2r ,T−r ) q


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p-adic valuation of Jacobi Sums

I Let j ∈ Z with j 6≡ 0 (mod (q − 1)).
I p-digit expresssion: j = a0 + a1p + a2p2 + · · ·+ a2t−1p2t−1,

0 ≤ ai ≤ p − 1.
I Write as (a0,a1, . . . ,a2t−1).
I Let s(j) denote the sum

∑
i ai of the p-digits of j modulo

q − 1.
I r = q−1

4 = (3p−1
4 , p−3

4 , 3p−1
4 , p−3

4 , . . . )

I 3r = q−1
4 = (p−3

4 , 3p−1
4 , p−3

4 , 3p−1
4 , . . . )

I s(r) = s(3r) = t(p − 1).
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I By Stickelberger’s Theorem and relation between Gauss
sums and Jacobi sums, we know that when i , j and i + j
are not divisible by q − 1 the p-adic valuation of
J(T−i ,T−j) is equal to

c(i , j) :=
1

p − 1
(s(i) + s(j)− s(i + j)),

I This valuation can be viewed as the number of carries,
when adding the p-expansions of i and k , modulo q − 1.
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Main Theorem

Theorem

1. The p-elementary divisors of (µL)|M0
are 0, 1, 1, pt , pt .

2. For 1 ≤ i ≤ q−5
4 , consider the two lists

{c(i , r), c(i + r ,3r), c(i + 2r , r), c(i + 3r ,3r)} and
{c(i ,3r), c(i + r , r), c(i + 2r ,3r), c(i + 3r , r)} and let Ci be
the list that contains the smallest element. Then the four
p-elementary divisors of (µL)|Mi

are pc for c in Ci .



General remarks on proof

I If X is a matrix with entries in R let mj(X ) denote the
multiplicity of pj as a p-elementary divisor and let κ(X )
denote the product of the nonzero p-elementary divisors.

I vp(κ(X )) =
∑

j jmj(X ),
I κ(L) = κ(µL) = |K (P∗(q)|p We first note that for any given

power ps, if two matrices X and X ′ over R are equal
modulo ps then mj(X ) = mj(X ′) for every j < s.

I

vp(κ(X )) ≥
s−1∑
j=0

jmj(X ) + s(rank(X )−
s−1∑
j=0

mj(X )).

I We shall obtain a lower bound for vp(κ(L)) by looking at L
modulo q.

I Then we shall see that as this lower bound coincides with
the actual value of vp(κ(L)) known from the Matrix-Tree
Theorem.
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Outline of proof of Theorem

If we work modulo q, this matrix is R-equivalent to

B =

 u11J(T−i ,T−r ) u12J(T−i−2r ,T−3r ) 0 0
u21J(T−i ,T−3r ) u22J(T−i−2r ,T−r ) 0 0

0 0 v11J(T−i−3,T−3r ) v12J(T−i−3r ,T−r )

0 0 v21J(T−i−r ,T−r ) v22J(T−i−r ,T−3r ),


where the umn and vmn are units of R.



Carries

Consider the matrix

C =


c(i , r) c(i + 2r ,3r) · ·
c(i ,3r) c(i + 2r , r) · ·
· · c(i + 3r ,3r) c(i + 3r , r)
· · c(i + r , r) c(i + r ,3r)


of the valuations of the nonzero entries of B. These entries are
integers in the range [0,2t ].

Lemma
Suppose 1 ≤ i ≤ q − 2 and i 6= r , 2r , 3r . Then

(i) c(i , r) + c(q − 1− i , r) = 2t .
(ii) c(i , r) + c(i + r ,3r) + c(i + 2r , r) + c(i + 3r ,3r) = 4t .
(iii) c(i , r) + c(i + 2r , r) = c(i + 2r , r) + c(i + 2r ,3r).
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Lower bounds on valuations

I By lemma, the diagonal sum of each 2× 2 block is equal to
the antidiagonal sum. This implies that

vp(κ(µL|Mi
)) ≥ c(i , r)+c(i+r ,3r)+c(i+2r , r)+c(i+3r ,3r) = 4t .

I

vp(κ(µL|M0
)) ≥= 2t .

I Combining our bounds for vp(κ(µL|M0
)) and vp(κ(µL|Mi

))
we see that

vp(κ(µL)) = vp(κ(µL|M0
)) +

q−5
4∑

i=1

vp(κ(µL|Mi
))

≥ 2t +
q − 5

4
4t

= (q − 3)t
= vp(κ(µL)),

I All inequalities must be equalities!
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the antidiagonal sum. This implies that

vp(κ(µL|Mi
)) ≥ c(i , r)+c(i+r ,3r)+c(i+2r , r)+c(i+3r ,3r) = 4t .

I

vp(κ(µL|M0
)) ≥= 2t .

I Combining our bounds for vp(κ(µL|M0
)) and vp(κ(µL|Mi

))
we see that

vp(κ(µL)) = vp(κ(µL|M0
)) +

q−5
4∑

i=1

vp(κ(µL|Mi
))

≥ 2t +
q − 5

4
4t

= (q − 3)t
= vp(κ(µL)),

I All inequalities must be equalities!



Conclusion

The theorem now follows from the observations:
I The p-elementary divisors of each 2× 2 block is

determined by the miniumum p-adic valuation of an entry,
and the determinant.

I Each entry in the lower block of C equal to the sum of the
corresponding entry of the upper block plus
s(i)− s(i + r) + s(i + 2r)− s(s + 3r).



Conclusion

The theorem now follows from the observations:
I The p-elementary divisors of each 2× 2 block is

determined by the miniumum p-adic valuation of an entry,
and the determinant.

I Each entry in the lower block of C equal to the sum of the
corresponding entry of the upper block plus
s(i)− s(i + r) + s(i + 2r)− s(s + 3r).



Corollaries

Corollary
Let m(i) denote the multiplicity of pi as a p-elementary divisor
of L. Then for 1 ≤ i ≤ 2t − 1 we have m(i) = m(2t − i), and
m(0) = m(2t) + 2.

Proof.
The corollary follows from the main theorem and part (i) of
lemma on carries



We can get a formula for the p-rank (first obtained by
Weng-Qiu-Wang-Xiang [2] (2007))

Corollary
rankp L = 2(3t − 1)(p+1

4 )2t
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Example
Let q = 92. Then from [1], we have

K (Paley(92)) ∼= (Z/20Z)40 ⊕ [(Z/3Z )16 ⊕ (Z/9Z)18

⊕ (Z/27Z)16 ⊕ (Z/81Z)14],

while our result shows

K (P∗(92)) ∼= (Z/20Z)40 ⊕ [(Z/3Z )20 ⊕ (Z/9Z)10

⊕ (Z/27Z)20 ⊕ (Z/81Z)14].

This is a new way to see that P∗(92) and Paley(92) are not
isomorphic.



Example
The critical group K (P∗(312)) is isomorphic to

(Z/132860Z)265720⊕[(Z/3Z)11376⊕(Z/32Z)33408⊕(Z/33Z)54176

⊕ (Z/34Z)66852 ⊕ (Z/35Z)66420 ⊕ (Z/36Z)64066

⊕ (Z/37Z)66420 ⊕ (Z/38Z)66852 ⊕ (Z/39Z)54176

⊕ (Z/310Z)33408 ⊕ (Z/311Z)11376 ⊕ (Z/312Z)1454].



Thank you for your attention!
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