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ABSTRACT

The group of extensions between any two irreducible 3-modular representations of the groups
G2(3") and 2G2(3

m) is determined.

Introduction

This is the fourth paper in a series [8,9,10] with the common goal of computing
extensions between simple modules for groups of Lie type of ranks 1 and 2 over
fields of small characteristic. The methods employed in these calculations have
their origins in the papers [1] and [4] and are perhaps most clearly illustrated in
[8], while they are somewhat obscured by complications in [9] and not fully
developed in [10]. Unfortunately, the present paper is the most elaborate of the
four because we must deal with very intricate module structures.

The work is based on the empirical observation (for which there is also some
theoretical motivation (see [2])), that, in the known cases, a non-split extension <£
of simple modules can be factorized into the tensor product %' <8> M of a simple
module M with non-split extension %' which is (up to twisting by Frobenius)
isomorphic to a subquotient of the tensor product M'®M" of two simple
modules with restricted highest weights. With this as a working hypothesis, the
problem of determining all extensions of simple modules falls into two parts; first
one must know enough about the submodule structures of the modules M' ® M"
to be able to determine the extensions V'. Then one needs to find an inductive
argument to prove that all extensions really do arise in the way we have
described. In order to carry out the first stage of this plan we shall make use of
the powerful theory of Weyl modules and good filtrations for representations of
algebraic groups. For the inductive part of the proof, we shall rely on the
representation theory of the finite groups, where two advantages are that the
Frobenius map is an automorphism, not just an endomorphism, and that the
Steinberg module is projective. In actual fact the demarcation between these
techniques will not be quite as sharp as we have just put it and to some extent
they are used in combination throughout.

1. Preliminaries and statement of the theorem

Let G = G2{F) be a simple algebraic group of type G2 over an algebraic closure
F of F3. This group is defined over F3 so the Frobenius map o: x>-*x3 of F
induces an endomorphism of G which we shall also call the Frobenius map o. In
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characteristic 3, the group G also has a special isogeny r with T2 = o. For each
natural number n, the finite group G2(3") is defined to be the subgroup of G fixed
by (f. The subgroup fixed by r" will of course be G2(3"/2) if n is even, but for
each odd value of n we obtain the Ree group 2G2(3"), which may therefore be
considered as the subgroup of G2(3") fixed by the automorphism T|C2(3n) of order
2. Thus the restriction of T to 2G2(3") is equal to the restriction of o{n+m.

We introduce the following notation, which will enable us to treat the two
families of finite groups as one. For each natural number m, set

~'2(3
m/2) if m is even,

72(3
m) if m is odd.

The groups G(m) are simple for m 2s 2. Except in the appendix, we shall assume
that m>2 throughout this paper.

When the parameter m is understood we shall abbreviate G(m) to G. We shall
deal only with finite-dimensional FG-modules and rational G-modules over F.
For any G-module V, we denote by Vt the G-module obtained by composing the
representation G—»GL(K) with the endomorphism r'. We also make the
analogous convention for FG(m)-modules. Thus V2 is the first Frobenius twist of
V, and V and Vm are isomorphic as FG(m)-modules.

Let cr, be the long fundamental root and oc2 the short one in a base of the root
system of type G2 associated to G and let A, and A2 be the corresponding
fundamental dominant weights, so that (A,, aj) = 6/y. Let A denote the weight
lattice, A+ the set of dominant weights and A r c A the set

of 3r-restricted weights. As usual, for each dominant weight A, the simple module
with highest weight A is denoted by L(A), while V(A) denotes the Weyl module
whose unique simple quotient is isomorphic to L(A), and //°(A) stands for the
dual Weyl module with unique simple submodule isomorphic to L(A). Since L(A)
is G-isomorphic to its F-dual, we have H°(X)=GHomF(V(k), F). For A =
flAi + bX2 we have L(A), = L(6A, + 3aA2).

The module L(A2) = V(k2) = //°(A2) is 7-dimensional and may be identified as
the space of elements of trace zero in the Cayley algebra % over F, on which G
operates as algebra automorphisms. The module V{k\) is the 14-dimensional
adjoint module, which may be interpreted as the Lie algebra of derivations of c€,
on which G acts by conjugation in End/r(^). As a G-module, it is a non-split
extension of L(XX) = L(A2), by L(A2), the latter corresponding to the ideal of
inner derivations (see [6, p. 14]). The module L(2A2) = V{2\2) = //°(2A2) is
27-dimensional. We shall write L(A2) as E and L(2A2) as 5, so L(A,) = £, and
L ^ A ^ s S j . For any G-module V and any finite set / of natural numbers we
define

iel

For G(m), since Vo= Vm, we shall always consider only subsets of N = N(m) =
{0, 1,..., m — 1}, and indices such as / + 1 or i + 2 are to be read modulo m.

By Steinberg's Tensor Product Theorem (a refined version of the usual one; see
§ 11 of [11]), the simple G-modules are precisely the modules E,®SJf where /
and / are disjoint finite sets of natural numbers. Furthermore, the simple
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FG(ra)-modules are the restrictions of those simple G-modules for which / and /
are both subsets of N. Thus there are 3m isomorphism classes of simple
FG(m)-modules (which for even values of m correspond to the elements of Am/2).
The simple modules with 3-restricted highest weights are F, E, Ex, S,
E{0A) = L{Xx + X2), Su £ 1 ® 5 = L(A1 + 2A2), E <g> Sx = L{2k, + A2) and S{0.i> =
L(2kx+2X2). Thus, 5{0,i} is the first Steinberg module for G, and SN is the
Steinberg module for G{m), a projective, simple FG(m)-module. One might
perhaps think of S as the 4th Steinberg module' for G. All of the simple modules
are self-dual.

Our aim is to compute the dimensions of the vector spaces

ExtFG(m)(El®SJ,EA®SB),
where (/, J) and (A, B) are pairs of disjoint subsets of N. The self-duality of the
simple modules yields:

(1.1) Ext'FG(m)(E, <g> Sj, EA ® SB) = ExtFC(m)(EInA ® SJUB, EluA ® SJnB),

which reduces the general problem to the case where / c A, B c / . The following
statement therefore describes all the extensions between simple modules.

THEOREM. Left m > 2 and let (I, J) and (A, B) be pairs of disjoint subsets of N
such that I ^A and B c / . Then ExtFC(E, <8> SJ} EA <S> SB) = 0 unless one of the
following holds:

(I) A=IU{i, i + l},J = B(i, i + W);
(II) A=IU{i,i + l},J = BU {i + 1} (i, i + 1 $ I);

(III) A = 1U {/}, J = Bandi + leI(i$ I);
(IV) A = IU {/}, J = Bandi + leJ(i$ I).

If one of these conditions holds then the space of extensions is one-dimensional.
Furthermore, the same statement holds for G if the phrase 'subsets of N' is replaced
by 'finite sets of natural numbers'.

The result for G follows from [5, Theorem 7.1], which in our setting states that
for A, ju e Ar, the restriction map

(1.2)

is injective if s 5= r and is an isomorphism for all s sufficiently large compared to r
(note that our 'G(Zs)' corresponds to 'G(3J)' in the notation of [5]. In the course
of our proof we shall make use of a slight variation (Lemma 3.1) of the results
quoted above, namely that for simple modules labelled by pairs of disjoint sets of
natural numbers less than m, the restriction map from G to G(m) of the group of
extensions is injective for odd as well as even values of m. This is what will allow
us to derive the submodule structure of certain FG(m)-modules from their
G-module structures.

The remainder of the paper is organized as follows. Section 2 contains some
calculations in the Grothendieck ring of FG-modules, which -are straightforward
but nevertheless have important consequences for module structures, just as in
[9]. In §3, we obtain quite detailed information about several 'small' modules,

tThe cases m *£ 2 are given in the appendix.
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especially tensor products of restricted modules. These are described by means of
filiations by Weyl modules and then the Weyl modules are themselves examined
closely. It is this very precise knowledge which will enable us to prove the
theorem in § 5, after a little more technical preparation in § 4. For completeness
we have included an appendix dealing with the cases m =s 2.

2. Products of characters

Let rji denote the class of the simple module E, in the Grothendieck ring 91{G)
of FG and let xpj denote the class of 5y. It is clear from our description of the
simple FG-modules in § 1 that the multiplication in $1{G) is completely
determined by the products r\2, rjxj) and ijj2. If we take the classes rijtyj of the
simple modules as a Z-basis of 9l(G), it should be clear what is meant by the
simple constituents of an element of $t{G) and by the multiplicity of a simple
constituent in an element.

LEMMA 2.1. We have

(a) rj2=y + r)l + 2i1 + l,

(b) r)^ = i/> + 2?7{Orl} + T)2 + Ar)x + 4r/ + 1,

(c) i//2 = V>r?i + 21/

Proof. Since E = V(k2) and 5 = V(2k2), we may use the classical formulae (of
Weyl and Freudenthal) to decompose the tensor products of the corresponding
Weyl modules over the complex numbers into other Weyl modules over the
complex numbers. Then, since we may use the same classical formulae to
determine the weight multiplicities in these resulting complex Weyl modules and
since the discussion of § 1 allows us to determine the weight multiplicities of all
simple G-modules, it is a completely mechanical process to find the composition
factors of the reductions mod 3 of these complex Weyl modules. We omit the
details.

The multiplication formulae of Lemma 2.1 suggest that, as in [9], we should
define the mass of the simple module Et <8> Sj (and of rjfyjj) to be |/| + 2 | / | , and
the mass of an arbitrary FG-module to be the maximum of the masses of its
composition factors. This coarse numerical invariant, which is clearly preserved
under twisting by T, will be useful in some inductive arguments. The following
property, immediate from Lemma 2.1, shows that mass behaves well with respect
to tensor products. Let (/, J) and (A, B) be pairs of disjoint subsets of N. Then

(2.1.1) mass((£7 <g> 5,) <g> (EA ® SB)) ^ mass(£7 <g> S,) + msiSs(EA ® SB)

with equality if and only if B D (/ U / ) = 0 = / D (A U B).

LEMMA 2.2. (a) The class fii(rjjipK) has no constituent tyT with \T\>\K\ + \,
and none with \T\>\K\ if i e K.

(b) The class ^/(^/V'AC)
 nas no constituent %j>T with \T\ > \K\ + 1.

Proof The proof will be by induction on mass(r/yi/;/(:).
(a) If i eJ, then by Lemma 2.1 we have

ViiVjipK) = (1 + tyi + 2rji + rji
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and the conclusion is clear for all terms except r]i+1(rjj\{i)ipK), to which we may
apply induction. If i e K, we have

The conclusion is clear for the first three terms and induction on mass applies to
the other terms; for example, the fourth term is 2^l+1(^yu{/}^Ac\{/})-

(b) If ieJ, we are back in (a). If i e K, we have

We apply induction on mass to the term il>i+i(r]jil)K\{i}) and Part (a) to the other
terms which are not (multiples of) simple elements.

LEMMA 2.3. Let/, A, BczN, AC\B = 0 . Then

(a) [V/iVA V'B) : Vvl=

(b)

0 otherwise;
3 ifB = N,

0 otherwise.

Here the bracket'[?:?]' means the multiplicity of the {simple) element to the right
of the colon as a constituent of the element on the left-hand side.

Proof, (a) Let C = N\(A U B) and / = N\l. Then

ie/DA

x E[ (W
jelHB

The sets /n"i4, / f lB , / D C , 7fly4 and 7 D B are disjoint, so by (2.1.1) a
necessary condition for ijjN to be a constituent of this product is that for each of
these subsets K, the corresponding factor has a term of mass 2]Kl and that the
union of the subsets be equal to N. Thus we must have / DC = 0 = J C\A, and
hence that Ac, I, and also we must have A U B = N. Assuming these conditions
to be fulfilled, we obtain the term ipmA^inBxPjnB= ^A^B — VN by taking the
product of the ipj in each factor, so these terms yield one ipN in the product. The
only other terms with enough mass have the form

(2.3.1) VMVI>( I ! 2ry{y>y.+1})vynB for DcIHB
Ve(/nfl)\£> '

(where c is used in its strict sense). Since A U (/ fl B) U D = N\((I D B)\D), we
see from (2.1.1) that there can be a constituent tyN in (2.3.1) only if
((/fl B)\D) + 1 = (/ H B)\D. Clearly, this is not possible unless D=0 and
/ = B = N. In this case (2.3.1) becomes

jeN jeN
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of which xpN is a constituent with multiplicity 2m, as is easily seen from Lemma
2.1 and (2.1.1). This proves (a).

(b) Twisting by a power of the automorphism r, we may assume i = 0. By
(2.1.1) we see that a necessary condition for ijjn to appear as a constituent of
ip(r}Ail>B) is that \B\^m — 1, and that if A = 0 then B = N\{0}, in which case we
get one T/V Suppose A = {/} and B = N\{j}. If j = 0, then by Lemma 2.1 and
(2.1.1) we see that ipN occurs with multiplicity 1 as a constituent of (V/r?)V;AA{o)- If
j = 1, then ^r/!t/;M{1} = V2»7IVM<O,I} and the constituent 77,i/> in the expansion of
V2 gives a term \j>N in the product, while no other constituent of t//2 has enough
mass to contribute a ijjN. If y£{0, 1}, then (2.1.1) shows that ipN is not a
constituent of V'J/V'MO} = ^2(VJ^N\U))- Finally, if B = N, then T / / ^ = V2V/v\{o}-
The terms of mass 2 or greater in the expansion of i/;2 are 2i/;, r\xip, 2\pu 6r){0J}

and {̂o,2}- By (2.1.1) the last three do not give rise to any constituents ipN in the
product. The term 2tp clearly yields 2 ^ and by (a) the product (

w has tpN as a constituent with multiplicity 1. The lemma is proved.

Now SN is a projective FG-module, so its multiplicity as a composition factor of
an FG-module M is equal to dim HomFC(5^, M). Therefore, since
HomFC(5yv, E, <8> EA ® SB) = HomFC(5A, <8> E,, EA ® SB), Lemma 2.3 gives the
multiplicity of the projective cover P(EA <8> SB) of the simple FG-module EA <8> SB

as a direct summand of the projective FG-module SN <8> E,.

COROLLARY 2.4. We have

(a) 5 / v (8 )^ = (F2m(S)5^)0_©

(b)/or/ciVf

(c) 5N (g) 5 = 5^ 0 5^ 0 S* 0 P(5yvX{0}) 0 P(E <8> 5^0}) 0

REMARK. We may invert (a) and (b) to obtain the following formulae in the
Green ring of FG:

(a') [P(EN)] = TlT^(-iy"^[SN][ET}-2m[SN);
(b') [P(£7 ® 5W)] = Ers/ (-l)|Ar|[5^][£r] (/ * N).
Here [M] denotes the class of the FG-module M.

3. Some results on modules

This section will be concerned with obtaining extremely explicit information
about the structures of E® E, E®S and 5 <8> 5. We begin by recalling the
following terminology. Let M be an FG-module or a G-module. By the socle of
M, soc M = soc1 M, we mean the largest semisimple submodule. Then soc' M is
defined recursively by the formula soc' M/soc'~l M = soc(A//soc'~' M). We write
soc'M/soc'~lM as (soc'/soc'~l)M and call this the /th socle layer of M. Dual to
all this, we define the radical of M, JM to be the intersection of all maximal
submodules of M, so that the head of M, hd(M) = M/JM is the maximal
semisimple quotient of M. Then J'M is defined as J{J'~XM) and the /th Loewy
layer of M is (f-'/J^M =Ji~1M/JiM.
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We shall sometimes write 'AT «s AT to mean that the module M' is isomorphic
to a submodule of the module M.

The first lemma, an adaptation of the argument of [3, Proposition 2.7], tells us
that if V is a finite-dimensional G-module whose composition factors are all of the
form £/ ®Sj for /, / c N = {0,1, . . . , m - 1}, then restricting to G(m) does not
change its socle and Loewy layers.

We shall need some notation for the proof of this result. If we define TA2 = A,,
rA1 = 3A2, etc., so that L(r'A) = L(A),, then each dominant weight has a unique
'r-adic' expression

r

A = 2 ajt'Xi tor 0 ^ fly ̂  2.

If the upper limit r in the sum is less than m, we shall say that A is rm-restricted.
The Tm-restricted weights parametrize the simple G(m)-modules; for A as above,
we have L(A) = £,<8>Sy where / = { / | fly = 1} and J = {j | «y = 2}. Let p =
2 Ey=o ^ 2 - Then L(p) = SN and it can be checked using Weyl's dimension
formula that in fact SN = H°(p). Finally, we define the linear functional / on A by
fib) = 1> fib) = ^ 3 , so that if A e A+ is given by its r-adic expression above,
then /(A) = £ ayV3y. We have f{ccx) =f{2Xx - 3A2) = (2V3) - 3 > 0 and f(a2) =
/(2A2 — Aj) = 2 — V3 > 0. It follows that whenever /* lies below A in the usual
partial ordering on A we have /(ju) </(A).

LEMMA 3.1. Let (I, J) and (A, B) be pairs of disjoint subsets of N =
{0, 1, ..., m — 1}. Then the restriction map

Sj, EA ® SB)^ ExtJ,C(m)(£, <8) 5y, E

is injective.

Proof. Let £, ® 5/ = L(^) and £^(8)5^ = L(A) for i:"1-restricted weights fi and
A. There are no G-extensions if fi and A are either equal or incomparable in the
partial order. Also, we have EXIG(L(/J), L(A)) = Extl

G(L(k), L(ju)) and the same
holds for G(m). Therefore we may assume jU<A. Suppose A" is a non-trivial
G-extension of L{y) by L(A). We shall show that L(JU) is not a G(m)-submodule
of X. As in [3], Proposition 2.7, we see that there are G-module embeddings

X <-> //°(A) ^ /^(p) 0 //°(p - A) = SN ® //°(p - A).

Thus, it suffices to prove that HomFC(m)(L(Ju), 5* ® //°(p - A)) =
HomFG(m)(SN, L(fi) ® //°(p - A)) = 0. To see this, let L(v) be a G-composition
factor of L(ju) <8> //°(p - A). Then v^n + p-X<p. It follows that any G{m)-
composition factor L(ft>) of L(v) must satisfy

Therefore, HomFC(m)(.S/v, L(v)) = 0, for all v as above, which completes the
proof.

We sketch briefly why the lemma implies that the socle and Loewy layers are
preserved on restriction from G to G. By duality, it suffices to consider the socle
layers, and by induction on the G-socle length, one is reduced to showing
that socG V = socc V. The induction hypothesis yields socG(F/socG V) =
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socc(V7socG V) which implies socc V c socG V. This reduces the problem to
modules of G-socle length 2, where Lemma 3.1 may be applied.

These remarks are relevant in particular to the G-modules E® E, S <8> E,
S®S and the Weyl modules we shall discuss, because of our standing assumption
that m > 2.

Good filiations and Weyl filiations
A G-module V is said to have a good filtration if there exists an ascending chain

of submodules 0 = V ° c y 1 c K 2 c . such that \Ji*oVi = V and each factor
V'IVl~l is isomorphic to some //°(A,), with A, e A+. We shall need the following
facts (see [7, pp. 238-240]).

(a) A direct summand of a G-module with a good filtration has a good
filtration.

(b) If V is a finite-dimensional G-module and has a good filtration then the
number of filtration factors isomorphic to //°(A) is equal to dim HomG(F(A), V)

(c) If V and W have good filiations then so does V <8> W (this is a theorem of
S. Donkin). If the good filtration factors of V and W are known then those of
V ® W can be computed using the classical formulae for Weyl modules over the
complex numbers.

In addition, since ExtG(L(A), H°(ii)) = 0 for p } A (see [7, p. 207]), we have
(d) If V has a good filtration and if //°(A) and H°(fj,) are two factors, with

H ^ A, then V has a good filtration in which //°(A) appears higher up than H°(fi).
In particular, if V is finite-dimensional and A and ju are respectively maximal and
minimal in the set of highest weights of the good filtration factors of V, then
//°(A) is a homomorphic image of V and //°(JU) is isomorphic to a submodule
of V.

There is a dual notion of a Weyl filtration (descending filtration by Weyl
modules) and dual versions of (a)-(d) above. If V has a good filtration then of
course its dual HomF(V, F) has a Weyl filtration whose factors are the duals of
the good filtration factors of V. A useful special case of this is that a self-dual
module with a good filtration also has a Weyl filtration.

LEMMA 3.2. (a) In the decomposition E <8) E = S2(E) @/\2 (E) we have
S2(E) = F(BS and /\2 (E) is uniserial with series E, Ex, E.

(b) / \ 2 (E) ® Ex has a simple head and a simple socle, both isomorphic to
£<o,i}> and

/ ( A 2 (E) ® ^O/socCA2 (E) <S> Ex) =

(c) E <8> S = S 0 Z, where Z is a G-module with head and socle both isomor-
phic to E. We have

as FG-modules.
(d) 5 ® S = (£j ® S) © S © 5 0 X © Y as G-modules, where X has head and

socle both isomorphic to F, and Y has head and socle both isomorphic to E. We
have FG-isomorphisms
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and

X Qs) Ss\{o} =

Moreover, Y has a good filtration with factors

H°{k2), H°(kx), H°(kx + k2), H°(3k2)

and X has a good filtration with factors

, H°(kx + k2), H°(2kx), //°(4A2).

Both X and Y are self-dual.
(e) We have

() and /\2(S)

Proof. Recalling that E = H°(k2) and S = H°(2k2), it is routine to determine
the good filtration factors H°(k) of E® E, E®S and S ®S, and also to find the
composition factors of these dual Weyl modules.

(a) The module E ® E has a good filtration with factors //°(0) = F, H°(k2) =
E, //°(Ai) and H°(2k2) = S. Since E®E is self-dual, it follows that both the
submodule F and the quotient module 5 are in fact direct summands, because
these each occur only once as composition factors. From the structure of H°(kx)
and the self-duality of E ® E, it follows that the complementary summand in
E®E to F ® 5 must be uniserial with series E, Ex, E. Consideration of the
dimensions of S2(E) and / \ 2 (E) now finishes the proof of (a).

(b) By (a) we have

HomG(/\2(E)®El,

= HomG(A2 (E), E, 0 (£, <g> St) 0 (£ t <g> £,)),

which is zero since Ex © {Ex 0 Sx) © {Ex ® Ex) does not have E = hd/\2 (E) as a
composition factor. It now follows from (a) that hd(/\2 (E) ® Ex) = E{0<x} and by
self-duality that the socle is isomorphic to the head, proving (b).

(c) The module E®S has a good filtration with factors

H°(k2), H°(kx), H°(2k2), H°(kx + k2), H°(3k2).

Since H°(2k2) appears once as a factor, we have HomG(V(2k2), E ®S) = F,
which shows that S = V(2k2) is isomorphic to a submodule of E <S> S. Since E <8> S
is self-dual and S occurs only once as a composition factor, it follows that 5 is
isomorphic to a direct summand of E®S. Let Z be the complementary
summand. Then E = H°(k2) is isomorphic to a submodule of Z. By Corollary
2.4(b), we have

(E ® S) ® SNH0} =

as FG-modules. It follows that Z <S> SNK{0} = P(E ® SN\{0}) and hence that soc Z is
simple. The assertion about hd(Z) follows by self-duality,

(d) The module S ®S has a good filtration with factors

, H°(k2), H°(kx), H°(2k2), H°(2k2), H°(kx + k2),

+ A2), H°(3k2), H°(2kx), /^(A1 + 2A2), H°(4k2).



336 PETER SIN

From this we see that HomG(5, S 0 5) = HomG( V(2A2), 5 0 S) is 2-dimensional
and that

dim HomG(£, 0 S, S 0 S) = dim HomG(K(A, + 2A2), S 0 S) = 1.

Since these dimensions are equal to the multiplicities of S and £ , 0 S as
composition factors of S 0 5 and since S 0 5 is self-dual, it follows that it has a
direct summand isomorphic to 5 © S © (£, 0 5). The dimension of this summand
is 243. On the other hand, we have the decomposition S 0 5 = S2(S) © A2 (S)
into direct summands of dimensions 378 and 351. It follows that the G-module
5 0 S decomposes into at least five indecomposable direct summands. But
Corollary 2.4(c) shows that the FG-module

(5 0 S) 0 SNm = SN © SN © SN © P(SNm) © P(E 0 5^0) © P(£, 0 5

has six indecomposable direct summands and Corollary 2.4(a) shows that

(3.2.1) {S © 5 © (£! 0 5)) (8) 5yvN{o} = 5^ © 5* © SN © F(£, <8> 5/VN{1})

accounts for four of these six summands. It follows that 5 (8) S has precisely five
indecomposable direct summands, both as a G-module and as an FG-module. Let
us write

where according to (3.2.1) we may choose X and Y to be such that X <8> S
P(SN\{O}) and Y®SN\{0) = P(E®SN\(0)) as FG-modules. Then X and Y have
simple heads and socles and since it is easy to see that F and E are both
submodules, and hence also quotients, of S ® 5, we must have soc X = F = hd X
and socy = £ = hdY. We have shown that for m>2 we have FG{m)-
isomorphisms

Y <8> 5^(m)\{0} = P(E 0 Syv(m)\{0}) — Z 0 S/v(m)\{o}-

Since the character of the Steinberg module SNim) of G{m) does not vanish on
3-regular elements, multiplication by t/v(m)X{0} induces an injective endomorph-
ism of 9t{G{m)). Thus Y and Z have the same composition factors as
FG(m)-modules. Since m may be arbitrarily large, this means that they have the
same G-composition factors, or, equivalently, the same weight multiplicities.
Therefore a good filtration of Y has the same factors, counting multiplicities, as
one of Z. Since we also know the good filtration factors of S 0 S, we can deduce
those of X, and (d) is proved.

(e) We see that X has a good filtration factor //°(4A2). Since 4A2 is the highest
weight of 5 0 S, it is a weight of S2(S). Then (e) is forced by consideration of
dimensions.

REMARK. One can show that in fact Y = Z, by showing that an isomorphism
between the bottom factors V^3A2) of Weyl filiations of Y and Z can be
extended. We shall not need this, however.

The good filtrations of X, Y, and Z give us the following information about
maps.
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COROLLARY 3.3. The following equalities hold:

(i) dim HOITIGCVCA! + A2), X) = l;

(ii) dimHomG(y(2A1),A
r) = l;

(iii) dimHomG(y(4A2),A
r) = l ;

(iv) dim HomG(V(A,), Y) = dim HomdViki), Z) = 1;

(v) dim HomG(V(A1 + A2), Y) = dim HomG(V(A! + A2), Z) = 1;

(vi) dim HomG(V(3A2), Y) = dim HomG(V(3A2), Z) = 1.

In order to exploit this new information, we next study the structures of the
Weyl modules appearing in Corollary 3.3. Here, we shall need the general fact
(see [7, p. 207]) that if A, jueA+, with ju<A, then ExtG(L(A), L{n)) =
HomG(/V(A),

LEMMA 3.4. (a) The module V(2Aj) is uniserial with composition factors {in
descending order) Sx, E{0A), F.

(b) We have hd(V(kx + A2)) = £{0>1} and JV(kx + A2) = V(kx) 0 F.
(c) The module V(3k2) is uniserial with composition factors (in descending

order) E2, Ex, E{0A), Ex, E.

Proof. As we mentioned earlier there is an algorithm to find the composition
factors of Weyl modules from the weight multiplicities of the simple G-modules,
which we know. The Weyl modules in this lemma have the stated composition
factors.

Next, let A, ̂  e A+ be fixed and let i be a fixed natural number. Then by [5,
Theorem 7.1], we have, for sufficiently large (even) values of m, isomorphisms

ExtG(L(A), L(^))^Ext],C(m)(L(A), L&))

= ExtJ,c(m)(L(3'A), L(3'|u)) = ExtG(L(3'A), L(3'/i)),

where the middle isomorphism is induced by the automorphism oJ\G^m^ and the
end isomorphisms are restriction maps. We may therefore deduce from 5 =
V(2k2) that ExtG(5,, F) = 0, from which (a) follows. From the structure of V(A,)
we have ExtG(£{0,i}, F) = F. Also, since V(Xl + A2) is isomorphic to a submodule
of V(A,) ® V(X2) = V(kx) <8> E, we have

dim HomG(£,, V(kx + A2)) *£ dim HomG(£1) V(A,) <g> E)

= dimHomG(£{01}, V(A,)) = 0.

Since ExtG(£,, F) = 0, it follows that JV(kx + A2) is the direct sum of F and a
non-split extension of Ex by E. By the uniqueness of such an extension, it is
isomorphic to V(A,), which proves (b). To prove (c), we must show that /V(3A2)
is uniserial with the stated ordering of composition factors. Since V(3A2) c
V{X2) ® V(2X2) = E®S, Lemma 3.2(c) implies that soc V(3A2) = E. Since by (b)
we have ExtG(£{(U}, E) = 0 and since ExtG(£,, E) = F, we must have
(soc2/soc)V(3A2) = EX. Then (//soc2)y(3A2) has composition factors E{0l) and Ex

and since Ext^Ej, E2) = 0, the structure in (c) is forced.
The module V(4A2) will be considered in § 4.
We now summarize the information on G-extensions obtained from the

statement and proof of Lemma 3.4.
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COROLLARY 3.5. We have

(i) Ext^Ei+uEd^F,

(ii) ExtG(£,,F) = 0,

(iii) Extl
G(ShF) = 0,

(iv) Extl
G(ShEi) = 0>

(v) ExtG(Si+l,E{u+l)) = F,

(vi) ExtG(E{u+l},Ei+l) = F,

(vii) Extl
G(Ei+2, £{l)I+i>) = 0,

(viii) ExtG(£,+2, £,) = (),

(ix) ExtG(S;.,£,+1) = 0.

The following simple remark will be important in the reduction steps in the
proof of the theorem.

LEMMA 3.6. There is an embedding of G-modules /\2(E)<-*Z, and hence an
embedding ofE<S>E «-» F © (E <S> S). The images are uniquely determined.

Proof. From the structures of / \ 2 (E) and Z described in Lemma 3.2 one sees
that there will be an embedding as long as dim HomG(/\2 (E), Z) > 1. Now
A2 (E) has a good filtration with factors H°(X2) and H°(ki). A straightforward
calculation then shows that a good filtration of E <8> / \ 2 (E) has factors H°(0),
//°(A2), H\l2), H°{kx), H°{2X2), H\2X2), H°{XX + A2). Thus, by Lemma 3.2(c),

dim HomG(A2 (E), Z) = dim HomG(A2 (£), E <g> 5)

= dim HomG((5, E 0 A2 (£))

= dim HomG(F(2A2), E <8) A2 (£)) = 2.

Thus an embedding exists, and moreover, since socZ = E = hd/\2(E), the
2-dimensionality of HomG(A2 (E), Z) means that any two embeddings will have
the same image. The assertions about E 0 E are now immediate by Lemma
3.2(a) and (c).

LEMMA 3.7. Let J and T be subsets of N, not both equal to N. Then Ej <8> ST has
2 | y n r | indecomposable direct summands, both as G-modules and as FG-modules.
The head and socle of each summand are simple and isomorphic. We have

(3.7.1) soc(£y <g> ST) = soc(£ynr<g> SJnT) <8> E^jnT) ® 5 r N ( y n r )

= (g) soc(£,- <8> Sj) ® Ej\iJn
jeJDT

© EK<S>SiJnT)\K.
r ) ) / c y

Proof. First suppose that J czN. We know the result when J (IT = 0 and, by
Lemma 3.2(c), when / = T = {/}. It follows that the G-module
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has at least 2 | y n r i summands and that £A(./nr)®>W has at least 2|yX(ynr)l

summands. Therefore the G-module

N = (EJnT 0 SjnT) 0 (EAiJnT) 0 5Mr) 0 5
has at least 2|y| summands. On the other hand, Corollary 2.4(b) tells us that the
restriction of this module to G has exactly 2|y| indecomposable direct summands.
Thus all inequalities above turn out to be equalities. In particular, Ej 0 ST has
2| y n r i summands. From this we may conclude that each indecomposable
FG-summand of the module Ej 0 ST is in fact the restriction of a G-summand.
Corollary 2.4(b) also says that the socle of each summand of the FG-module
Ej 0 SN is simple and isomorphic to the head of the same summand. In
particular, the FG-module Ej 0 SN has the same number of indecomposable
direct summands as its socle. The same must be true of Ej 0 SN regarded as a
G-module, and by the same counting argument as above, one sees that the same
is true of Ej 0 ST. Thus, each summand of Ej 0 ST has a simple socle and head.
Now soc(£, 0 Si) = Ei 0 Si by Lemma 3.2 and so

SOC(EJ®SJ)= 0
L<=J(~\T

is a semisimple submodule of EJnT<S>SjnT with 2 | y n r | summands, so must be the
whole of soc(EJnT<S>SJnT). Then since

® L ( y ) x 0 Ej\ynT) 0 ST\(jnT) = 0 EK
LczjnT I (J\(jnT))<=KczJ

is a semisimple submodule of Ej 0 ST with 2 | y n r | summands, it is equal to
soc(Ej 0 ST). By the self duality of £, 0 ST, its head is isomorphic to its socle,
but we still have to show that each indecomposable summand has isomorphic
head and socle. Our argument above shows that in fact each summand of Ej 0 ST

is the tensor product of a summand of EJnT®SJnT with the simple module
Ej\(jnr) 0 ST\(jnTy Thus it will suffice to show that for I cN, the indecomposable
summands of E, 0 5/ have isomorphic heads and socles. Suppose for a contradic-
tion that M is a summand of £7 0 S{ with hd M ^ soc M. Since the head and socle
of each summand is simple and since hd(£/ 0 S,) = soc(E, 0 St), there must be a
different summand M' with hdMssocM' . Since both E, 0 S, and £, 0 SN have
2|71 indecomposable summands, both M<8)SN\, and M'®SN\i are indecom-
posable, and since soc(£/ 0 5^) = soc(£; 0 S,) 0 SN\, and hd(£' /05A,)s
hd(£; 0 57) 0 SNSh we have

hd(M 0 SNu) = (hd M) 0 S^, = (soc M') 0 SNXl s soc(M 0 SN\,).

But by Corollary 2.4, E, 0 5^ is the direct sum of 2m non-isomorphic projective
FG-modules, and so M 0 SN\, and M' 0 SN\t are two of these. We have reached
a contradiction. This completes the proof of the case where J =£N.

Suppose now that J = N, T^N. We know from the previous case that both as
a G-module and as an FG-module ET 0 ST is the direct sum of 2|T| direct
summands, having a simple head of the form ET\K<8>SK, Kc.T, and isomorphic
socle. Since (ET\K0 SK) 0 EN\T= EN\K 0 S* is simple, the lemma will be proved
if we show that for any two disjoint subsets A, B czN, we have

(3.7.2) Honvc(£* ® ST, EA 0 S.) * {
10 otherwise.



340 PETER SIN

Suppose first that AUB^N. Pick r e N\(A U B). Then by the case J*N, we
have

HomFG(EN <g> ST, EA <8> SB) = HomFG(ENHr) <S> ST, EAU{r} ® SB) = 0.

Therefore we may assume A = N\B. By Lemma 3.6,

(3.7.3) dim HomFG(£,v <g> ST, EN^ <g> SB)

= dim HomFG(EB

(F0(£ ,®S, ) )

KcN\B

For / : = N\B we have, by Corollary 2.4,

HomFC(£fluA: ® 5 r , 5BU/C) = HomFC(5A, <8> E/v, 5r) = 0.

Assume then that KczN\B, so BUK^N. Then by the case where J*N,
particularly (3.7.1), we have

(
j-t *£ n • • -wr _ ^ rry

0 otherwise.
Thus, all terms of the sum in (3.7.3) are zero unless B c T, in which case there is
a single non-zero term, equal to 1, corresponding to K= T\B. Since we already
know that for B czT, EN\T ® ST is a homomorphic image of Eyy ® 5r , we have
proved (3.7.2), and hence the lemma.

REMARK. If J =T = N, then the FG-module decomposition of Ej <8> ST has
already been described in Corollary 2.4(a) and we can see that even in this case
the simple submodules of EN<8)SN are the same as those obtained by setting
J = T = N in the last member of (3.7.1), except that the multiplicity of SN is
2m + 1 instead of 1. Therefore, when applying this lemma in situations where we
are not worried about multiplicities, for example in proving that there are no
maps from certain modules to Ej <8> ST, a reference to Lemma 3.7 is intended to
include the case J =T = N.

One can deduce the G-module decomposition of EN(m) ® SN(m) from Lemma
3.7; simply choose m' > m so that N(m)<=N(m') and apply the lemma for
G = G(m').

As a corollary of this result we can already exhibit non-trivial extensions for
each of (I)-(IV) of the theorem.

PROPOSITION 3.8. / / (/, / ) and (A, B) satisfy one of (I)-(IV) of the theorem,
then ExtFG(E, <g> 5,, EA <8> SB) * 0.

Proof By applying a power of the automorphism z\G we may take the index i
appearing in (I)-(IV) to be 0. Let / and / be disjoint subsets of N with neither
containing 0 or 1. Let Z be the module defined in Lemma 3.2(c) by S<8E =
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S®Z. It follows from Lemma 3.7 that

soc(Z ® £/u{1} <g> Sj) = £/U{0,i} ®Sj = (soc Z) <g> Elu{l) <g> S,.

By Lemma 3.6 and the structure of /\2 (E) (Lemma 3.2(a)), we have £, =s
(soc2/soc)(Z). Therefore, the module

(E, <g> Sj) 0 (£7 ® Syu{1}) 0 (£/u{1} (8) Sy) = soc(£, ® £,) ® E, ® Sy

is a semisimple submodule of (Z <S> £/u{1} <8>.Sy)/soc(Z <S>£/U{1} <8>Sy). Thus we
have found non-trivial extensions for Cases (I)—(III) of the theorem.

Similarly, Lemma 3.7 implies that

soc(Z ® £y ® Syu{1}) = (soc Z) ® E, ® 5yu{1} = £/u{0} ® 5yu{1}.

Since E^ =s (soc2/soc)Z and Sj =£ s o c ^ <8> E}), we have

£# ® SJU{1} ^ErQE,® 5yu{1} ̂  (Z ® £# ® 5yu{1})/soc(Z <g) £7 ® 5yu{1}),

which shows the non-triviality of the space of extensions in Case (IV). The
proposition is proved.

4. Some technical lemmas

The proof of the following general lemma is straightforward.

LEMMA 4.1. Let A and B be simple FG-modules and d = d(A, B) =
dim Extl

FG(A, B). Let X{A,B) be an FG-module with hdX(A, B)=A and
JX(A, B) = B®...(BB (d copies). Let C be any FG-module and D a simple
quotient of B <8> C Then

HomFG(X(A, B) ®C,D) = HomFG(A ®C,D)

implies d ̂  dim Ext j^A® C, D).

We shall keep the notations d(A, B) and X(A, B) of this lemma throughout
the remainder of the paper.

Whenever we use Lemma 4.1, the module A ® C will be simple and we shall be
trying for inductive purposes to prove that d(A, B)^d(A <S> C, D). Usually, we
shall have A ® C ̂  D, so that the desired conclusion will follow from
HomFG(X(A, B), C* ® D) = 0. This in turn will be proved by finding a suitable
filtration of C* ® D whose factors can be embedded into modules M for which
special circumstances will allow us to show that HomFG(X(A, B), M) = 0. These
remarks are intended as motivation for the remaining results of this section.

LEMMA 4.2. Let I,J, K cAf, / fl K = 0 . / / |/| >\K\ + 2 then

ExtFG(SI,EJ®EK) = 0.

Proof. The proof will be by downward induction on |/|, starting at the
projective module 5^. We may assume K c /, since Extl

FG(S,, Ej <8> SK) =
ExtFG(SluK, Ej <8> S,nK). Suppose first that / £ /. Pick r e J\(J n /) . We shall use
Lemma 4.1 to show that d(S,, Ej®SK)^d(SILI{r), Ej®SK). Then we shall be
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reduced to the case where / c /. Since by Lemma 3.2(c), E, 0 SK is a quotient of
Sr 0 (Ei 0 SK), the inequality is implied by

HomFG(X(Sh Ej 0 SK), Sr 0 (Ej 0 S*)) = 0,

which is immediate from Lemma 2.2(a), since |/| > \K\ + 2.
Suppose now that / c /. Pick r e N\I. It will suffice to show that

d(Sh Ej 0 SK) ^ d(SIU{r}, Ej 0 SKU{r}).

Since |/| > \K\ + 2 = \K U {r}| + 1, Lemma 2.2(b) yields

H o m ^ ^ S , , Ej 0 SK), Sr 0 {E, 0 SKU{r})) = 0,

so the inequality follows from Lemma 4.1. The lemma is proved.

LEMMA 4.3. E x t 1 ^ , £{0>2}) = 0-

Proof. We shall show that

(4.3.1) d(Su E{0i2))^d(S{0A}, E{0t2})^d(S{0h2), E{0,2}).

The right-hand end of (4.3.1) is zero by Lemma 4.2. An easy calculation using
Lemma 2.1 shows that St is not a composition factor of So® E{0i2} and that S{(U}
is not a composition factor of S2®E{02y Since £{0>2} is a quotient of both
So 0 £{0,2} a nd S2 0.E{o,2}> the two inequalities follow from Lemma 4.1.

LEMMA 4.4. The module V(4A2) has the following Loewy layers:

£{o,2}> £{o,i}> ExQSi, £{o,i}, F.

The socle layers are the same but in reverse order.

Proof It is routine to check that the composition factors of V(4X2) are as
stated. By Lemma 3.2(d), we see that V(4k2) is isomorphic to a submodule of the
module X of that lemma. Since soc X = F, we have soc V(4A2) = F. Let us
abbreviate soc V(4A2) by soc, etc. By Corollary 3.5, the only composition factor
extending F is £{o,i} and ExtcCEfo.i}, F) = F, so we must have soc2/soc = £{0>i}.
Therefore //soc has a simple socle, so it follows that soc2c/2 . By Lemmas 4.3
and 3.1, we have 'E\tx

G(E{0^}> Si) = 0 and by Corollary 3.5, ExtG(£{o.2}> £i) = 0.
Therefore JU2 = E{0A). Thus, //soc has a simple head and a simple socle
isomorphic to £{o.i} and /2/soc2 has a composition factors Ex and Sx. Since
E x t c ^ , Et) = 0 by Corollary 3.5, the proof is complete.

LEMMA 4.5. There exists a G-module T, unique up to isomorphism, with the
following structure:

soc T = £{o,i}, r/soc r = F e 5X e A2 (£0 = £ i ® £ t .

Any G-module V with soc V = E{0A) and K/soc V ss T/soc T is isomorphic to a
submodule of T. The module T is isomorphic to a submodule of S 0 E 0 £,.

Proof. A module T with the structure described can be found as a submodule
of /\2(E)®Elt by Lemma 3.2(b). Since by Lemma 3.6 we can embed / \ 2 (E)
into 5 0 E, we can embed T into 5 0 E 0 £,. For the uniqueness assertions we
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have first by Corollary 3.5 that ExtG(Sj, £{0,i}) — F and ExtG(F, E{0A)) = F, which
shows that any submodule of T whose image in 7/soc T is isomorphic to a
submodule of F 0 Sx is the unique G-module with its Loewy structure. We now
consider submodules of f\2 (£,) =s T/soc T. Corollary 3.5 gives

Ext{;(£i, E{0A)) = F, Extl
G(E,E{Q,l}) = 0 and ExtG(£,, E) = F.

By applying the long exact sequence for ExtG, one sees that any submodule of T
whose image in 7/soc T is isomorphic to a submodule of / \ 2 (Ex) is the unique
G-module with its Loewy series. The assertions in the statement about unique-
ness now follow.

We now look deeper into the structures of the G-modules X, Y and Z of
Lemma 3.2.

LEMMA 4.6. (a) Ar/socAr has a filtration with one factor isomorphic to E{0t2}

and all other factors embeddable into S <£> E or 5 ® £ <S> Ex.
(b) Y and Z have filiations in which every factor may be embeded into S ® E

or S 0 E <g> Ex.
(c) Z/soc Z has a filtration in which the bottom factor is isomorphic to Ex and

every other factor can be embedded into S <8> E or S <8> E <8> £,.
(d) Let UaZ be the image of f\2 (E) under the embedding of Lemma 3.6.

Then Z = Z/U has a filtration in which each factor may be embedded into S <E> E
or S ® E <g> Ex.

Proof, (a) By factoring out bythe first factor //°(0) = F in a good filtration of
X we obtain a good filtration of X = A7soc X,

with V1 = H°(X1 + X2), V2/V1 = H°(2X1) and X/V2 = H°(4X2). Let W2 be the
preimage in X of soc(Vr2/V1) under the natural map X—>X/Vl. From the
structure of V1, given in Lemma 3.4(a), and the fact that Extc(5,, E) = 0, it
follows that HomG(W2, E) = F. Let W1 be the kernel of a non-zero G-map from
W2 to E. We have socX = F. Since the composition factors of W1 are F, Eu 5j
and £{o,i}, it follows from Corollary 3.5 that we must have socW1 = E{01) and
W1/socW1 = F®Sx®E1. Therefore by Lemma 4.6, we have an embedding of
G-modules Wl <^>S ® E <8> Ex. By Lemma 3.2(c), W2/Wl = E ̂  5 <g> E. By Lem-
mas 3.4 and 4.5, we see that V2/W2 = H°(2Xl)/soc(H°(2kl)) also embeds into

Next, the structure of XJV2 = H°(4X2) has been described inJ )
Lemma 4.4. Let W3 be the preimage in X of soc(A7V2) = £{o,2>- It is immediate
from Lemmas 4.4 and 4.5 that (/2/soc)//°(4A2) and //°(4A2)//

2//°(4A2) are
isomorphic to submodules of 5 ® E <S> Ex- This proves (a),

(b) We start with a Weyl filtration of Y,

in which V1 = V(3k2), V2/Vl = V(kx + A2), V3/V2 = V(XX) and Y/V3 = V(X2),
and construct from this a new filtration with the desired properties. Since both
VXAj) and V(A2) embed into S<8) E, it will suffice to find a suitable filtration of
V2. Let W2 be the preimage in V2 of the trivial submodule of V2/Vl (see Lemma
3.4) and let XV1 = soc2 V\ Then Wl = V(XX), so it embeds into 5 <8> E. If F were a
submodule of W2/W\ then since ExtG(F, £,) = 0, F would be a submodule of Y,
which is not the case. Thus, soc(W2/Wl) = E{0A). The triviality of ExtG(F, £,)
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also implies that (W2/Wl)/soc(W2/Wl) is isomorphic to a submodule of
F 8 A 2 ( £ i ) , so, by Lemma 4.5, W2/Wl embeds into 5<8>£<g>£,. Now V2/W2

has a submodule isomorphic to VXAj) with quotient isomorphic to £{0>i}> by
Lemma 3.4(b). The submodule embeds into 5<8>£ and the quotient into
5 <8> £ <8> Ei. Thus, Y has a filtration with the stated properties.

Since this construction used only the Weyl filtration of Y and since Z has a
Weyl filtration with exactly the same factors (see Lemma 3.2), the same
construction works for Z, so (b) is proved.

(c) We take the filtration on Z/socZ induced by the filtration on Z of (b).
Then the bottom factor is W Vsoc Z = K(A,)//V(A,) = £, and all other factors are
as in (b).

(d) We start with a good filtration of Z,

0cVlcV2cV3cZ,

in which V1 a tf°(A2), V
2/Vl = tf°(A,), V3/V2 = //°(A, + A2) and Z/V3 = //°(3A2).

Since soc Z = £, it follows easily from Corollary 3.5 that V2 = / \ 2 (£), and hence
by the uniqueness of U that V2 = (/. Thus, Z = Z/£/ has a good filtration

with K5 = //°(A, + A2) and Z/V75 = tf°(3A2). Thus, soc Z ̂  £{Oi,} 0 E2. We claim
that in fact socZ = £{0 1}. Since by Lemma 3.2(c), Z has a submodule Z'
isomorphic to V(3A2) and, by Lemma 3.4, Z' has Loewy length 5, whereas U has
Loewy length 3, it follows that the unique composition factor E2 = hd V(3A2) of Z
is not a composition factor of soc Z, which proves our claim.

We see from Corollary 3.5 that Ex is the only composition factor of Z which
extends E and that Extc(£i, E)=_F. Therefore (soc2/soc)Z = £, and so soc2 Z =
soc2Z' = soc2_£/=£/nZ'._Let Z' be the image of Z' in Z and let W be the
preimage in Z of soc2(Z/V3). Then since E2 is a composition factor of W, we
have Z7 c \y. Let W = Z7 + soc2 W. Then from the structures of //°(A, + A2) and
soc2(Z/VF3) we see that W/W is an extension of £, by £. It is not clear whether
this extension splits or not, but we shall show that in either case we can still find a
filtration with the required property.

Suppose first that the extension does not split. Then W/W = V(A,) can be
embedded into S_ ® E. It is not hard to see that W/soc W = F®J /\2 (£,). Since
IVcZ and socZ = E{0A}, we have soc W = E{ox), so by Lemma 4.5, W embeds

If the extension splits then we have a non-zero G-homomorphism from W to E.
Let W" be the kernel of such a map. Then W/W"^E embedsjnto S <8> E, while
W" is an extension of soc2//°(3A2) by W"DV\ Also Z' <= W", so £ 2 ^
(soc3/soc2)W". It follows that the socle layers of W"/soc W" are (in ascending
order) EX®F, E2, Ex. Since we know ExtG(£/, F) = 0 = Extc(£i, Ex) and
Extij(£:2, EX) = F, it follows that W"/socW" = F @/\2 (E}). Since socW'c
socZ = E{o,i}> Lemma 4.5 shows that W" embeds into S <8> E <8> Ex. This
completes the proof of the lemma.

Recall that

S 05 = 5 05 0(£, 0 5)0*07
and that soc X = F, S ̂  5 ® £ and Ex % S ̂  5 <8> £ 0 £ t . Combining these facts
with Lemma 4.6 leads to following useful criteria.
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COROLLARY 4.7. Let L and M be FG-modules. Then the following conditions
are together sufficient for HomFC(L, St ® S, ® M) to be zero. The last three suffice
for HomFC(L, (Z/soc X) <8> M) = 0.

(i) Honvc(L,M) = 0;

(ii) Honvc(L, 5, <8> E, ® M) = 0;

(iii) HomFC(L, 5, <8> Et <8> Ei+1 0 M ) = 0;

(iv) HomFC(L, Et <8> Ei+2 <8> M) = 0.

Proof. Since T|G is an automorphism, we may assume i = 0. The result now
follows from Lemma 4.6 since G-filtrations and G-embeddings are certainly
filtrations and embeddings of FG-modules.

COROLLARY 4.8. Let L and M be simple FG-modules such that the following
hold:

(i) soc(£, <8> St <8> M) = soc(£, <8> 5,) <S> M;
(ii) HomFG(L, 5, <g> Et ® M) = 0;

(iii) HomFG(L, Ei+l ®M) = 0;
(iv) HomFC(L, 5, <8> £, <8> £,-+1 ® M) = 0.

Then L is not a composition factor of soc2(5, <8> Et

Proof. We may assume that i = 0. By (ii), L ^ soc(S, <8> £, <S> M). By (i),

(5, (8) £, ® M)/soc(5, ® £, (8) M) = ((5,- ® E,)/soc(S,

and by Lemma 3.2(c), this module is isomorphic to (Z/soc Z) <8> A/. The result
now follows from (ii), (iii), (iv) and Lemma 4.6.

5. Extensions of simple modules

LEMMA 5.1. Let I,J, K ciV, J HK = 0. If \J\ > 2 then ExtjrC(57, £, ® S*) = 0.

Proof. We may assume that K^I. I f / c / then \I\>\K\ + 2, so Lemma 4.2
applies. We therefore suppose that / £ /. We shall prove that, for r eJ\(J D /) ,

(5.1.1) HomFG(*(S/, Ej (8> S*), Sr ® E3 (g) 5^) = 0,

which, since Ej ® SK is a quotient of Sr<8> Ej<8) SK, will show by Lemma 4.1 that
d(S/, Ej(S>SK)^d(SILt{r}, Ej®SK) and eventually return us to the case where
/ c /. Clearly, HomFC(S/, Sr <8> Ej (8> SK) = 0, and since by Lemma 3.7,

soc(5r 0 £, ® 5,,) = soc(5r (8) £r) {

(5.1.1) will follow from

(5.1.2) HomFC(S7, ((Sr <8> Er)/soc(Sr <8> Er)) ® EJMr) <8> 5^) = 0.

A composition series of (Sr <8> Er)/soc(Sr <8> Er) induces a filtration on

((Sr ® Er)/soc(5r
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with factors (ignoring multiplicities and order)

Ej®SK, EA{r)®SK, Er+l®(Ej®SK),

Er+1®(EA{r)®SK), Er+2®(EA{r)®SK).

The first two are simple and not isomorphic to S,. By Lemma 3.7, for teN,
Et®S, is either simple or else its head is isomorphic to (Et ® 5A{,}) 0 S,.
Therefore, since |/| >2,

HomFG{Sh Er+l ® {Ej ® SK)), HomfC(5/; Er+l ® (EA{r} ® SK))

and
H o m ^ , Er+2 ® (EA{r} ® SK))

are all zero, which proves (5.1.2).

LEMMA5.2. LetI,J,K^N,JC\K = 0.IfI^JUKthenExtJ^S,, Ej® SK) = 0.

Proof. We shall proceed by downward induction on |/|, starting with SN which
is projective. Assume I <=.N and pick r e N\I. Our inductive step will be the
inequality

d(St, Ej ® SK) *£ d(SIU{r), Ej ® SKU{r}).

By applying r r, we can assume r = 0. Then Lemma 4.1 will yield the inequality
if we show that

(5.2.1) HomFG(X(Sl,EJ®SK),(S®S)®(Ej®SK)) = \n * ~ 'J~ K>
10 otherwise.

Let us consider the case Ej®SK = S, first. By Lemma 3.2, we have

(s®s)®s,=slum e 5/u{0} e (E, ® s/u{0}) e (x ® s,) e (Y ® s,y
Clearly, HomFG(X(Sl, St), S,uw) = 0 and by Lemma 3.7,

HomFG(X(S,, S,), £, ® SIU{0)) = 0.

This second part of Lemma 3.2(d) implies that soc(Y ® S7) = E ® S,, so
HomFG(X(S,, S,), Y ® S{) = 0 as well. Hence it suffices to prove that
HomFGix(S,, St), X ® S,) = F. The second part of Lemma 3.2(d) shows that
s o c ^ ® St) = Si = (soc X) ® S,, so we are reduced to showing that
HomfC(5/, (A7soc X) ® 57) = 0. Let us check the last three conditions in
Corollary 4.7 with L = M = S, and i = 0:

(ii) HomFC(57, S®E®S,) = HomFC(5/u{0>, E®S,) = 0;
(iii) HomFC(57, S®E®El®SI) = HomFG(Snj{0}, E®Ex®S,) = 0, by Lemma

3.7;
(iv) HomfC(5/, S®E®E2®S,) = Homr c(£ ® S{, E2 ® S,) = 0, by Lemma

3.7.
Thus, this case of (5.2.1) now follows from Corollary 4.7.

Now suppose Ej®SK^Si. This case of (5.2.1) will also be proved using
Corollary 4.7 if we verify the four conditions of that corollary, with L =
X(S,,EJ®SK)> M = Ej®SKandi = 0.

(i) Obviously, HomFG(X(Si, Ej ® SK), Ej ® SK) = 0.
(ii) We have HomFG{X{Sh Ej®SK),S®E®Ej®SK) = 0, by Lemma 3.7,

which computes the socle of the right-hand module.



EXTENSIONS OF SIMPLE MODULES 347

(iii) We must show that HomFG(X(Sl> Ej 0 SK), S 0 E 0 Ex 0 Ej 0 SK) = 0.
If 1 $J, this follows from Lemma 3.7. If 1 eJ, we must first use Lemma 3.6 to
embed (£j 0 Ex) 0 S 0 E 0 £A{1} 0 S* into

before applying Lemma 3.7.
(iv) We must show that HomFG(X(SI} Ej 0 SK), £ 0 £2 ® £/ 0 S*) = 0. If

2$J, we can use Lemma 3.7 immediately to compute the socle of EJU{02} ®SK,
while if 2eJ, we can apply Lemma 3.7 after we have used Lemma 3.6 to embed
E{0>2} ®Ej®SK = (E2 ® E2) (8) EJum{2} <8) SK into

This completes the proof of (5.2.1), so the induction goes through.

LEMMA 5.3. Let J,A, B cJV, AHB = 0 , fie/. 7Vien Extic(Sy, E^ ® SB) = 0
Mrt/e^ on^ of the following holds:

(i) A = {i,i + 1},J = B;
(ii) i4 = {i,i + l},J = BU{i + l};
(iii) A = {/}, 7 = B and i + 1 e B.

(Notice that these are precisely the conditions of the theorem for 1 = 0.)

Proof. By Lemmas 4.2, 5.1 and 5.2 we may assume that \J\B\ =s2, \A\ =£2 and
A£J. Suppose first that |/| = |fl| + 2. Then for r e A\(J D A) we have EA®SB^
hd(5r ® EA® SB), by Lemma 3.2(c). A short calculation using Lemma 2.1(b) and
Lemma 2.2 shows that Sj is not a composition factor of (5r <S> Er) <S> EA\(r) <S> SB.
Hence, Lemma 4.1 yields

d{SJy EA 0 SB) ^ d(SJU{r}, EA ® 5a) = 0,

by Lemma 4.2. Thus we are left with the cases

() j), and
(d) J = B,A = {i).
(a) By Lemma 5.2 we may assume that ji=t. Lemmas 2.1(b) and 2.2 can be

used to check that SB{J{t) is not a composition factor of 5y 0 (£} <8> SB). Since
Ej ®SB^ hd(Sj ® (Ej ® SB)), Lemma 4.1 and Lemma 5.2 give

d(SBU[t}, Ej <8) SB) ^ d(SBU{lJ)> Ej ® SB) = 0.

(b) Suppose t $ {{',/} or t = j =£ i + 1. We claim that

}, E{iJ} <8) 5fl) ^ rf(5flu{f./)f £{,-,,} 0 5B).

Since E{/>/> ® 55 ^ hd(S^ 0 (E{/>y) 0 5fl)), this will follow from Lemma 4.1 if we
show that

HomFG(X(SBU{t}, E{u} 0 SB), S, 0 Et 0 £y 0 5B) = 0.

We shall apply Corollary 4.8 with L = SBU{t) and M = Ef 0 5B. Condition (i) of
the corollary holds by Lemma 3.7. We now check the other conditions.
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(ii) Clearly,

HomFG(SBU{t), S, 0 E, 0 Ej 0 SB) = HomFG(SBU{iJ), E{iJ} 0 SB) = 0.

(iii) We must show that HomFG(SBL){t}, £ , + 1 0 £ y 0 S B ) = O. If i + l±j then
either Ei+1 0 Ef 0 SB is simple or i = 1 e B and Lemma 2.2 gives the desired
conclusion. If i + l=j then £,+1 0 £ , 0 S f l = 5BU{/+1} 0S f l 0 (A 2 (£ , + i )0S f l ) -
Only Sflufj+i) has as much mass as SBL){t) but, since i + 1 =;', our hypothesis says
that t*i + l. Therefore (iii) holds.

(iv) We have

by considering masses.
Now Corollary 4.8 yields (b).
(c) We may choose notation so that j =£ i + 1. We shall prove that

d(SB, Em 0 SB) ̂  d(SBU{i}, EUJ) 0 SB).

Then by (b) the right-hand side of the inequality is zero unless i=j + 1. We shall
apply Lemma 4.1 and Corollary 4.8 to prove this inequality. First we note that
E{iJ) <S> SB ^ hd(5f ® E(itj) ® SB). We now check the conditions of Corollary 4.8
for L = SB and M = E}; ® 5fl. Condition (i) holds by Lemma 3.7 and (ii) and (iii)
are easy to check because i, i + 1 ±j. The calculation for (iv) is:

HomFC(5fl, 5, ® £, ® E,+1 ® £y ® 5B) = HomFG(SBU{i), E{u+hj} (g) 5fl) = 0

by Lemma 3.7. The inequality now follows from Corollary 4.8 and Lemma 4.1.
(d) We shall show that if i + 1 * B then d(SB, £, ® 5fl) ^ rf(5flu{/}, £, ® SB),

which is zero by Lemma 5.2. Again, we shall use Lemma 4.1 and Corollary 4.8.
Since Et ® SB ^ hd(5, 0 £, <S) SB), it remains only to check the conditions of
Corollary 4.8 with L = SB, M = SB. Lemma 3.7 shows that (i) holds and (ii), (iii)
and (iv) are all easy because i + 1$ B.

This completes the proof of the lemma.

LEMMA 5.4. Let (/, / ) and {A, B) be pairs of disjoint subsets of N with
0 =£ / c.A and B c /. Then for i e I we have

d(E, 0 SJt EA <g> SB) ^ d{Etm ® Sj, EAX{i) <g> SB) + d(£A { / > ® SJU{i), EA <S» 5fl).
JU{i),

Proof We may assume that i = 0. By Lemma 3.2(a), we have

ExtJ,c(£, ® 5y, EA ® 5fl) = Extic(£A{0) ® Sj, (E®E)® EAS{0) 0 SB)

s ExtJrC(£A{0} ® 5,, E^o , 0 5fl)

0 Extic(E/X{0} <8> 5y, (5 0 A2 (E)) ®

The lemma will follow from the existence of an embedding

Extx
FG(ElH0) ® Sj, (5 0 A 2 (E)) ® EM\{O> ® SB)

5y, (5 0 E) 0
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Lemma 3.6 gives an embedding 5 0 / \ 2 (E) <-+S 0 E. By Lemma 3.2 and Lemma
3.6, the cokernel is the module Z of Lemma 4.6(d). Thus, by the long exact
sequence for ExtFG, it will suffice to show that

HomFC(£A{0} 0 Sj, Z 0 EAM0) 0 SB) = 0.

We shall apply Lemma 4.6. First,

HomFC(£A{0} ®Sj,S®E® EA\{0) 0 SB) = Homr c(£A ( 0 } 0 S,u{0}, EA 0S B ) = 0.

It therefore remains to show that

HonvG(£A{o} 0 Sj, S 0 E 0 Ex 0 EAm 0 SB) = 0.

If (/, J) = (A, B) then the left-hand side of (5.4.1) is isomorphic to
HomFG(£A{0} 0S/ U { O }, Ex 0 £ / 0 S , ) . If l £ / U / , this is obviously zero, and if
\eJ then this is zero by Lemma 3.7. If lei, then £,®£/<8)5y embeds into
(E,\{}}<8)Sj)(&(E,<8)SjU{l}), and Lemma 3.7 then shows that £A{o> ® SJU{0} is
not in the socle of this module.

Now suppose that (/, / ) * (A, B). Set K = N\(I U / ) , / ' = / U (K n ,4) and
i4' =i4\(^rii4). Then (5.4.1) can be transformed to

(5.4.2) HomFG(Er\{o} <8> 5 / u { 0 } , E, <8> EA. <8> 5 B ) = 0.

Since A' c / ' U / and # c / , the assumption (/, J)±{A, B) implies that

mass(£/4. ® 5S) < mass(£/. ® 5"y) = mass(£:/.N{o} <8> SBL){0)) - 1.

Therefore by (2.1.1),

mass(£i <8> £,4' <S> 5B) < mass(E/.Mo} <S) 5,u{0}),

from which (5.4.2) is clear. The lemma is proved.

We may now complete the proof of the vanishing in the theorem.

PROPOSITION 5.5. Let (/, / ) and {A, B) be pairs of disjoint subsets of N, with
IcA and B^J, and such that ExtJc(£/ ® SB, EA ® SB) =t 0. Then these pairs
satisfy one of the conditions (I)-(IV) of the theorem. Furthermore, according to
which of the conditions (I)-(IV) is satisfied by (I, J) and (A, B) we have

(I) d(Et ® 5,, EA ® SB) ^ d(Sj, Elu+l] ® Sj),

(II) d{E, ® Sj, EA <8) SB) ^ d(SBU{i+1}, E{u+1) <8» SB),

(III) d(E, 0 Sj, EA ® SB) ^ d(SJU{i+1}, E{u+1} ® Sj),

(IV) d(E, ® Sj, EA ® 5fl) ^ d(Sj, E, 0 Sj).

Proof By iterating 5.4 we obtain

(5.5.1) d(E, 0 Sj, EA 0 5fl) ^

Lemma 5.3 says that d(SJLIK, EiA\l)L)K®SB) is zero unless one of the following
holds:

(i) (A\/) UK={i,i + l},JUK = B;

(ii) (AM) UK={i,i + l},JUK = BU {i + 1};

(iii) (AM) UK = {/}, JUK = B and i + leB.
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If (i) holds then we must have K-0, B=J and A = / U {/, i +1}, since
5 g / , Thus (/, / ) and (A, B) satisfy (I). For these pairs, the terms of (5.5.1) for
K=£0 are zero by Lemma 5.3, which proves the inequality for (I).

Next suppose (ii) holds. Then we may have K = 0 or K = {i + 1} but not
K = {i, i +• 1}, since KDB=0. If K = 0 then we have J = B U {i + 1} and
A = / U {/, / + 1}, which is Condition (II) of the theorem. Moreover, by Lemma
5.3 the terms in (5.5.1) with K=t0 are zero, which gives the inequality in the
statement of this proposition for pairs satisfying (II). If K = {i + 1} then B =J
and A = IU{i}. Since i + le K^I, we have Condition (III). The terms of
(5.5.1) for K¥^{i + 1} are zero by Lemma 5.3, so we also obtain the desired
inequality in this case.

Finally if (iii) holds then K = 0 , B = J, A = IU {/} and i + 1 e / , so (IV) holds.
Again the inequality for pairs satisfying (IV) comes from Lemma 5.3, which
shows that the terms in (5.5.1) for K = 0 are zero. The proposition is proved.

In view of our construction of non-trivial extensions in Proposition 3.8, it
remains only to prove the correct upper bound of 1 for the right-hand sides of the
inequalities in the last proposition. This will be done by establishing a chain of
inequalities and finally computing the end term.

LEMMA 5.6. Let J czN with i, i + 1 € 7V\/. Then

(a) d{Sj, Elu+1} ® Sj) ^ d(SJU{i+l}, E{u+l} (8) Sj);

(b) ifreN\(JU{i,i + l} then

^7U{i+l}) £{i\i + l} ® Sj)

(c) if re N\(J U {i, i + 1}) then

Proof. We may assume that i = 0.
(a) We shall use Lemma 4.1. First we note that

Therefore the inequality will follow from

(5.6.1) HomF C(^(5/, £ { t u } ® 5y), Sl <8> E{0A} ® Sj) = 0.

We check the conditions of Corollary 4.8, with L = SJt M = E<8>Sj and i = l.
Condition (i) holds by Lemma 3.7. For the others, we have:

(ii) HomFG(Sj, Ex ® Sx ® E ® Sj) = HomFC(5yu{1}, £{0,1} <S> Sj) = 0;
(iii) HomFG(SJt E2®E<8)Sj) = 0, by Lemma 3.7;
(iv) Hom^Sy, 5! ® Ex ® E2 ® E <8> Sj) = HomFC(5yu{1}, £{0,1>2} ® Sj) = 0, by

Lemma 3.7.
Thus the conditions of Corollary 4.8 are satisfied and (5.6.1) follows via

Lemma 4.1.
(b) We can again apply Lemma 4.1 if we first show that

(5.6.2) Hom f. c(^(5y u { 1 } , Em} ® Sj), Sr <8> Sr <g> E{0A} ® Sj) = 0.

We shall use Corollary 4.7 with L = X(SJU{1), E{0A) <8> Sj), M = E{O>1)<2> Sj and
i = r. Condition (i) is clearly satisfied.



EXTENSIONS OF SIMPLE MODULES 351

(ii) We have Honvc(*(5y u { 1 }, E{Otl)®Sj), Sr®Er®E{0A) ®Sj) = 0, since
by Lemma 3.7, neither 5yu{1} nor £{o,i} ®Sj occurs in soc(£{0,i,r} ®SJL){r)).

(iii) We must show that

HomFG(X(SJU{l), £{ 0 , 1 } <8> Sj), Sr ® Er ® £{ 0 , 1 } <8> 5y) = 0.

If r + 1 =£0, then we can see this immediately by applying Lemma 3.7, as in the
verification of (i). If r + 1 = 0, then we must first use Lemma 3.6 to embed
Sr®Er®(E®E)®El®SJ into (E{hr}®SJU{r})®(E{Othr}®SJU{0>r}) before
applying Lemma 3.7 in order to see that neither 5yu{1} nor E{0,i}®Sj is a
submodule.

(iv) We must show that

Honvc(AT(S/u{1}, Em) ® Sj), Er ® Er+2 ® E{0A} ® Sj) = 0.

If r + 2 £ {0, 1} then Lemma 3.7 shows that no composition factor of the left
module is a submodule of the right module. If r + 2 = 0 or /• + 2 = 1, we may
reach the same conclusion by first using Lemma 3.6 as in the verification of (iii) to
embed the right module into one to which we can apply Lemma 3.7.

Having checked the conditions of Corollary 4.7 we have proved (5.6.2), and
hence (b).

(c) The proof is similar to that of (b). We must check the conditions of
Corollary 4.7 with L = X(SJU{1), E ® SJL){1)), M = E® SJL){1) and i = r. It is clear
that (i) holds, and (ii) holds by Lemma 3.7. For (iii), if r + 1 =£0 then Lemma 3.7
applies, while if r + 1 = 0, we must first embed Sr ® Er ® (E ® E) ® SJU{1) into
(Er ®SJU{lr}) ®(£{0>1} ® S/u{o,i,r}) using Lemma 3.6, and then Lemma 3.7
yields the desired conclusion. Condition (iv) is checked similarly, using Lemma
3.7, immediately if r + 2=£0, and after embedding Er®(E® E) ®SJU{1} into
(Er ® SJU{1}) 0 (£{0>r} ® S,u{0>1}) if r + 2 = 0.

The lemma is proved.

The proof of the theorem will be completed by the following result.

LEMMA 5.7. We have

(a) ExtFG(SN\{i), E{u+ly ® SN\{iii+iy) = F;
(b) Ext>c(5NX{l}, E( ® SNHi)) = F.

Proof. Since we know by Proposition 3.8 that these groups are not trivial, it
will be enough to show that their dimensions are no greater than 1. Also, we may
assume / = 0. By Lemma 3.2(c) we have

Since moreover, soc(Z ® SNH0}) = (soc Z) <8> SN\{0}) the two parts of the lemma
will follow from

(5.7.1) dim Hom^S^o . i } ® Elt (Z/soc Z) ® SNX{0}) ^ 1

and

(5.7.2) dim HomFC(.SV\{o}, (Z/soc Z) ® SNH0)) ^ 1.

By Lemma 4.6(c), (Z/soc Z) has a filtration with one factor isomorphic to Ex and
all other factors embeddable into S ® E or S ® E ® Ex. We have

®EUE1® SN\{0}) = F,
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by Lemma 3.7. Also

® Eu S ® E ® SN\{0}) = Horn^CS^o,,} ® E{0A), SN) = 0

and

Honvc^Mo.i) <8> Eif S ® £ (2) Ex <8> 5/VN{0})
= Homrc(5W(0i,} <g> £{0,,}, 5yv <g> £,) = 0,

by Corollary 2.4. This proves (5.7.1), and hence (a). Similarly, (5.7.2) follows
from the following calculations:

HonvG(SjvM0}, Ex <8> SN\{0)) = F,

by Lemma 3.7,

HomFC(Sm{0}, 5 ® E <8> 5^0)) = H o m ^ ^ , E ® ^^x^j) = 0

and

HomFG(SNM0}, S <8> E ® £, ® S,v\{o}) = H o m ^ S ^ ® £,, E ® SNm) = 0,

by Corollary 2.4.
The proof is complete.

Appendix: m^2

We shall describe here the extensions of simple FG(m)-modules for m = 1 and
m = 2. These do not follow the general pattern and we use some special
arguments to compute them.

Case 1: m = \. The simple FG(l)-modules are F, E and 5. The module 5 is
a projective FG(l)-module, so the following describes all extensions of simple
modules.

PROPOSITION Al. We have
(1) Extl

FG(F,F) = F;
(2) Extl

FG(F,E)^F;
(3) ExtFG(E,E) = F2.

Proof. It is well known that for G = 2G2(3) we have an exact sequence

with LsSL2(8). Therefore (1) is clear. We shall prove (2) and (3) by means of
the inflation-restriction sequence

(A.I.I) 0->Hx(G/L, ML)^H\G, M)-^Hl(L, M)

for appropriate choices of the FG -module M. The restriction to L of E remains
simple, since, for example, the index of L and the dimension of E are coprime. If
we think of L as the group of 2 x 2 matrices over F8 of determinant 1, and let B
be the subgroup of lower triangular matrices in L then the permutation
FL-module on the right cosets of B is a 9-dimensional projective FL-module,
which is easily seen to be the projective cover PL{F) of the trivial module. In all
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there are five simple FL-modules. They are F, E and three non-isomorphic
9-dimensional projective simple modules which are the FL-summands of 5. Thus
we must have ExtFL(F, £)=£() and then it follows from dimensions that
ExtJrL(F, E) = F and that PL(F) is uniserial with series F, E, F. Next, a
straightforward matrix calculation shows that WomFL{E ® £, E) = F. From what
we know about the G-module structure of E <8> E (Lemma 3.2), it follows that as
an FL-module, /\2{E) is uniserial with series E, E, E. Thus, using Lemma
3.2(a), we have

ExtFL{E, E) = H\L, E®E) = Hl(L, F 0 5 0 A2 (£))

= Hl(L, A2 ^ F.

Let M = E <8) E in (A.1.1). Since /\2(E) remains uniserial as an FL-module, the
restriction map in (A. 1.1) is not the zero map, and (3) is proved. Since FG has
only the simple modules F, E and S, it is obvious that ExtJrC(F, E) =£ 0. The
correct upper bound for (2) is obtained by setting M = E in (A. 1.1).

Case 2: m = 2.

PROPOSITION A2. In the table below the dimension of the space of extensions
between two simple modules is the entry of the row labelled by the first module and
the column labelled by the second.

Ext'c

F
E
£ ,
5
5,

£<8>5,
£,<8>5
5{o,i}

F

0
0
0
0
0
2
0
0
0

£

0
0
2
0
0
1
0
1
0

Ex

0
2
0
0
0
1
1
0
0

5

0
0
0
0
0
1
0
1
0

5,

0
0
0
0
0
1
1
0
0

£{o,i}

2
1
1
1
1
0
0
0
0

£05,

0
0
1
0
1
0
0
0
0

£,05

0
1
0
1
0
0
0
0
0

5{o,i}

0
0
0
0
0
0
0
0
0

Proof. We begin by showing that the spaces of extensions have dimensions
greater than or equal to the entries in our table. Since HomfC(£ ® E, £,) = 0, it
follows, as in Lemma 3.2(a), that f\2 (E) is uniserial with series E, £, , E and
hence that /\2 (E^) is uniserial with series £, , E2 = E, Ex. We shall show that
J/\2(E)^(/\2(El))/(soc/\2(Ei)), thereby exhibiting two non-isomorphic non-
split extensions of Ex by E. We have

= HomfG(£
{0,1), = F.

Since F is a direct summand of both E <8> E and EX<8)EX, it follows that
HomFC(A2 (Ex), A

2 (£)) = 0, which is what we wanted. Therefore the entries '2'
are certainly lower bounds.
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The above calculation also shows that HomFG(/\2 (E)®EX, £ , ) s
HomFC(A2 (E), Ex ® Ex) = 0, so from the filtration of f\2(E)®Ex having
factors £{o,i}, EX®EX, E{ox),

 w e see that ExtFG(E{01}, Ex)=fc0, and by
conjugating by r we obtain ExtFG(E{0/l}, E)^0. Since we may twist by x and
apply standard isomorphisms, the existence of non-split extensions for all other
non-zero entries in the table will follow if we show that ExtFC(£ ® Su Sx) =£0 and
ExtFG(E ®Sx, Ex)i=0. It is easily checked that, just as in Lemma 3.2(c), we have
E®S{QtX) = S{OiX)@P(E®Sx), so that P(E ® 50 = Z ® Sx and soc(Z ® S,) =
(soc Z ) ® 5 t as before. By Lemma 4.6(c), Z/soc Z has a filtration with bottom
factor isomorphic to Ex. The required non-vanishing therefore follows from
\lomFG(Sx,El®Sl)±Q and HomFG(Elf Ex® Sx)*0, which both follow from
Lemma 3.2(c).

This completes the proof of the existence of the non-trivial extensions in the
table. It remains to show that these lower bounds are sharp.

We use the filtration of Z/soc Z in Lemma 4.6(c) in which the bottom factor is
Ex and the other factors embed into either 5 ® E or 5 ® E® Ex. We make the
following computations.

(a)
HomFG(Ex,Ex®Sx) = F,

E,, 5 <8> E <g> 5 0 = H o n v G ( S { 0 i l } , £ { 0 > 1 ) ) = 0,

HomFG(Ex, S®E®EX®SX) = HomFC(5{0,1}, Ex ® E{QA)) = 0,

and thus Extl
FG(E ®SX>EX) = F;

(b)
HomFG(Sx,Ex® Sx) = F,

HomFC(5!, 5 ® E ® Sx) = HomFC(5{0,1}, E®SX) = 0,

HomFC(5, ,S®E®EX®SX) = Homro(5{0, x}, E ® Ex ® Sx) = 0,

and thus Ex\FG(E ®SX,SX) = F;
(c)

HomFG(F, Ex®Sx) = 0,

HomFG(F,S®E®Sx) = 0,

HomFC(F, 5 ® E ® Ex ® Sx) = 0,
and thus ExtFG(E ®Sx,F) = 0;

(d)

HomFC(£:, £, ® Sx) = 0,

HomFG(E, S®E®SX) = HomFC(5{0>1}, E ® E) = 0,

HomFC(£, S®E®EX®SX) = Homrc(5{0,1}, E ® E ® Ex) = 0,
and thus ExtFC(£ ® Sx, E) = 0.

Since 5{0,i} is projective, we have

ExtFG(£ ® 5,, 5) = 0 and ExtFG(£ ® 5,, Ex ® 5) = 0.

We now do the same thing with P{SX). Let X be the G-module defined in
Lemma 3.2. An easy calculation shows that X ®SX = P(SX)®S{OX} as FG-
modules and that (soc X) ®SX = socP(5t). According to Lemma 4.6, X/socX



EXTENSIONS OF SIMPLE MODULES 355

has a filtration in which each factor embeds into either 5 <8> £ or 5 <8> £ <8> Ex or is
isomorphic to £ <8> £ 2 = £ <8> £. We make some more computations:

(e)
Hom f C (£ , , £ <8> £ <8> Sx) = 0,

HomF G(£1, 5 <8) £ <8) 50 = 0,

H o m ^ E , , 5 (8> £ <8> £ i 0 50 = HomFG(5{1,0}, £ <8> Ex <8> £ 0 = 0,

and thus ExtFG(5i, £ 0 = 0;

HomFG(F, £ (8» £ (8) 50 = 0,

HomFG(F, 5 <8> £ <8> 50 = 0,

HomFG(F, 5 (8> £ <8> £ i <8> 50 = 0,

and thus ExtF G(5!,F) = 0.
Combining (a)-(f) with standard isomorphisms, r-conjugation and the fact that

HX(G, F) = 0 because G has no homomormorphic image of order 3, we will have
computed all of the entries in the table once we obtain the correct upper bounds
for

(i) ExtFG(£, F) , (ii) ExtFG(F, £ ) , (iii) ExtF G(£, E{0A)),

(iv) ExtFG(5, 5), (v) ExtF G(£{ ( U } , E{0>1}), (vi) ExtFG(£{0>1}, 5),

(vii) ExtF G(£ ® S\, £ <8) Sx).

We first consider (ii). In the notation of Lemma 4.1 and by Lemma 3.7, we have

dim HomFG(Ar(F, £ ) , 5 <8> £ )

^ dim HomFG(F, £ 0 + dim HomFG(F, 5 <8) £ ) + dim HomFG(F, 5 <8> £ <8> £ 0 = 0.

Therefore, since £ is a homomorphic image of 5 <8> £ , we may apply Lemma 4.1
to conclude that d(F, E)^d(S, £ ) = 0, by (e). For (i), we have ExtF G(£, £ ) =
ExtFG(F, £ <8> £ ) = 0, because the composition factors of £<8)£ are £ , Ex, F
and 5.

In the next stage of our calculation we consider the embedding of G-modules
£ <8> £ <-»• F 0 (5 <8> £ ) of Lemma 3.6. The cokernel is isomorphic to the module
Z of Lemma 4.6, which is filtered by modules which embed into either 5 <8> £ or

We apply this first to (iii), and then to (vi), (v) and (vii).
(iii) We have H o m ^ E , , 5 <8> E) = 0 and H o m f G ( £ b 5 <8> E <8> £ , ) = 0, so we

have an injection

ExtF C(£, , E <8> E) <-»- ExtF C(£!, F 0 5 <8> E) = F,

by (a) and (ii). This is the correct upper bound for (iii).
(vi) Since HomF C(£1, 5 <8> E <8> Sx) = 0 and HomFG{Eu S <8> E <8> £ , <8> 5t) = 0,

we obtain an injection

by (e).

ExtFC(£{0.1}, £ <8> 5t) = ExtF G(£, , ( £ 0 £ ) (8) 50

^ ExtF G(£!, 5, 0 ( £ <8> 5{lj0})) = 0.
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(v) The equations

HomFG(£1,S<8>£<8>£1) = 0 and Homro(£,, S®E®El <8>£,) = 0

yield

ExtFC(£{0)1}, E{0A}) = Extx
FG(Eu (£<8>£)<8>£,)

<* ExtFC(£,, £, 0 (S <8> E <8> £t))

= ExtFG(Eu E,) 0 ExtFG(E{0A}, S <8> £,) = 0,

by (i) and (vi).
(vii) Since HomFG(Slt S®E®Sl) = 0 and H o m , ^ , 5<8>E<8>£, <8>5,) = 0,

we have

ExtFC(£ <8>5,, £ <8>SJ = Extic(5i, (£ <8> £) <8> 5,)

^Extj,c(S,, S,) eEx t J^S , , S ® E ® S , ) = ExtJsc(S1, 5,),

as S{0A} is projective.
Thus (vii) reduces to (iv) and all statements will be proved once we show that

ExtFC(S, S) = 0. This will occupy the rest of this appendix.
Bearing in mind our earlier discussion of P(SX), it will suffice to show that

HomFG(S1®SuX/socX) = 0. In Lemma 4.6, we constructed a filtration of
X = A'/soc X by G-modules

in which X/V2 = //°(4A2) and W3/V2 = E{02}. Furthermore, it was shown there
that X/W3 and V2 have filiations whose factors embed into either 5 <8> E or
S ® £ <8) £,. Since HomFC(5, ® 5,, (5 ® £) 0 (S ® £ <8> £,)) = 0, we are reduced
to proving that there are no FG-maps from 5, <8> 5, into W3 such that the
composition with the natural map W3—»W3/V2 is non-zero. We note that
(5t <8> 5!)/soc(5i <8> 5,) has no composition factor Si and that HomFC(5!, E<&) E) =
0, HomFC(5,, 5 <S> E) = 0 and HomFC(5,, 5 ® E ® £,) = 0. The last three equa-
tions imply (using the filtration of X) that HomFC(5,, X) = 0. It follows that the
image of any FG-map S^ <8> Sx —> X does not have Sx as a composition factor. We
claim, on the other hand, that any FG-submodule of W3 having non-zero image
in W3/V2 has Sx as a composition factor. The desired result obviously follows
from this claim, which in turn is a consequence of the following two statements:

(a) if M is an FG-submodule of W3 such that W3/M has no composition factor
£{0,1}, then M has S\ as a composition factor;

(b) if M is an FG-submodule of W3 with non-zero image in W3/V2, then
W3/M has no composition factor £{0,i}-

(a) Since the G-module W3 has a composition factor E{(12}> it is n o t hard to see
from the Weyl filtration of X that W3 has a submodule W = V(4A2)/soc V(4k2).
The G-module JW will play an important role in what follows. Since its
composition factors are £{0,i}> £i and Su Lemma 3.1 shows that it has the same
Loewy structure when considered as an FG-module. In particular, its head as an
FG-module is isomorphic to £{0,i}- Thus, if W3/M does not have a composition
factor £{o,i>> w e must have JW c M, which proves (a).

(b) Consider the G-module W3/W2. It has a submodule isomorphic to
//°(2A1)/soc/f°(2A1) with quotient isomorphic to E{Ot2). If £{0.2} w e r e a sub-
module of W3/W2 then its preimage in W3 would be a submodule of W3 having
£{0.2} as a composition factor and only one composition factor £{o,i}, contrary to



EXTENSIONS OF SIMPLE MODULES 357

the Loewy structure of V(4k2). Thus the socle of the G-module W3/W2 is £{0,i}
and since Extx

G(E{0t2}, F) = 0, its (ascending) socle layers are E[0A}, F © £ { 0 2 } .
By Lemma 3.1, the restriction of the extension of F by E{0A} to G does not split.
Since Extc(£{o,2}> £{o,i}) — F, it is not difficult to show that the extension of £{0,2}
by £{o,i} is isomorphic to E<8)J/\2(Ei). As an FG-module, the latter has
a submodule isomorphic to E{QX) with quotient isomorphic to E ® £2 =
£<8>£ = F 0 5 e A 2 ( £ ) - Now, £ ® / A 2 ( £ i ) embeds into £<8>£,®S, and
Honvc (F 0 5 © £, £ ® £, <S> 50 = 0, so we may conclude that as an FG-
module, W3/Wz has socle £{0,i}- By Lemma 3.1, the restriction to G of
V1 = //°(A, + A2) has a simple socle E{0 1} and V2/Vl = H°(2XA) has a simple socle
W2IVX = SX. Since W ^ / W ^ O y 3 / ^ 1 ) / ^ 2 / ^ 1 ) also has a simple socle as an
FG-module, it follows that W3/Vl has a simple socle S, as an FG-module. Since
we have seen that HomFG(Su X) = 0, we have proved that the socle of the
FG-module W3 is isomorphic to £{o,i}- Suppose M is an FG-submodule of W3

with non-zero image in W3/V2. Then since soc(W3/W2) = £{ ( u }, we see that the
image of M in W3/W2 must have £{o,i> as a composition factor. Then, since
soc W3 = £{o,i} c M D W2, it follows that M has two composition factors isomor-
phic to £{o,i}, so W3/M has none. This completes the proof of (b) and of the
proposition.
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