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Erdds-Ko-Rado Theorem (1961)

Let X be a set of n elements. What is the maximum size M
of a family of subsets of size k such that any two subsets in
the family have nonempty intersection?

We may assume k < n/2.

Theorem
M = (,’(’:]) Furthermore, if k < n/2, then a maximum familiy
must be the family of k-subsets containing a fixed element.
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g-analog, k-dimensional subspaces of an n-dimensional
vector space (P. Frankl, R. Wilson, 1986)

Perfect matchings (K. Meagher, L. Moura, 2005)

k-tuples (M. Livingston, 1979)

Permutations: View a permutation g as a set of pairs

(i, 9(f). Two permutations g and h intersect iff for some i
we have g(i) = h(i) iff g~'h lies in the stabilizer of a point.
Thus the elements of a point stabilizer form an intersecting
set.
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EKR properties

Let (G, X) be a (transitive) permutation group.

The point stabilizers and their cosets are called the
canonical intersecting sets. They have size |G|/n,
n=|X|.

We say (G, X) has the EKR property if every intersecting
set has cardinality < |G|/n.

We say (G, X) has the strict EKR property if it has the
EKR property and the only intersecting sets of size |G|/n
are the canonical ones.
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The derangement graph

» A permutation is a derangement if it has no fixed points.

» The derangement graph ' of a permutation group is the
Cayley graph on G with the set of derangements as the
connecting set.

» An intersecting set is the same thing as a coclique of the
derangement graph.
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Clique-coclique bound

I" vertex-transitive graph on v vertices
cligue number w, coclique number a.
Then wa < n.

Proof: Let ¢ = number of cliques of size w containing a
given vertex.

Total number of cliques of size w = cv/w.

Let S be a coclique of size a. Each vertex in Sliesin ¢
cliques of size w and all such cliques are different.

Soac<cv/w
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Theorem
(Burnside). If (G, X) is a 2-transitive permutation group then
one of the following holds.

(a) |X| is a prime power p", and G has a normal, elementary
abelian subgroup N acting regularly on X.

(b) G is an almost simple nonabelian group.

in case (a) G = N x Gy. (Gx = stabilizer of x € X)
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Theorem

(Burnside). If (G, X) is a 2-transitive permutation group then

one of the following holds.

(a) |X| is a prime power p", and G has a normal, elementary
abelian subgroup N acting regularly on X.

(b) G is an almost simple nonabelian group.

in case (a) G = N x Gy. (Gx = stabilizer of x € X)

N is a clique. So the clique-coclique bound implies that G
has the EKR property.

Example: (G, X) = (Fq x Fg,Fg). Here g is a disjoint
union of cliques. Any choice of one vertex from each clique
gives a maximum coclique. So G does not have the strict
EKR property.
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Theorem

(Meagher, Spiga, Tiep, 2016). Every 2-transitive permutation
group has the EKR property.

Proof requires the classification of finite simple groups.
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All 2-transitive groups have EKR property

Theorem
(Meagher, Spiga, Tiep, 2016). Every 2-transitive permutation
group has the EKR property.

Example of almost simple group not satisfying strict EKR
property: (G, X) = (PGL(3, q),PG(2, q9)), line-stabilizers are
also maximum intersecting sets.

x ok ok
x ok
0 0 A

P. Spiga (2019): In (PGL(n, q),PG(n — 1, q) Maximum
intersecting sets must be cosets of point stabilizers or
hyperplane stabilizers.
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Strict EKR property for 2-transitive groups

» Symmetric groups (Cameron-Ku, 2003, Larose-Malvenuto
2004)

» Alternating groups (Ku-Wong 2007)
» PGL(2, q) (Meagher-Spiga, 2011)
» PSL(2, g) (Long-Plaza-Sin-Xiang)
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EKR-module property

Let (G, X) be a transitive permutation group
For AC G, let [A] = 3 ;.49 in the group algebra CG.
The EKR-module M(G) := subspace of CG spanned by
the canonical intersecting sets.
In a 2-transitive group M(G) is the sum of two simple
ideals, corresponding to the two irreducible constituents of
the permutation character.
We say that G has the EKR-module property if G has the
EKR property and for every intersecting set K of maximum
size we have [K] € M(G).
Strict EKR property — EKR-module property — EKR
property
EKR-module property is used to prove Strict EKR using
the Module Method
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The Module Method (B. Ahmadi, K. Meagher)

Let M be the (0, 1)-matrix whose rows are indexed by the
derangements and whose columns are indexed by ordered
pairs (x, y) of distinct elements of X.

Theorem
If (G, X) satsisfies the EKR-module property and
rank M = (| X| — 1)(|X| — 2) then (G, X) satisfies the strict EKR

property.



All 2-transitive groups have the EKR-module property

Theorem
(Meagher-Sin, 2020) Every 2-transitive permutation group
satisfies the EKR-module property.
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Noncanonical maximum intersecting sets

We’ve seen some examples of noncanonical max. intersecting
sets for 2-transitive groups (Frobenius groups, hyperplane
stabilizers in PGL(n, q)).

In the case G = N x Gy then another way to construct
noncanonical examples is by considering nonstandard
complements of Nin G.

Conjugacy classes of complements to N are classified by
H'(Gy, N).

Lemma

If H is a nonstandard complement to N and each p-element of

H is conjugate to an element of Gy, then H is a noncanonical
maximum intersecting set.
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Example

G = N x SL(2,4), N = F2, viewed as matrices <é ‘1/> where
L € SLp(4) and v € FZ.
Here we have H'(SL(2,4, N) = F,.

The elements

100 100 010
t=11 1 0], u=1{0 1 1 s=|1 a O
0 0 1 0 0 1 0 0 1

(v @ primitive root) have orders 2, 2 and 5. The subgroup (t, s)
is a point stabilizer, while (tu, s) is a nonstandard complement,
satisfying the hypothesis of the Lemma.



The End. Thank you!
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