Write your proofs using complete English sentences as well as mathematical formulae.
Bonus points may be awarded for particularly well-argued proofs.
In this exam F denotes a field and \mathbb{R} denotes the field of real numbers.

Name: \qquad

1. Let V be the vector space of real polynomials of degree at most 3 .
(a) (2 points) Show that the mapping $T: V \rightarrow V$ given by

$$
T(f(x))=(1+x) f^{\prime}(x), \quad \text { for } f(x) \in V,
$$

is a linear mapping. (As usual, $f^{\prime}(x)$ denotes the derivative of $f(x)$.)
(b) (2 points) Compute the matrix $[T]_{\beta}^{\beta}$, where $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ is the standard ordered basis of powers of x.
(c) (2 points) Determine the rank and nullity of T. (Rank is the dimension of $R(T)$, nullity is the dimension of $N(T)$.)
2. In R^{3} let β be the standard basis and let

$$
\beta^{\prime}=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)\right\}
$$

(a) (4 points) Compute the change-of-basis matrices $[1]_{\beta}^{\beta^{\prime}}$ and $[1]_{\beta^{\prime}}^{\beta}$.
(b) (4 points) Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$. Find the matrix $\left[L_{A}\right]_{\beta^{\prime}}^{\beta^{\prime}}$.
3. (a) (4 points) Prove that there is a unique linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T\left(\binom{1}{1}\right)=$ $\binom{\frac{1}{5}}{-1}$ and $T\left(\binom{1}{2020}\right)=\binom{\frac{-2}{7}}{\ln 2}$.
(b) (2 points) Is this linear map an isomorphism?

