Write your proofs using complete English sentences as well as mathematical formulae.
Bonus points may be awarded for particularly well-argued proofs.
In this exam F denotes a field and \mathbb{R} denotes the field of real numbers.

Name: \qquad

1. Let V be the vector space of 2×2 matrices with real entries and let A be a fixed element of V.
(a) (2 points) Show that the mapping $T: V \rightarrow V$ given by

$$
T(X)=A X-X A, \quad X \in V
$$

is a linear mapping. (You may freely use rules of matrix algebra.)
(b) (4 points) Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Find a basis for $R(T)$.

Solution: (a) Let X and Y be elements of V and c a scalar. Then

$$
\begin{aligned}
T(X+Y) & =A(X+Y)-(X+Y) A=A X+A Y-X A+Y A \\
& =(A X-X A)+(A Y-Y A)=T(X)+T(Y)
\end{aligned}
$$

and

$$
T(c X)=A(c X)-(c X) A=c A X-c X A=c(A X-X A)=c T(X)
$$

We have checked that T is a linear map.
(b) We compute:

$$
T\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & b \\
-c & 0
\end{array}\right) .
$$

Let $B=\left\{\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\}$.
The first element of B is $T\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ and the second element is $T\left(\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)\right)$, so both lie in $R(T)$. To see that they are linearly independent, notice that they each have an entry 1 where the other has entry 0 . The computation above shows that every element in $R(T)$ is a linear combination of the vectors in B. Thus, B is a basis of $R(T)$.
2. (6 points) In \mathbb{R}^{2}, find the image of the triangle with vertices $(1,2),(2,6)$ and $(3,0)$ under an anticlockwise rotation through an angle of $\frac{\pi}{6}$ radians about the origin. You may assume that the rotation is a linear map.

Solution: Call the rotation T. We compute the matrix of T with respect to the standard basis (call it β) of \mathbb{R}^{2}. Under T, the vector $\binom{1}{0}$ is mapped to $\binom{\cos \left(\frac{\pi}{6}\right)}{\sin \left(\frac{\pi}{6}\right)}=$ $\binom{\frac{\sqrt{3}}{2}}{\frac{1}{2}}$ and $\binom{0}{1}$ is mapped to $\binom{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}$ (as one can see by drawing a simple picture). So we have computed that

$$
[T]_{\beta}^{\beta}=\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

Now using the formula $[T(v)]_{\beta}=[T]_{\beta}^{\beta}[v]_{\beta}$, and noting that $\left[\binom{a}{b}\right]_{\beta}=\binom{a}{b}$ when β is the standard basis, we have

$$
\begin{aligned}
& T\left(\binom{1}{2}\right)=\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)\binom{1}{2}=\binom{\frac{\sqrt{3}}{2}-1}{\frac{1}{2}+\sqrt{3}} \\
& T\left(\binom{2}{6}\right)=\left(\begin{array}{ll}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)\binom{2}{6}=\binom{\sqrt{3}-3}{1+3 \sqrt{3}} \\
& T\left(\binom{3}{0}\right)=\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)\binom{3}{0}=\binom{\frac{3 \sqrt{3}}{2}}{\frac{3}{2}} .
\end{aligned}
$$

So the image of the triangle is the triangle with vertices at $\left(\frac{\sqrt{3}}{2}-1, \frac{1}{2}+\sqrt{3}\right),(\sqrt{3}-$ $3,1+3 \sqrt{3})$, and $\left(3 \frac{\sqrt{3}}{2}, \frac{3}{2}\right)$.
3. (a) (4 points) Prove that there is a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T\left(\binom{1}{1}\right)=$ $\binom{\frac{1}{9}}{-1}$ and $T\left(\binom{1}{-1}\right)=\binom{\frac{\pi}{5}}{3}$.

Solution: In \mathbb{R}^{2}, two vectors form a basis as long as neither is a scalar multiple of the other. In particular $\beta:=\left\{\binom{1}{1},\binom{1}{-1}\right\}$ is a basis. Then by the fundamental theorem of linear algebra, there exists a linear map T such that $T\left(\binom{1}{1}\right)=\binom{\frac{1}{9}}{-1}$ and $T\left(\binom{1}{-1}\right)=\binom{\frac{\pi}{5}}{3}$.
(b) (4 points) Is the linear map T invertible? Justify your answer.

Solution: Yes. One way to see this is to note that $\gamma:=\left\{\binom{\frac{1}{9}}{-1},\binom{\frac{\pi}{5}}{3}\right\}$ is also a basis of \mathbb{R}^{2}, by our initial remark, so the fundamental theorem gives us a linear map U sending $\binom{\frac{1}{9}}{-1}$ to $\binom{1}{1}$ and $\binom{\frac{\pi}{5}}{3}$ to $\binom{1}{-1}$. Then $U T$ sends each element of β to itself, so it must be the identity map. Likewise, $T U$ sends each element of γ to itself, so is also the identity map.

