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Erdös-Ko-Rado Theorem (1961)

Let X be a set of n elements. What is the maximum size M
of a family of subsets of size k such that any two subsets in
the family have nonempty intersection?

We may assume k ≤ n/2.

Theorem
M =

(n−1
k−1

)
. Furthermore, if k < n/2, then a maximum familiy

must be the family of k-subsets containing a fixed element.
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I q-analog, k -dimensional subspaces of an n-dimensional
vector space (P. Frankl, R. Wilson, 1986)

I Perfect matchings (K. Meagher, L. Moura, 2005)
I k -tuples (M. Livingston, 1979)
I Permutations: View a permutation g as a set of pairs

(i ,g(i). Two permutations g and h intersect iff for some i
we have g(i) = h(i) iff g−1h lies in the stabilizer of a point.
Thus the elements of a point stabilizer form an intersecting
set.
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EKR properties

Let (G,X ) be a (transitive) permutation group.

The point stabilizers and their cosets are called the
canonical intersecting sets. They have size |G|/n,
n = |X |.
We say (G,X ) has the EKR property if every intersecting
set has cardinality ≤ |G|/n .
We say (G,X ) has the strict EKR property if it has the
EKR property and the only intersecting sets of size |G|/n
are the canonical ones.
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The derangement graph

I A permutation is a derangement if it has no fixed points.

I The derangement graph ΓG of a permutation group is the
Cayley graph on G with the set of derangements as the
connecting set.

I An intersecting set is the same thing as a coclique of the
derangement graph.
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Clique-coclique bound

Γ vertex-transitive graph on v vertices

clique number ω, coclique number α.
Then ωα ≤ n.
Proof: Let c = number of cliques of size ω containing a
given vertex.
Total number of cliques of size ω = cv/ω.
Let S be a coclique of size α. Each vertex in S lies in c
cliques of size ω and all such cliques are different.
So αc ≤ cv/ω .
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Theorem
(Burnside). If (G,X ) is a 2-transitive permutation group then
one of the following holds.
(a) |X | is a prime power pr , and G has a normal, elementary

abelian subgroup N acting regularly on X.
(b) G is an almost simple nonabelian group.

in case (a) G = N o Gx . (Gx = stabilizer of x ∈ X )

N is a clique. So the clique-coclique bound implies that G
has the EKR property.
Example: (G,X ) = (Fq o F×q ,Fq). Here ΓG is a disjoint
union of cliques. Any choice of one vertex from each clique
gives a maximum coclique. So G does not have the strict
EKR property.
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All 2-transitive groups have EKR property

Theorem
(Meagher, Spiga, Tiep, 2016). Every 2-transitive permutation
group has the EKR property.

Proof requires the classification of finite simple groups.
Example of almost simple group not satisfying strict EKR
property: (G,X ) = (PGL(3,q),PG(2,q)), line-stabilizers are
also maximum intersecting sets.∗ ∗ ∗∗ ∗ ∗

0 0 λ


P. Spiga (2019): In (PGL(n,q),PG(n − 1,q) Maximum
intersecting sets must be cosets of point stabilizers or
hyperplane stabilizers.
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Strict EKR property for 2-transitive groups

I Symmetric groups (Cameron-Ku, 2003, Larose-Malvenuto
2004)

I Alternating groups (Ku-Wong 2007)
I PGL(2,q) (Meagher-Spiga, 2011)
I PSL(2,q) (Long-Plaza-Sin-Xiang)
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EKR-module property

Let (G,X ) be a transitive permutation group
For A ⊂ G, let [A] =

∑
g∈A g in the group algebra CG.

The EKR-module M(G) := subspace of CG spanned by
the canonical intersecting sets.
In a 2-transitive group M(G) is the sum of two simple
ideals, corresponding to the two irreducible constituents of
the permutation character.
We say that G has the EKR-module property if G has the
EKR property and for every intersecting set K of maximum
size we have [K ] ∈ M(G).
Strict EKR property =⇒ EKR-module property =⇒ EKR
property
EKR-module property is used to prove Strict EKR using
the Module Method
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The Module Method (B. Ahmadi, K. Meagher)

Let M be the (0,1)-matrix whose rows are indexed by the
derangements and whose columns are indexed by ordered
pairs (x , y) of distinct elements of X .

Theorem
If (G,X ) satsisfies the EKR-module property and
rank M = (|X | − 1)(|X | − 2) then (G,X ) satisfies the strict EKR
property.
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All 2-transitive groups have the EKR-module property

Theorem
(Meagher-Sin, 2020) Every 2-transitive permutation group
satisfies the EKR-module property.



Noncanonical maximum intersecting sets

We’ve seen some examples of noncanonical max. intersecting
sets for 2-transitive groups (Frobenius groups, hyperplane
stabilizers in PGL(n,q)).

In the case G = N o Gx then another way to construct
noncanonical examples is by considering nonstandard
complements of N in G.
Conjugacy classes of complements to N are classified by
H1(Gx ,N).

Lemma
If H is a nonstandard complement to N and each p-element of
H is conjugate to an element of Gx , then H is a noncanonical
maximum intersecting set.
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Example

G = N o SL(2,4), N = F2
4, viewed as matrices

(
L v
0 1

)
, where

L ∈ SL2(4) and v ∈ F2
4.

Here we have H1(SL(2,4,N) ∼= F4.
The elements

t =

1 0 0
1 1 0
0 0 1

 , u =

1 0 0
0 1 1
0 0 1

 s =

0 1 0
1 α 0
0 0 1


(α a primitive root) have orders 2, 2 and 5. The subgroup 〈t , s〉
is a point stabilizer, while 〈tu, s〉 is a nonstandard complement,
satisfying the hypothesis of the Lemma.
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The End. Thank you!
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