Exam 2

Write your proofs using $complete \ English \ sentences$ as well as mathematical formulae.

Bonus points may be awarded for particularly well-argued proofs. In this exam F denotes a field and \mathbb{R} denotes the field of real numbers.

Name: ____

- 1. Let V be the vector space of real polynomials of degree at most 3.
 - (a) (2 points) Show that the mapping $T: V \to V$ given by

 $T(f(x)) = (1+x)f'(x), \quad \text{for } f(x) \in V,$

is a linear mapping. (As usual, f'(x) denotes the derivative of f(x).)

- (b) (2 points) Compute the matrix $[T]^{\beta}_{\beta}$, where $\beta = \{1, x, x^2, x^3\}$ is the standard ordered basis of powers of x.
- (c) (2 points) Determine the rank and nullity of T. (Rank is the dimension of R(T), nullity is the dimension of N(T).)

2. In \mathbb{R}^3 let β be the standard basis and let

$$\beta' = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix} \right\}.$$

(a) (4 points) Compute the change-of-basis matrices $[1]^{\beta'}_{\beta}$ and $[1]^{\beta}_{\beta'}$.

MAS4105

Exam 2

(b) (4 points) Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
. Find the matrix $[L_A]_{\beta'}^{\beta'}$.

Exam 2

- 3. (a) (4 points) Prove that there is a unique linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $T\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = \begin{pmatrix}\frac{1}{5}\\-1\end{pmatrix}$ and $T\left(\begin{pmatrix}1\\2020\end{pmatrix}\right) = \begin{pmatrix}\frac{-2}{7}\\\ln 2\end{pmatrix}$.
 - (b) (2 points) Is this linear map an isomorphism?