No Calculators. Answer the questions in the spaces provided on the question sheets.Please write your answers in full detail.

Name: \qquad

1. (7 points) Find the Laplace transform $F(s)$ of the function

$$
f(t)=\left\{\begin{array}{l}
\cos t, \quad \text { if } 0<t<\pi \\
0, \quad \text { if } \pi<t
\end{array}\right.
$$

Solution: We can use the step function to write

$$
f(t)=\cos t-u(t-\pi) \cos t
$$

To take Laplace transforms, we apply formula (4) to the second term, with $g(t)=$ $\cos t$ and $a=\pi$. To use (4), we need to find $g(t+a)$. We have $g(t+a)=\cos (t+\pi)=$ $-\cos t$. We can now compute

$$
F(s))=\frac{s}{s^{2}+1}-\left(e^{-\pi s} \frac{-s}{s^{2}+1}\right)=\frac{s\left(1+e^{-\pi s}\right)}{s^{2}+1} .
$$

2. (6 points) Let $\mathcal{L}\{y(t)\}(s)=Y(s)$. Find

$$
\mathcal{L}\left\{e^{5 t} t y^{\prime}(t)\right\}(s) .
$$

Be sure to explain clearly which general properties of the Laplace transform you use. You may refer to formulae on the last page by numbers.

Solution: By the t differentiation formula (5), we have

$$
\mathcal{L}\left\{y^{\prime}(t)\right\}(s)=s Y(s)-y(0)
$$

Then by the s differentiation formula (6),

$$
\mathcal{L}\left\{t y^{\prime}(t)\right\}(s)=-\frac{d}{d s}(s Y(s)-y(0))=-s Y^{\prime}(s)-Y(s)
$$

Finally, by formula (2),

$$
\mathcal{L}\left\{e^{5 t} t y^{\prime}(t)\right\}(s)=-(s-5) Y^{\prime}(s-5)-Y(s-5) .
$$

3. (7 points) Solve the following IVP by the method of Laplace transforms.

$$
y^{\prime \prime}-4 y=4 t-8 e^{-2 t}, \quad y(0)=0, \quad y^{\prime}(0)=5 .
$$

Solution: We have

$$
\mathcal{L}\left\{y^{\prime}\right\}(s)=s Y, \quad \mathcal{L}\left\{y^{\prime \prime}\right\}(s)=s^{2} Y-5 .
$$

So the transformed equation is

$$
s^{2} Y-5-4 Y=\frac{4}{s^{2}}-\frac{8}{s+2}
$$

This simplifies to

$$
\left(s^{2}-4\right) Y=\frac{4}{s^{2}}-\frac{8}{s+2}+5=\frac{5 s^{3}+2 s^{2}+4 s+8}{s^{2}(s+2)} .
$$

Since $\left(s^{2}-4\right)=(s+2)(s-2)$, we get

$$
Y=\frac{5 s^{3}+2 s^{2}+4 s+8}{s^{2}(s+2)^{2}(s-2)}
$$

Expanding in partial fractions yields

$$
Y=\frac{-1}{s^{2}}+\frac{-1}{s+2}+\frac{2}{(s+2)^{2}}+\frac{1}{(s-2)}
$$

so on taking inverse Laplace transforms we get

$$
y(t)=-t-e^{-2 t}+2 t e^{-2 t}+e^{2 t}
$$

4. Let $f(t)=\cos t$ and $g(t)=\sin t$.
(a) (4 points) Find the convolution $(f * g)(t)$. Hint: $\sin (A \pm B)=\sin A \cos B \pm$ $\cos A \sin B$.
(b) (3 points) Use your answer in (a) to find the inverse Laplace transform of

$$
\frac{s}{\left(s^{2}+1\right)^{2}}
$$

Solution:

(a) There are several ways to do this. Here is a quick one. We have

$$
(f * g)(t)=\int_{0}^{t} \cos (t-v) \sin v d v
$$

and

$$
(g * f)(t)=\int_{0}^{t} \sin (t-v) \cos v d v
$$

Since $(f * g)=(g * f)(t)$, we may add these equations to get

$$
2(f * g)(t)=\int_{0}^{t} \cos (t-v) \sin v+\sin (t-v) \cos v d v
$$

By the trig identity with $A=t-v$ and $B=v$ this becomes

$$
(f * g)(t)=\frac{1}{2} \int_{0}^{t} \sin t d v=\frac{t}{2} \sin t
$$

(b) By the Convolution Theorem, $\mathcal{L}\{(f * g)(t)\}(s)=F(s) G(s)$. Applying this to $f(t)=\cos t$ and $g(t)=\sin t$ shows that

$$
\mathcal{L}\{\cos t * \sin t\}(s)=\frac{s}{s^{2}+1} \cdot \frac{1}{s^{2}+1}=\frac{s}{\left(s^{2}+1\right)^{2}}
$$

Hence the inverse Laplace transform of $\frac{s}{\left(s^{2}+1\right)^{2}}$ is $\cos t * \sin t=\frac{t}{2} \sin t$, by the answer in (a).

Formulae

$$
\begin{gather*}
\mathcal{L}\{\sin b t\}(s)=\frac{b}{s^{2}+b^{2}} \tag{1}\\
\mathcal{L}\left\{e^{a t} f(t)\right\}(s)=F(s-a) \tag{2}\\
\mathcal{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} F(s) \tag{3}\\
\mathcal{L}\{g(t) u(t-a)\}(s)=e^{-a s} \mathcal{L}\{g(t+a)\}(s) \tag{4}\\
\mathcal{L}\left\{f^{\prime}(t)\right\}(s)=s F(s)-f(0) \tag{5}\\
\mathcal{L}\{t f(t)\}(s)=-\frac{d}{d s} F(s) \tag{6}
\end{gather*}
$$

