MAS4105 Exam 2

Write your proofs using *complete English sentences* as well as mathematical formulae.

Bonus points may be awarded for particularly well-argued proofs.

In this exam F denotes a field and \mathbb{R} denotes the field of real numbers.

Name: _

1. Let V be the vector space of 2×2 matrices with real entries and let A be a fixed element of V.

(a) (2 points) Show that the mapping $T: V \to V$ given by

$$T(X) = AX - XA, \quad X \in V,$$

is a linear mapping. (You may freely use rules of matrix algebra.)

(b) (4 points) Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Find a basis for R(T).

Solution: (a) Let X and Y be elements of V and c a scalar. Then

$$T(X + Y) = A(X + Y) - (X + Y)A = AX + AY - XA + YA$$

= $(AX - XA) + (AY - YA) = T(X) + T(Y)$

and

$$T(cX) = A(cX) - (cX)A = cAX - cXA = c(AX - XA) = cT(X).$$

We have checked that T is a linear map.

(b) We compute:

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} = \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}.$$

Let
$$B = \{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \}.$$

The first element of B is $T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and the second element is $T\begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$, so both lie in R(T). To see that they are linearly independent, notice that they each have an entry 1 where the other has entry 0. The computation above shows that every element in R(T) is a linear combination of the vectors in B. Thus, B is a basis of R(T).

MAS4105 Exam 2

2. (6 points) In \mathbb{R}^2 , find the image of the triangle with vertices (1,2), (2,6) and (3,0) under an anticlockwise rotation through an angle of $\frac{\pi}{6}$ radians about the origin. You may assume that the rotation is a linear map.

Solution: Call the rotation T. We compute the matrix of T with respect to the standard basis (call it β) of \mathbb{R}^2 . Under T, the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is mapped to $\begin{pmatrix} \cos(\frac{\pi}{6}) \\ \sin(\frac{\pi}{6}) \end{pmatrix} =$

 $\begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is mapped to $\begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$ (as one can see by drawing a simple picture). So we have computed that

$$[T]^{\beta}_{\beta} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

Now using the formula $[T(v)]_{\beta} = [T]_{\beta}^{\beta}[v]_{\beta}$, and noting that $\begin{bmatrix} a \\ b \end{bmatrix}_{\beta} = \begin{bmatrix} a \\ b \end{bmatrix}$ when β is the standard basis, we have

$$T\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2}\\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} - 1\\ \frac{1}{2} + \sqrt{3} \end{pmatrix}$$
$$T\begin{pmatrix} 2\\6 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2}\\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 2\\6 \end{pmatrix} = \begin{pmatrix} \sqrt{3} - 3\\ 1 + 3\sqrt{3} \end{pmatrix}$$
$$T\begin{pmatrix} 3\\0 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2}\\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 3\\0 \end{pmatrix} = \begin{pmatrix} \frac{3\sqrt{3}}{2}\\ \frac{3}{2} \end{pmatrix}.$$

So the image of the triangle is the triangle with vertices at $(\frac{\sqrt{3}}{2}-1,\frac{1}{2}+\sqrt{3})$, $(\sqrt{3}-3,1+3\sqrt{3})$, and $(3\frac{\sqrt{3}}{2},\frac{3}{2})$.

MAS4105 Exam 2

3. (a) (4 points) Prove that there is a linear map $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right) = \begin{pmatrix} \frac{1}{9}\\-1 \end{pmatrix}$ and $T\left(\begin{pmatrix} 1\\-1 \end{pmatrix}\right) = \begin{pmatrix} \frac{\pi}{5}\\3 \end{pmatrix}$.

Solution: In \mathbb{R}^2 , two vectors form a basis as long as neither is a scalar multiple of the other. In particular $\beta:=\left\{\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}1\\-1\end{pmatrix}\right\}$ is a basis. Then by the fundamental theorem of linear algebra, there exists a linear map T such that $T\left(\begin{pmatrix}1\\1\end{pmatrix}\right)=\begin{pmatrix}\frac{1}{9}\\-1\end{pmatrix}$ and $T\left(\begin{pmatrix}1\\-1\end{pmatrix}\right)=\begin{pmatrix}\frac{\pi}{5}\\3\end{pmatrix}$.

(b) (4 points) Is the linear map T invertible? Justify your answer.

Solution: Yes. One way to see this is to note that $\gamma := \left\{ \begin{pmatrix} \frac{1}{9} \\ -1 \end{pmatrix}, \begin{pmatrix} \frac{\pi}{5} \\ 3 \end{pmatrix} \right\}$ is also a basis of \mathbb{R}^2 , by our initial remark, so the fundamental theorem gives us a linear map U sending $\begin{pmatrix} \frac{1}{9} \\ -1 \end{pmatrix}$ to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} \frac{\pi}{5} \\ 3 \end{pmatrix}$ to $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Then UT sends each element of β to itself, so it must be the identity map. Likewise, TU sends each element of γ to itself, so is also the identity map.