EXTENSIONS OF SIMPLE MODULES FOR $\mathrm{SL}_{3}\left(2^{n}\right)$ AND $\mathrm{SU}_{3}\left(2^{n}\right)$

PETER SIN

[Received 4 January 1991—Revised 29 October 1991]

Abstract

The group of extensions between any two irreducible 2-modular representations of the groups $\mathrm{SL}_{3}\left(2^{m}\right)$ and $\mathrm{SU}_{3}\left(2^{m}\right)$ is determined.

1. Introduction

Let F be a fixed algebraic closure of \mathbb{F}_{2}. We shall regard finite extensions of \mathbb{F}_{2} as subfields of F. Let m be a natural number. We denote by $G=G_{m}$ either the group $\mathrm{SL}_{3}\left(2^{m}\right)$ or the group $\mathrm{SU}_{3}\left(2^{m}\right)$. The latter is defined to be the subgroup of $\mathrm{SL}_{3}\left(2^{2 m}\right)$ preserving the hermitian form on $\tilde{V}=\mathbb{F}_{2^{2 m}}^{3}$ which is represented in the standard basis by the identity matrix. Thus, we have $G_{m} \subset \mathrm{SL}_{3}\left(2^{2 m}\right) \subset \mathrm{SL}_{3}(F)$.

For any finite-dimensional vector space E over F, we shall denote its dual by E^{*}. Let $\sigma: \lambda \mapsto \lambda^{2}$ be the Frobenius automorphism of F and for $i \in \mathbb{N}$ let E_{i} be the F-vector space whose underlying group is the same as E but on which $\lambda \in F$ operates as $\sigma^{-i}(\lambda)$ operates on E. If E is an $F G$-module then so is E_{i}, since the actions of G and F commute. For any $F \mathrm{SL}_{3}\left(2^{m}\right)$-module E we have $E_{m} \cong E$. Let $V=F^{3} \cong \bar{V} \otimes_{\mathrm{F}_{2^{2 m}}} F$. Extending our notation to $\mathbb{F}_{2^{2 m} \text {-modules in the obvious way, }}$ we have $\tilde{V}_{m} \cong \tilde{V}^{*}$ as $F \mathrm{SU}_{3}\left(2^{m}\right)$-modules, by definition of $\mathrm{SU}_{3}\left(2^{m}\right)$, and hence $V_{m} \cong V^{*}$. In view of these remarks, we see that indices for Frobenius twists should be read modulo m when considering modules for $\mathrm{SL}_{3}\left(2^{m}\right)$, but they should be read modulo $2 m$ for $\mathrm{FSU}_{3}\left(2^{m}\right)$-modules.

We shall now describe the simple $F G$-modules. The 'restricted' modules are V, V^{*} and the 8 -dimensional space W of traceless 3×3 matrices over F on which $\mathrm{SL}_{3}(F)$ acts by conjugation. These are of course related by the formula

$$
\begin{equation*}
V \otimes V^{*} \cong F \oplus W \tag{1.1}
\end{equation*}
$$

where F denotes the trivial module and the symbol ' \otimes ' stands for tensor product over F (we shall keep these conventions throughout).

Let $N=\{0,1, \ldots, m-1\} \subseteq \mathbb{N}$ and for each subset $I \subseteq \mathbb{N}$, we define

$$
V_{I}=\bigotimes_{i \in I} V_{i}, \quad V_{I}^{*}=\bigotimes_{i \in I} V_{i}^{*} \quad \text { and } \quad W_{I}=\bigotimes_{i \in I} W_{i} .
$$

Then by Steinberg's tensor product theorem, the $2^{2 m}$ modules $V_{I} \otimes V_{J}^{*} \otimes W_{K}$, where I, J and K are disjoint subsets of N, form a complete set of non-isomorphic simple $F G$-modules (by convention, the empty tensor product is F). They are also the ' 2 ' -restricted' modules for $\mathrm{SL}_{3}(F)$. The module W_{N} is the Steinberg module. For convenience, we shall refer to the ordered triple (I, J, K) of disjoint subsets of N merely as a triple from now on.

[^0]Galois action. The powers σ^{r} of the Frobenius map permute the (isomorphism classes of) simple $F G$-modules, but in different ways for $\mathrm{SL}_{3}\left(2^{m}\right)$ and $\mathrm{SU}_{3}\left(2^{m}\right)$. For $\mathrm{SL}_{3}\left(2^{m}\right)$, the effect of σ^{r} is simply to add r and take the remainder modulo m to all indices in a triple. For $\mathrm{SU}_{3}\left(2^{m}\right)$, we must first add r and take remainders modulo $2 m$ and then 'dualize' those resulting indices which lie between m and $2 m-1$; for example, for $\mathrm{SU}_{3}\left(2^{3}\right)$, we have

$$
\left(V_{0} \otimes W_{1}\right)^{\sigma^{5}}=V_{5} \otimes W_{6}=V_{5} \otimes W_{0}=V_{2}^{*} \otimes W_{0}
$$

Note that σ^{m} simply dualizes each simple module for $\mathrm{SU}_{3}\left(2^{m}\right)$.
It is clear that in both cases, the permutations induced on the set of triples preserves the total size $|I \cup J \cup K|$ of a triple (I, J, K) and also the size of the third component.

The automorphism τ. The group $\mathrm{SL}_{3}(F)$ has an outer automorphism τ sending an element to the transpose of its inverse, which clearly maps G back to itself. It interchanges the $F G$-module structures of V and V^{*} and hence, by the description of the simple modules given above, it also interchanges the $F G$ module structures of every simple module and its dual. However, it is not true for a general $F G$-module M that M^{*} is isomorphic to the τ-twisted module M^{τ}, so the simple modules possess an extra symmetry. An example of this is the following: if (I, J, K) and (A, B, C) are triples, then applying τ and duality, we obtain

$$
\begin{aligned}
\operatorname{Ext}_{F G}\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{A} \otimes V_{B}^{*} \otimes W_{C}\right) & \cong \operatorname{Ext}_{F G}\left(V_{J} \otimes V_{I}^{*} \otimes W_{K}, V_{B} \otimes V_{A}^{*} \otimes W_{C}\right) \\
& \cong \operatorname{Ext}_{F G}\left(V_{A} \otimes V_{B}^{*} \otimes W_{C}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \\
& \cong \operatorname{Ext}_{F G}\left(V_{B} \otimes V_{A}^{*} \otimes W_{C}, V_{J} \otimes V_{I}^{*} \otimes W_{K}\right)
\end{aligned}
$$

Regarding these formulae as statements about pairs of triples, we see that they are obtained from the pair $((I, J, K),(A, B, C))$ by applying the permutations id, $(I J)(A B),(I A)(J B)(K C)$ and $(I B)(J A)(K C)$. In the preceding paragraph, we saw that the group of field automorphisms of G acts on the set of triples, and hence also on the set of pairs of triples. We shall call two statements about pairs of triples which can be obtained from each other by a combination of field automorphisms of G and the four permutations above variants of each other. Of course, the set of variants of a given pair of triples will depend on which group we are considering, so when necessary, we shall use the terms ' L-variant' and 'U-variant' according to whether G is the linear group or the unitary group.

With all of these conventions we may now state our result.
Theorem. Suppose $\dagger m>2$. Then for triples (I, J, K) and (A, B, C) we have

$$
\mathrm{Ext}_{F G}^{1}\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{A} \otimes V_{B}^{*} \otimes W_{C}\right)=0
$$

unless a variant of one of the following holds, in which case the space of extensions is one-dimensional:
(a)(i) $K=C, I=A \cup\{0,1\}$, and $B=J(0,1 \notin A)$;
(ii) $K=C, I=A \cup\{0\}$, and $B=J \cup\{1\}(0 \notin A, 1 \notin J)$;

[^1](b)(i) $K=C \cup\{1\}, I=A$ and $B=J \cup\{0,1\}(0,1 \notin J)$;
(ii) $K=C \cup\{1\}, I=A \cup\{0\}$ and $B=J \cup\{1\}(0 \notin A, 1 \notin J)$;
(c) $K=C, I=(I \cap A) \cup\{0\}, J=B \cup\{1\}$ and $A=(I \cap A) \cup\{1\}(0 \notin A, 1 \notin B)$.

Remarks. (1) The parts (i) and (ii) in (a) and (b) reflect the natural isomorphism $\operatorname{Ext}\left(A, B^{*} \otimes C\right) \cong \operatorname{Ext}(A \otimes B, C)$.
(2) The variants of the statements (a)-(c) may be described easily. For example, to obtain the L-variants corresponding to field automorphisms we replace 0 and 1 by i and $i+1$ for $0 \leqslant i \leqslant n-2$ or by n and 0 . The U-variants are slightly less obvious. Let us consider just the U-variants obtained by applying σ^{m-1}. For instance, the U-variant of (a)(i) would be

$$
K=C, \quad J=B \cup\{0\}, \quad I=A \cup\{m-1\} .
$$

(3) It is known from a result of Cline, Parshall, Scott and van der Kallen [7, Theorem 7.2D] (see also [2, Proposition 2.7]) that the restriction to $\mathrm{SL}_{3}\left(2^{m}\right)$ (or $\mathrm{SU}_{3}\left(2^{m}\right)$) of a non-split extension between two simple (rational) $\mathrm{SL}_{3}(F)$-modules having ' 2^{m}-restricted' highest weights does not split. Since it will be clear that the non-trivial extensions of our theorem are in fact restrictions of $\mathrm{SL}_{3}(F)$-module extensions, the theorem also describes the extensions between simple modules for the algebraic group $\mathrm{SL}_{3}(F)$. This also explains why it is possible to treat the twisted and untwisted groups simultaneously, and why the answer is in some sense the same for the two cases. These comments require clarification. In particular, we point out that not all non-split extensions of simple modules for the finite groups will be restrictions of non-split extensions of 2^{m}-restricted simple modules for the algebraic group, as the following example illustrates.

Let $\tilde{G}=\mathrm{SL}_{3}\left(2^{2 m}\right)$, so that according to the theorem there is a non-split extension of V_{m}^{*} by V_{m-1} as $F \tilde{G}$-modules. By the result mentioned above, the restriction to $\mathrm{SL}_{3}\left(2^{m}\right)$ yields a non-split extension of V_{0}^{*} by V_{m-1} and the restriction to $\mathrm{SU}_{3}\left(2^{m}\right)$ gives a non-split extension of V_{0} by V_{m-1}. However, there are no non-split extensions of V_{0} or of V_{0}^{*} by V_{n-1} as rational $\mathrm{SL}_{3}(F)$-modules. These 'wrap-around' effects are due to the identifications of modules for the finite groups with some of their Frobenius twists.

Tensor factors. Given an $F G$-module we shall often refer to its tensor factors, by which we shall mean those modules which may be tensored with some other to give back the module in question. Clearly the tensor factors of the simple module $V_{I} \otimes V_{J}^{*} \otimes W_{K}$ for a triple (I, J, K) are precisely those simple modules indexed by triples $\left(I^{\prime}, J^{\prime}, K^{\prime}\right)$ for $I^{\prime} \subseteq I, J^{\prime} \subseteq J$ and $K^{\prime} \subseteq K$.

Except in the appendix, we shall assume throughout that $m>2$.

2. A reduction

Lemma 2.1. Let (I, J, K) and (A, B, C) be triples. Then
$\operatorname{Ext}_{F G}^{1}\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{A} \otimes V_{B}^{*} \otimes W_{C}\right)$
where the summation runs over certain pairs $\left(\left(I^{\prime}, J^{\prime}, K^{\prime}\right),\left(A^{\prime}, B^{\prime}, C^{\prime}\right)\right)$ of triples satisfying:
(1) $A^{\prime} \subseteq J^{\prime} \cup K^{\prime}, B^{\prime} \subseteq I^{\prime} \cup K^{\prime}, C^{\prime} \subseteq K^{\prime}$;
(2) if $((I, J, K),(A, B, C))$ satisfies one of the conditions of the theorem (that is, a variant of (a), (b) or (c)) then there is a unique pair $\left(\left(I^{\prime}, J^{\prime}, K^{\prime}\right),\left(A^{\prime}, B^{\prime}, C^{\prime}\right)\right)$ which satisfies a condition of the theorem (though not necessarily the same one);
(3) if any pair $\left(\left(I^{\prime}, J^{\prime}, K^{\prime}\right),\left(A^{\prime}, B^{\prime}, C^{\prime}\right)\right)$ satisfies a condition of the theorem, then so must the original pair $((I, J, K),(A, B, C))$.

Proof. We set $L=N \backslash(I \cup J \cup K)$ and $D=N \backslash(A \cup B \cup C)$. Subdividing the sets in the obvious fashion and applying (1.1), we obtain

$$
\begin{aligned}
& \mathrm{Ext}_{F G}^{1}\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{A} \otimes V_{B}^{*} \otimes W_{C}\right) \\
& =\operatorname{Ext}_{F G}^{1}\left(V_{(I \cap A) \cup(I \cap B) \cup(I \cap C) \cup(I \cap D)} \otimes V_{(J \cap A) \cup(J \cap B) \cup(J \cap C) \cup(J \cap D)}^{*} \otimes W_{K},\right. \\
& \left.V_{(I \cap A) \cup(J \cap A) \cup(K \cap A) \cup(L \cap A)} \otimes V_{(I \cap B) \cup(J \cap B) \cup(K \cap B) \cup(L \cap B)}^{*} \otimes W_{C}\right) \\
& \cong \underbrace{}_{T \subseteq(I \cap A) \cup(J \cap B)} \mathrm{Ext}_{F G}^{1}\left(V_{(I \cap B) \cup(I \cap D) \cup(L \cap B)} \otimes V_{(J \cap A) \cup(J \cap D) \cup(L \cap A)}^{*} \otimes W_{K \cup C \cup T},\right. \\
& \left.V_{(J \cap A) \cup(K \cap A) \cup(J \cap C)} \otimes V_{(I \cap B) \cup(K \cap B) \cup(I \cap C)}^{*} \otimes W_{K \cap C}\right) .
\end{aligned}
$$

Setting

$$
\begin{gathered}
I^{\prime}=(I \cap B) \cup(I \cap D) \cup(L \cap B), \quad J^{\prime}=(J \cap A) \cup(J \cap D) \cup(L \cap A), \\
K^{\prime}=K \cup C \cup T, \quad A^{\prime}=(J \cap A) \cup(K \cap A) \cup(J \cap C), \\
B^{\prime}=(I \cap B) \cup(K \cap B) \cup(I \cap C), \quad C^{\prime}=K \cap C,
\end{gathered}
$$

we see that (1) holds for the pairs $\left(\left(I^{\prime}, J^{\prime}, K^{\prime}\right),\left(A^{\prime}, B^{\prime}, C^{\prime}\right)\right)$, and we shall check that (2) and (3) also hold. It is not hard to see that variants of the original pair $((I, J, K),(A, B, C))$ correspond to variants of the primed pairs $\left(\left(I^{\prime}, J^{\prime}, K^{\prime}\right),\left(A^{\prime}, B^{\prime}, C^{\prime}\right)\right)$, so in checking (2) and (3) we may assume that Conditions (a), (b) or (c) of the theorem are satisfied rather than a variant. First we check (2) for each of the Conditions (a), (b) and (c).
(a)(i) We easily obtain $I^{\prime}=\{0,1\}, J^{\prime}=\varnothing, K^{\prime}=K \cup T, A^{\prime}=\varnothing, B^{\prime}=\varnothing$ and $C^{\prime}=K$. Thus, for $T=\varnothing$ we obtain a pair $\left(\left(I^{\prime}, J^{\prime}, K^{\prime}\right),\left(A^{\prime}, B^{\prime}, C^{\prime}\right)\right)$ satisfying (a)(i). We claim that none of the pairs for $T \neq \varnothing$ satisfies a variant of (a), (b) or (c). To see this, we may consider, for example, the quantity

$$
||I \cup J|+2| K|-|A \cup B|-2| C|\mid
$$

for each pair of triples $((I, J, K),(A, B, C))$, which is clearly preserved upon taking variants. If $T \neq \varnothing$, this number would be at least 4 for the primed pairs of triples but it is at most 2 for the pairs in (a), (b) and (c).
(a)(ii) We obtain $I^{\prime}=\{0,1\}, J^{\prime}=\varnothing, K^{\prime}=K \cup T, A^{\prime}=\varnothing, B^{\prime}=\varnothing$ and $C^{\prime}=K$, which is the same as in Case (a)(i).
(b)(i) We obtain $I^{\prime}=\{0\}, J^{\prime}=\varnothing, K^{\prime}=C \cup\{1\} \cup T, A^{\prime}=\varnothing, B^{\prime}=\{1\}$ and $C^{\prime}=C$. As in Case (a)(i), we see that the only pair satisfying a condition of the theorem is the one for $T=\varnothing$, which satisfies (b)(ii).
(b)(ii) We again obtain $I^{\prime}=\{0\}, J^{\prime}=\varnothing, K^{\prime}=C \cup\{1\} \cup T, A^{\prime}=\varnothing, B^{\prime}=\{1\}$ and $C^{\prime}=C$, the same pairs as in Case (b)(i).
(c) We obtain $I^{\prime}=\{0\}, J^{\prime}=\{1\}, K^{\prime}=K \cup T, A^{\prime}=\{1\}, B^{\prime}=\varnothing$ and $C^{\prime}=K$, and again $T=\varnothing$ gives the unique pair which satisfies a condition of the theorem, in this instance Condition (c). This proves (2).

Now we shall prove (3), so we suppose that some pair $\left(\left(I^{\prime}, J^{\prime}, K^{\prime}\right),\left(A^{\prime}, B^{\prime}, C^{\prime}\right)\right)$ satisfies (a), (b) or (c) of the theorem. We consider them in turn.
(a)(i) We have $K \cup C \cup T=K \cap C$, so $T=\varnothing$ and $K=C$. Also we have

$$
(I \cap B) \cup(I \cap D) \cup(L \cap B)=(J \cap A) \cup(K \cap A) \cup(J \cap C) \cup\{0,1\}
$$

where $0,1 \notin(J \cap A) \cup(K \cap A) \cup(J \cap C)$, and

$$
(J \cap A) \cup(J \cap D) \cup(L \cap A)=(I \cap B) \cup(K \cap B) \cup(I \cap C)
$$

From these equations and the fact that the sets in a triple are disjoint, it is easy to deduce that $I=A \cup(I \cap D), B=J \cup(L \cap B), K=C$ and $(I \cap D) \cup(L \cap B)=$ $\{0,1\}$. The four possibilities for the latter equation all imply that the pair ($(I, J, K),(A, B, C))$ satisfies a variant of Condition (a) of the theorem, for example, if $I \cap D=\{0\}$ and $L \cap B=\{1\}$, then the pair $((I, J, K),(A, B, C))$ satisfies (a)(i).
(a)(ii) Since (1) is preserved under τ and taking Galois conjugates, we see that no variant of the pair of triples in (a)(ii) of the theorem satisfies (1), so there is nothing to check in this case. The same applies to (b)(i).
(b)(ii) We have

$$
\begin{aligned}
K \cup C \cup T & =(K \cap C) \cup\{0,1\}, \\
(I \cap B) \cup(I \cap D) \cup(L \cap B) & =(J \cap A) \cup(K \cap A) \cup(J \cap C) \cup\{0\},
\end{aligned}
$$

and

$$
(J \cap A) \cup(J \cap D) \cup(L \cap A) \cup\{1\}=(I \cap B) \cup(K \cap B) \cup(I \cap C)
$$

where $0 \notin(J \cap A) \cup(K \cap A) \cup(J \cap C)$ and $1 \notin(J \cap A) \cup(J \cap D) \cup(L \cap A)$. Thus, $I \cap B=\varnothing$ and $J \subseteq B$, so $1 \in(K \cap B) \cup(I \cap C) \subseteq K \cup C$, whence $T=\varnothing$. Suppose $1 \in K \cap B$. Then $K=C \cup\{1\}$ and $I \cap C=\varnothing$. Then if $I \cap D=\{0\}$, we obtain $I=A \cup\{0\}, B=J \cup\{1\}, K=C \cup\{1\}$, which is (b)(ii), and if $L \cap B=\{0\}$, we obtain $I=A, B=J \cup\{0,1\}, K=C \cup\{1\}$, which is (b)(i). The case where $1 \in I \cap C$ is the variant of the case where $1 \in K \cap B$ under the permutation $(I B)(J A)(K C)$, so in this case the original pair ($I, J, K),(A, B, C))$ must satisfy a variant of (b) as well.
(c) We have $K \cup C \cup T=K \cap C$, so $T=\varnothing$ and $K=C$. Also we have

$$
\begin{aligned}
& (I \cap B) \cup(I \cap D) \cup(L \cap B)=\{0\} \\
& (J \cap A) \cup(K \cap A) \cup(J \cap C)=\{1\}
\end{aligned}
$$

and

$$
(J \cap A) \cup(J \cap D) \cup(L \cap A)=(I \cap B) \cup(K \cap B) \cup(I \cap C) \cup\{1\}
$$

where $1 \notin(I \cap B) \cup(K \cap B) \cup(I \cap C)$. The second of these equations reduces to $J \cap A=\{1\}$ and then it is easy to infer that

$$
\begin{aligned}
J= & (J \cap B) \cup\{1\}, \quad I=(I \cap A) \cup(I \cap D), \quad A=(I \cap A) \cup\{1\}, \\
& B=(J \cap B) \cup(L \cap B) \quad \text { and } \quad(I \cap D) \cup(L \cap B)=\{0\} .
\end{aligned}
$$

If $0 \in I \cap D$, we obtain $J=B \cup\{1\}, I=(I \cap A) \cup\{0\}$ and $A=(I \cap A) \cup\{1\}$, which is (c). The case where $0 \in L \cap B$ is the $(I B)(J A)(K C)$-variant of this.

The lemma is proved.

3. Lemmas on characters

The results of this section may be stated and proved in terms of Brauer characters, but for ease of reference later we shall present them in moduletheoretic language, using the notation of $\S 1$. Most of the results in this section are simply variations of results proved in [6] and independently in [4].

Lemma 3.1 (cf. [6, Lemma 3.2]).
(a) $V_{i} \otimes V_{i}$ has composition factors V_{i}^{*} (twice) and V_{i+1}.
(b) $V_{i} \otimes W_{i}$ has composition factors V_{i} (three times), $V_{i+1}^{*}(t w i c e)$ and $V_{i}^{*} \otimes V_{i+1}$.
(c) $V_{i} \otimes V_{i} \otimes V_{i}$ has composition factors W_{i} (twice), F (twice) and $V_{\{i, i+1\}}$.
(d) $W_{i} \otimes W_{i}$ has composition factors F (four times), $W_{i}($ twice $), W_{i+1}, V_{\{i, i+1\}}$ (twice) and $V_{\{i, i+1\}}^{*}$ (twice).
(e) $V_{i} \otimes V_{i} \otimes V_{i+1}^{*}$ has composition factors $V_{\{i, i+1\}}^{*}($ twice $), F$ and W_{i+1}.

Proof. For any finite-dimensional vector space E over $F, E \otimes E$ has a natural filtration with factors $\Lambda^{2}(E), E_{1}, \Lambda^{2}(E)$, so (a) is immediate from this and the fact that since V is 3 -dimensional, there is a natural isomorphism $\Lambda^{2}(V) \cong$ $V^{*} \otimes \Lambda^{3}(V)$. The other parts follow easily from (a) and (1.1).

Later we shall return to the modules of Lemma 3.1 and study their submodule structures. We shall denote the projective cover of the simple module $V_{l} \otimes V_{J}^{*} \otimes W_{K}$ by $P\left(V_{l} \otimes V_{J}^{*} \otimes W_{K}\right)$.

Lemma 3.2.

$$
W_{N} \otimes V_{N} \cong \begin{cases}P\left(V_{N}\right) \oplus W_{N}, & \text { if } G=\mathrm{SL}_{3}\left(2^{m}\right) \tag{a}\\ P\left(V_{N}\right), & \text { if } G=\mathrm{SU}_{3}\left(2^{m}\right)\end{cases}
$$

(b) If I and J are disjoint, proper subsets of N, then

$$
\begin{gather*}
W_{N} \otimes\left(V_{I} \otimes V_{J}^{*}\right) \cong P\left(V_{I} \otimes V_{J}^{*} \otimes W_{M(I \cup J)}\right) . \\
W_{i} \otimes W_{N} \cong P\left(W_{M(i\}}\right) \oplus W_{N} \oplus W_{N} \tag{c}
\end{gather*}
$$

Proof. These are all consequences of [6, Lemma 6.1]; for (c) it is necessary that $m>1$.

The above lemma, though character-theoretic in nature, has powerful implications about modules. For example, from (b) we may deduce that any tensor factor of $W_{N} \otimes\left(V_{l} \otimes V_{J}^{*}\right)$, such as $V_{I} \otimes W_{K}$, must have a simple head and a simple socle (the socle of a module is the maximal semisimple submodule and the head is the maximal semisimple quotient, namely the quotient by the radical). Lemma 3.2 will often be applied in this way.

We define the mass of the simple module $V_{l} \otimes V_{J}^{*} \otimes W_{K}$ to be $|I|+|J|+2|K|$ and the mass of an arbitrary $F G$-module to be the maximum of the masses of its composition factors. We observe that mass is preserved when taking duals. Galois conjugates and τ-conjugates. The following statements follow from Lemma 3.1 by an easy induction.

Lemma 3.3. Let (I, J, K) and (A, B, C) be triples.
(a) If $i \in I \cup K$ then
(b) $\quad \operatorname{mass}\left(W_{i} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)\right) \leqslant \begin{cases}|I|+|J|+2|K|+1, & \text { if } i \in I \cup J, \\ |I|+|J|+2|K|, & \text { if } i \in K .\end{cases}$
(c) $\quad \operatorname{mass}\left(\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \otimes\left(V_{A} \otimes V_{B}^{*} \otimes W_{C}\right)\right)$

$$
\leqslant|I|+|J|+2|K|+|A|+|B|+2|C|,
$$

with equality if and only if $(I \cup K) \cap(A \cup C)=\varnothing=(J \cup K) \cap(B \cup C)$.
In the following lemma and also later, when we are interested only in the isomorphism classes of the composition factors (or, more generally, filtration factors) of a module, we shall usually ignore both the multiplicities and the order of the factors.

Lemma 3.4. Let (I, J, K) be a triple and $i \in N$.
(a) $V_{i} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ has no composition factor of the form W_{T} with $|T|>|K|+1$, and none with $|T|>|K|$ if $i \in K$.
(b) $W_{i} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ has no composition factor of the form W_{T} with $|T|>|K|+1$, and none with $|T|>|K|$ if $i \in K$.

Proof. (a) We use induction on $|I \cup J \cup K|$ and, given $|I \cup J \cup K|$, on $|K|$. We may assume by taking Galois conjugates that $i=0$. All statements are obvious if $0 \notin I \cup J \cup K$, so we shall consider the cases

$$
\text { (i) } 0 \in J, \quad \text { (ii) } 0 \in I \text { and } \quad \text { (iii) } 0 \in K .
$$

(i) By (1.1), we have

$$
V_{0} \otimes\left(V_{l} \otimes V_{J}^{*} \otimes W_{K}\right) \cong\left(V_{l} \otimes V_{\wedge\{0\}}^{*} \oplus W_{K}\right) \otimes\left(V_{I} \otimes V_{\wedge\{0\}} \otimes W_{K \cup\{0\}}\right)
$$

and neither of these simple modules is W_{T} for $|T|>|K|+1$.
(ii) By Lemma 3.1(a), the composition factors of

$$
V_{0} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)=\left(V_{0} \otimes V_{0}\right) \otimes\left(V_{\Lambda\{0\}} \otimes V_{J}^{*} \otimes W_{K}\right)
$$

are $V_{n\{0\}} \otimes V_{J \cup\{0\}}^{*} \otimes W_{K}$ and those of $V_{1} \otimes\left(V_{\Lambda\{0\}} \otimes V_{J}^{*} \otimes W_{K}\right)$, so induction on $|I \cup J \cup K|$ applies (after conjugation by σ^{-1}).
(iii) By Lemma 3.1(b), the composition factors of $W_{0} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)=$ $\left(V_{0} \otimes W_{0}\right) \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K \backslash\{0\}}\right)$ are $V_{I \cup\{0\}} \otimes V_{J}^{*} \otimes W_{K \backslash\{0\}}$, those of

$$
V_{1}^{*} \otimes\left(V_{l} \otimes V_{J}^{*} \otimes W_{K \backslash\{0\}}\right)
$$

and those of $V_{1} \otimes\left(V_{I} \otimes V_{J \cup\{0\}}^{*} \otimes W_{K \backslash\{0\}}\right)$. We can apply induction on $|I \cup J \cup K|$ to the second last of these (suitably dualized) and induction on $|K|$ to the last module.
(b) If $0 \in I \cup J$, say $0 \in I$, then

$$
W_{0} \otimes\left(V_{l} \otimes V_{J}^{*} \otimes W_{K}\right) \cong V_{0} \otimes\left(V_{\Lambda\{0\}} \otimes V_{J}^{*} \otimes W_{K \cup\{0\}}\right)
$$

and we have finished, by (a). If $0 \in K$, we use induction on $|K|$. For $K=\{0\}$, Lemma 3.1(d) gives the composition factors of $\left(W_{0} \otimes W_{0}\right) \otimes\left(V_{I} \otimes V_{J}^{*}\right)$ as $W_{0} \otimes V_{I} \otimes V_{J}^{*}, V_{I} \otimes V_{J}^{*}$, those of $V_{1} \otimes\left(V_{I \cup\{0\}} \otimes V_{J}^{*}\right)$, those of $V_{1}^{*} \otimes\left(V_{I} \otimes V_{J \cup\{0\}}\right)$ and those of $W_{1} \otimes\left(V_{I} \otimes V_{J}^{*}\right)$, all of which are covered by (a).

If $|K|>1$, the composition factors of $\left(W_{0} \otimes W_{0}\right) \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K \backslash\{0\}}\right)$ are $V_{I} \otimes V_{J}^{*} \otimes W_{K \backslash\{0\}}, V_{I} \otimes V_{J}^{*} \otimes W_{K}$, those of $V_{1} \otimes\left(V_{I} \otimes V_{J \cup\{0\}} \otimes W_{K \backslash\{0\}}\right)$, those of $V_{1}^{*} \otimes\left(V_{I} \otimes V_{J \cup\{0\}} \otimes W_{K \backslash\{0\}}\right)$ and those of $W_{1} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K \backslash\{0\}}\right)$. The result is true for the last module by (a) and for the other two non-simple modules by induction. This completes the proof of the lemma.

We end this section with a special case of Theorem 4.5 of [6].
Lemma 3.5. Let (I, J, K) be a triple.
(a) If I and J are proper subsets of N with $I \cup J \neq \varnothing$, then $V_{I} \otimes V_{J}^{*}$ is not a composition factor of $\left(V_{I} \otimes V_{J}^{*}\right) \otimes\left(V_{I} \otimes V_{J}^{*}\right)$.
(b) $V_{N} \otimes V_{N}$ has a unique composition factor isomorphic to V_{N} if $G=\mathrm{SL}_{3}\left(2^{m}\right)$ and no such composition factor if $G=\mathrm{SU}_{3}\left(2^{m}\right)$.

4. Lemmas on modules

Let J denote the Jacobson radical of $F G$. By the Loewy layers of an $F G$-module M we shall mean the sequence $h(M)=M / J M, J M / J^{2} M, \ldots$, and by the socle layers the sequence $\operatorname{soc}(M), \operatorname{soc}^{2}(M) / \operatorname{soc}(M), \ldots$, where $\operatorname{soc}^{i}(M)$ is defined recursively as the preimage in M of $\operatorname{soc}\left(M / \operatorname{soc}^{i-1}(M)\right.$). Thus, for a uniserial module the Loewy layers are the socle layers in reverse order; we shall call the Loewy layers of such a module its series.

We begin with a simple observation of a very general kind which will provide the basic mechanism for the inductive parts of the proof in §5 of the theorem. It is a more general form of Alperin's induction step used in [1] and [8].

Lemma 4.1. Let H be a finite group, k an algebraically closed field, L and M simple $k H$-modules and $d=\operatorname{dim}_{k} \operatorname{Ext}_{k H}^{1}(L, M)$. Let X be a $k H$-module with head isomorphic to L and maximal submodule isomorphic to the direct sum of d copies of M. Suppose S is a $k H$-module such that $L \otimes_{k} S$ is semisimple, and let E be a simple quotient of $M \otimes_{k} S$. Then

$$
\operatorname{Hom}_{k H}\left(X \otimes_{k} S, E\right)=\operatorname{Hom}_{k H}\left(L \otimes_{k} S, E\right)
$$

implies that $d \leqslant \operatorname{dim}_{k} \operatorname{Ext}_{k H}^{1}\left(L \otimes_{k} S, E\right)$.
Since the Loewy length of X is at most 2 , the condition of the lemma is equivalent to

$$
\operatorname{Hom}_{k H}\left(X, \operatorname{soc}^{2}\left(S^{*} \otimes_{k} E\right)\right)=\operatorname{Hom}_{k H}\left(L \otimes_{k} S, E\right)
$$

which is how the lemma will sometimes be applied. Most frequently, we shall have $\operatorname{Hom}_{k H}\left(L \otimes_{k} S, E\right)=0$, and we shall actually check the stronger condition

$$
\begin{equation*}
\operatorname{Hom}_{k H}\left(X, S^{*} \otimes_{k} E\right)=0 \tag{4.1"}
\end{equation*}
$$

by checking, for example, that L is not a composition factor of $S^{*} \otimes_{k} E$.
The situations we have in mind are when $L=V_{I} \otimes V_{J}^{*} \otimes W_{K}$ and S is chosen to be either $V_{J} \otimes V_{l}^{*}$ or W_{t} for $t \notin I \cup J \cup K$.

It will often be necessary to consider modules like X in Lemma 4.1, so for any two simple $F G$-modules L and M we introduce the notation $d(L, M)=$ $\operatorname{dim}_{F} \operatorname{Ext}_{F G}^{1}(L, M)$ and $X(L, M)$ for the (unique up to isomorphism) $F G$-module with head L and maximal submodule a direct sum of $d(L, M)$ copies of M.

Remark 4.2. At this point we wish to make a further observation about the automorphism τ. We consider $F G$-modules M such that $M^{*} \cong M^{\tau}$. As we have already pointed out, these include the simple modules, and hence also their projective covers and direct sums and tensor products of any of these. Given such a module M, suppose it has a quotient Q with the same property. Then by duality, Q^{*} is a submodule of M^{*} and by τ-conjugacy, Q is isomorphic to a submodule of M. This additional symmetry implies, for example, that the Loewy layers and socle layers of such a module are the same, that is, $M / J M \cong \operatorname{soc}(M)$, $J M / J^{2} M \cong \operatorname{soc}^{2}(M) / \operatorname{soc}(M)$, etc. We shall make use of these properties many times, starting with the next lemma.

Lemma 4.3. We have the following statements:
(a) $V_{i} \otimes V_{i}$ is uniserial with series $V_{i}^{*}, V_{i+1}, V_{i}^{*}$;
(b) $V_{i} \otimes W_{i}$ has head and socle isomorphic to V_{i}. It has a quotient and a submodule isomorphic to $V_{i}^{*} \otimes V_{i}^{*}$;
(c) $V_{i} \otimes V_{i} \otimes V_{i} \cong W_{i} \oplus W_{i} \oplus L_{i}$, where L_{i} is uniserial with series $F, V_{\{i, i+1\}}, F$;
(d) $V_{i} \otimes V_{i} \otimes V_{i+1}^{*}$ has Loewy layers $V_{\{i, i+1\}}^{*}, F \oplus W_{i+1}, V_{\{i, i+1\}}^{*}$.

Proof. The composition factors are given in Lemma 3.1. Part (a) follows from Remark 4.2 and the calculation

$$
\operatorname{Hom}_{F G}\left(V_{i} \otimes V_{i}, V_{i+1}\right)=\operatorname{Hom}_{F G}\left(V_{i}, V_{i}^{*} \otimes V_{i+1}\right)=0
$$

(b) That $V_{i} \otimes W_{i}$ has a simple head and socle follows from the fact that it is a tensor factor of $V_{i} \otimes W_{N}$ and Lemma 3.2(b). Since $V_{i} \otimes V_{i} \otimes V_{i}^{*} \cong V_{i} \oplus\left(V_{i} \otimes W_{i}\right)$, by (1.1), and since, by (a), $\left(V_{i} \otimes V_{i}\right) \otimes V_{i}^{*}$ has a quotient $V_{i}^{*} \otimes V_{i}^{*}$ which, again by (a), is uniserial of length 3 , it follows that $V_{i}^{*} \otimes V_{i}^{*}$ is a homomorphic image of $V_{i} \otimes W_{i}$. In view of Remark 4.2, (b) is proved.
(c) We have

$$
\operatorname{Hom}_{F G}\left(V_{i} \otimes V_{i} \otimes V_{i}, W_{i}\right) \cong \operatorname{Hom}_{F G}\left(V_{i} \otimes V_{i}, V_{i}^{*} \otimes W_{i}\right),
$$

which, by (a) and (b), has dimension not less than 2 . Since W_{i} occurs twice as a composition factor of $V_{i} \otimes V_{i} \otimes V_{i}$, it follows from Remark 4.2 that $W_{i} \oplus W_{i}$ is a direct summand. The structure of a complementary summand now follows from the composition factors and the calculation

$$
\operatorname{Hom}_{F G}\left(V_{i} \otimes V_{i} \otimes V_{i}, V_{\{i, i+1\}}\right) \cong \operatorname{Hom}_{F G}\left(V_{i} \otimes V_{i}, V_{i+1} \oplus\left(V_{i+1} \otimes W_{i}\right)\right)=0
$$

using (1.1) and (a).
(d) By (a), we know that $\left(V_{i} \otimes V_{i}\right) \otimes V_{i+1}^{*}$ has a filtration with factors (in order)

$$
V_{\{i, i+1\}}^{*}, F \otimes W_{i+1}, V_{\{i, i+1\}}^{*}
$$

The result therefore follows from the calculation

$$
\operatorname{Hom}_{F G}\left(V_{i} \otimes V_{i} \otimes V_{i+1}^{*}, F \oplus W_{i+1}\right) \approx \operatorname{Hom}_{F G}\left(V_{i} \otimes V_{i+1}^{*}, V_{i}^{*} \oplus\left(V_{i}^{*} \otimes W_{i+1}\right)\right)=0
$$

and Remark 4.2.

Lemma 4.4. We have $W_{i} \otimes W_{i} \cong W_{i} \oplus W_{i} \oplus D_{i}$, where D_{i} is an indecomposable module with the following properties:
(a) $\operatorname{hd}\left(D_{i}\right) \cong F \cong \operatorname{soc}\left(D_{i}\right)$;
(b) $J\left(D_{i}\right)$ has two filtrations:

$$
0 \subset Q_{i} \subset R_{i} \subset J\left(D_{i}\right)
$$

with

$$
Q_{i} \cong L_{i}, \quad R_{i} / Q_{i} \cong V_{i} \otimes V_{i} \otimes V_{i+1}^{*}, \quad J\left(D_{i}\right) / R_{i} \cong V_{\{i, i+1\}}
$$

and

$$
0 \subset Q_{i}^{\tau} \subset R_{i}^{\tau} \subset J\left(D_{i}\right)
$$

with

$$
Q_{i}^{\tau} \cong L_{i}^{\tau}, \quad R_{i}^{\tau} / Q_{i}^{\tau} \cong V_{i}^{*} \otimes V_{i}^{*} \otimes V_{i+1}, \quad J\left(D_{i}\right) / R_{i}^{\tau} \cong V_{\{i, i+1\}}^{*}
$$

(c) we have $Q_{i} \subseteq R_{i}^{\tau}, Q_{i}^{\tau} \subseteq R_{i}, Q_{i} \cap Q_{i}^{\tau}=\operatorname{soc}\left(D_{i}\right)$ and $R_{i}+R_{i}^{\tau}=J\left(D_{i}\right)$.

Proof. We may assume $i=0$. First, we have $\operatorname{Hom}_{F G}\left(W_{0} \otimes W_{0}, F\right) \cong$ $\operatorname{Hom}_{F G}\left(W_{0}, W_{0}\right) \cong F$. Next, we compute $\operatorname{Hom}_{F G}\left(W_{0} \otimes W_{0}, W_{0}\right)$. Since

$$
\left(V_{0} \otimes V_{0}^{*}\right) \otimes\left(V_{0} \otimes V_{0}^{*}\right) \cong F \oplus W_{0} \oplus W_{0} \oplus\left(W_{0} \otimes W_{0}\right)
$$

and

$$
\begin{aligned}
\operatorname{Hom}_{F G}\left(V_{0} \otimes V_{0}^{*} \otimes V_{0} \otimes V_{0}^{*}, F \oplus W_{0}\right) & \cong \operatorname{Hom}_{F G}\left(V_{0} \otimes V_{0}^{*} \otimes V_{0} \otimes V_{0}^{*}, V_{0} \otimes V_{0}^{*}\right) \\
& \cong \operatorname{Hom}_{F G}\left(V_{0} \otimes V_{0} \otimes V_{0}, V_{0} \otimes V_{0} \otimes V_{0}\right),
\end{aligned}
$$

which, by Lemma 4.3(c), is 6-dimensional, it follows easily that

$$
\operatorname{Hom}_{F G}\left(W_{0} \otimes W_{0}, W_{0}\right)
$$

is 2-dimensional. Since W_{0} occurs twice as a composition factor of $W_{0} \otimes W_{0}$, Remark 4.2 implies that $W_{0} \otimes W_{0}$ has a summand isomorphic to $W_{0} \oplus W_{0}$. Let D_{0} be a complementary summand. By Lemma 3.2(c), we have

$$
\begin{aligned}
W_{N} \oplus W_{N} \oplus P\left(W_{M\{0\}}\right) & \cong W_{0} \otimes W_{N} \\
& \cong\left(W_{0} \otimes W_{0}\right) \otimes W_{M\{0\}} \\
& \cong\left(W_{0} \oplus W_{0} \oplus D_{0}\right) \otimes W_{M\{0\}}
\end{aligned}
$$

from which we see that

$$
\begin{equation*}
D_{0} \otimes W_{M\{0\}} \cong P\left(W_{M\{0\}}\right) \tag{4.5}
\end{equation*}
$$

This shows that D_{0} has simple head and socle, which we have already seen must be F, proving (a). Let π be the projection of $\left(V_{0} \otimes V_{0}^{*}\right) \otimes\left(V_{0} \otimes V_{0}^{*}\right)$ onto D_{0}. The socle series of $V_{0}^{*} \otimes V_{0}^{*}$ induces a filtration

$$
0 \subset B \subset C \subset\left(V_{0} \otimes V_{0}\right) \otimes\left(V_{0}^{*} \otimes V_{0}^{*}\right)
$$

of $\left(V_{0} \otimes V_{0}^{*}\right) \otimes\left(V_{0} \otimes V_{0}^{*}\right)$ with $B \cong V_{0} \otimes V_{0} \otimes V_{0}$ and $C / B \cong V_{0} \otimes V_{0} \otimes V_{1}^{*}$. We define $R_{0}=\pi(C)$ and $Q_{0}=\pi(B)$. By Lemma 4.3(c), $B=Z \oplus L$, where $Z \cong$ $W_{0} \oplus W_{0}$ and $L \cong L_{0}$. Clearly, $Z \subseteq \operatorname{Ker} \pi$. We claim that $\left.\pi\right|_{L}$ is injective. Since $V_{\{0,1\}}$ occurs twice as a composition factor of both D_{0} and of

$$
\left(V_{0} \otimes V_{0}^{*}\right) \otimes\left(V_{0} \otimes V_{0}^{*}\right)
$$

we see from the structure of L_{0} that $J(L) \nsubseteq \operatorname{Ker} \pi$. Then since $\operatorname{soc}\left(D_{0}\right) \cong F$, we cannot have $L \cap \operatorname{Ker} \pi=\operatorname{soc}(L)$ either, so our claim is true. Thus $Q_{0} \cong L_{0}$. The induced map $\bar{\pi}: C / B \rightarrow D_{0} / Q_{0}$ is also injective, since $\operatorname{soc}\left(V_{0} \otimes V_{0} \otimes V_{1}^{*}\right) \cong V_{\{0,1\}}^{*}$, by Lemma $4.3(\mathrm{~d})$, and by comparing the composition factors of D_{0} / Q_{0} and $\left(V_{0} \otimes V_{0}\right) \otimes\left(V_{0}^{*} \otimes V_{0}^{*}\right)$, we see that $V_{\{0,1\}}^{*}$ is not a composition factor of ker $\bar{\pi}$. Thus, $R_{0} / Q_{0} \cong V_{0} \otimes V_{0} \otimes V_{1}^{*}$. Now by considering the composition factors of R_{0}, we see that it is a maximal submodule of $J\left(D_{0}\right)$ with $J\left(D_{0}\right) / R_{0} \cong V_{\{0,1\}}$. The existence of the second filtration follows from the fact that D_{0} is the unique non-simple indecomposable summand of $W_{0} \otimes W_{0} \cong\left(W_{0} \otimes W_{0}\right)^{\tau}$, so that $D_{0} \cong D_{0}^{\tau}$. Thus, (b) is proved. Since R_{0} and R_{0}^{τ} are distinct maximal submodules of $J\left(D_{0}\right)$, their sum equals $J\left(D_{0}\right)$, and since F is the only module isomorphic to both a submodule of L_{0} and a submodule of L_{0}^{τ}, we have $Q_{0} \cap Q_{0}^{\tau}=\operatorname{soc}\left(D_{0}\right)$. Finally, since $Q_{0}^{\tau} \cong L_{0}^{\tau}$ has no quotient $V_{\{0,1\}} \cong J\left(D_{0}\right) / R_{0}$, we have $Q_{0}^{\tau} \subseteq R_{0}$ and similarly $Q_{0} \subseteq R_{0}^{\tau}$, proving (c).
It is often helpful to keep the following pictures of modules in mind (although we shall not attempt to use such pictures in our proofs):

Lemma 4.6. Let $J \subseteq\{i, i+1, \ldots, i+m-1\} \subseteq \mathbb{N}$. Then $V_{i} \otimes V_{J}$ is uniserial. Moreover, if $J=\{i, i+1, \ldots, i+k\}$, with $0 \leqslant k \leqslant m-1$, then the series of $V_{i} \otimes V_{J}$ is
$V_{i}^{*} \otimes V_{\{i+1, \ldots, i+k\}}, V_{i+1}^{*} \otimes V_{\{i+2, \ldots, i+k\}} ; \ldots, V_{i+k}^{*}, V_{i+k+1}, V_{i+k}^{*}, \ldots, V_{i+1}^{*}$

$$
\otimes V_{\{i+2, \ldots, i+k\}}, \ldots, V_{i}^{*} \otimes V_{\{i+1, \ldots, i+k\}} .
$$

Proof. We may assume $i=0$. It is enough to prove the second statement since $V_{0} \otimes V_{J}$ is a tensor factor of $V_{0} \otimes V_{N}$. We proceed by induction on k, the result being true for $k=0$ by Lemma 4.3(a). We assume $k \geqslant 1$.

Now $V_{0} \otimes V_{\{0, \ldots, k\}}=\left(V_{0} \otimes V_{0}\right) \otimes V_{\{1, \ldots, k\}}$ has a filtration (induced by the socle series of $V_{0} \otimes V_{0}$), with factors (in order)

$$
V_{0}^{*} \otimes V_{\{1, \ldots, k\}}, V_{1} \otimes V_{\{1, \ldots, k\}}, V_{0}^{*} \otimes V_{\{1, \ldots, k\}} .
$$

The top and bottom factors are simple and by the inductive hypothesis, the middle factor is uniserial with series

$$
V_{1}^{*} \otimes V_{\{2, \ldots, k\}}, \ldots, V_{k}^{*}, V_{k+1}, V_{k}^{*}, \ldots, V_{1}^{*} \otimes V_{\{2, \ldots, k\}}
$$

so the lemma follows from the calculation
$\operatorname{Hom}_{F G}\left(V_{0} \otimes V_{\{0, \ldots, k\}}, V_{1}^{*} \otimes V_{\{2, \ldots, k\}}\right) \cong \operatorname{Hom}_{F G}\left(V_{\{0, \ldots, k\}}, V_{\{0,1\}}^{*} \otimes V_{\{2, \ldots, k\}}\right)=0$.
Lemma 4.7. V_{N} is not a composition factor of $\operatorname{soc}^{2}\left(V_{N} \otimes V_{N}\right)$.
Proof. By Lemma 3.5(b), we may assume $G=\mathrm{SL}_{3}\left(2^{m}\right)$ and in that case we know that $V_{N} \otimes V_{N}$ has a unique composition factor isomorphic to V_{N}. By Lemma 4.6, the uniserial module $V_{1} \otimes V_{N}=\left(V_{1} \otimes V_{M\{0\}}\right) \otimes V_{0}$ has a unique filtration

$$
0 \subset X \subset Y \subset V_{1} \otimes V_{N}
$$

such that $Y / X \cong V_{0} \otimes V_{0}$. Now V_{1} is a composition factor of $V_{0} \otimes V_{0}$. Therefore, in the induced filtration

$$
0 \subset X \otimes V_{M\{1\}} \subset Y \otimes V_{M\{1\}} \subset V_{N} \otimes V_{N}
$$

of $V_{N} \otimes V_{N}$, the unique composition factor V_{N} occurs in the factor

$$
(Y / X) \otimes V_{M\{1\}} \cong\left(V_{0} \otimes V_{0}\right) \otimes V_{M\{1\}}
$$

We claim that the lemma will be proved as soon as we show that
(1) $\operatorname{Hom}_{F G}\left(V_{N},\left(V_{0} \otimes V_{0}\right) \otimes V_{M\{1\}}\right)=0$ and
(2) $\operatorname{Hom}_{F G}\left(\operatorname{soc}\left(V_{0}^{*} \otimes V_{M\{1\}}\right), V_{N} \otimes V_{N}\right)=0$.

Indeed, (1) implies that V_{N} is a composition factor of

$$
\left((Y / X) \otimes V_{M(1\}}\right) / \operatorname{soc}\left((Y / X) \otimes V_{M\{1\}}\right)
$$

which in turn implies (by Lemma $3.1(\mathrm{a})$) that any simple submodule of $(Y / X) \otimes V_{M\{1\}}$ is isomorphic to one in $\operatorname{soc}\left(V_{0}^{*} \otimes V_{M\{1\}}\right)$. Then (2) implies that $\operatorname{soc}\left((Y / X) \otimes V_{M\{1\}}\right)$ maps injectively into $\left(V_{N} \otimes V_{N}\right) /\left(X+\operatorname{soc}\left(V_{N} \otimes V_{N}\right)\right)$, which shows that V_{N} is not a composition factor of $\operatorname{soc}^{2}\left(V_{N} \otimes V_{N}\right)$.

It therefore remains to check (1) and (2).
(1) We have

$$
\begin{aligned}
\operatorname{Hom}_{F G}\left(V_{N}, V_{0} \otimes V_{0} \otimes V_{M\{1\}}\right) \cong & \operatorname{Hom}_{F G}\left(\left(V_{0}^{*} \otimes V_{0}\right) \otimes V_{M\{0\}}, V_{0} \otimes V_{M\{1\}}\right) \\
\cong & \operatorname{Hom}_{F G}\left(V_{M\{0\}} \oplus\left(V_{M\{0\}} \otimes W_{0}\right), V_{0} \otimes V_{M\{1\}}\right) \\
\cong & \operatorname{Hom}_{F G}\left(V_{M\{0\}} \otimes V_{0}^{*}, V_{M\{1\}}\right) \\
& \oplus \operatorname{Hom}_{F G}\left(V_{M\{0\}} \otimes W_{0}, V_{0} \otimes V_{M\{1\}}\right)
\end{aligned}
$$

The first term in the last line is obviously zero, and the second is zero because by Lemma 4.6, $V_{0} \otimes V_{M\{1\}}$ is uniserial and, using Lemma 4.3(a), one sees that its socle is $V_{0}^{*} \otimes V_{\{2, \ldots, m-1\}}$.
(2) We have $V_{0}^{*} \otimes V_{M\{1\}} \cong V_{M\{0,1\}} \oplus\left(V_{M\{0,1\}} \otimes W_{0}\right)$. By Lemma 3.2(b) and the remark following it, both of these direct summands have simple socles, which we can determine using Lemma 4.3(b), yielding

$$
\operatorname{soc}\left(V_{0}^{*} \otimes V_{M\{1\}}\right) \cong V_{M\{0,1\}} \oplus V_{M\{1\}}
$$

By (1.1), we obtain
and

$$
\operatorname{Hom}_{F G}\left(V_{M\{0,1\}}, V_{N} \otimes V_{N}\right) \cong \underset{T \subseteq M\{0,1\}}{\bigoplus} \operatorname{Hom}_{F G}\left(W_{T} \otimes V_{\{0,1\}}^{*}, V_{N}\right)=0
$$

$$
\operatorname{Hom}_{F G}\left(V_{M\{1\}}, V_{N} \otimes V_{N}\right) \cong \bigoplus_{T \subseteq M\{1\}} \operatorname{Hom}_{F G}\left(W_{T} \otimes V_{\{1\}}^{*}, V_{N}\right)=0
$$

Thus (2) holds and the lemma is proved.

5. Proof of the theorem

As in [1] and [8], our plan will be to determine Ext ${ }_{F G}^{1}$ for 'maximal' simple modules, in this case $W_{M(i)}$ and $V_{i} \otimes W_{M\{i\}}$, for $i \in N$, and then to reduce the general case to these with the aid of Lemma 4.1.

We keep the notation of Lemmas 4.3 and 4.4.

Lemma 5.1. Let (I, J, K) be a triple. Then
$\operatorname{Ext}_{F C}^{1}\left(W_{M\{0\}}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \cong F \quad$ if $\quad K=N \backslash\{0,1\} \quad$ and $\quad\{I, J\}=\{\varnothing,\{0,1\}\}$, and is zero otherwise.

Proof. By (4.5), we have $D_{0} \otimes W_{M\{0\}} \cong P\left(W_{M\{0\}}\right)$. Since $\operatorname{hd}\left(D_{0} \otimes W_{\left.M_{i} 0\right\}}\right)=$ $\operatorname{hd}\left(D_{0}\right) \otimes W_{M\{0\}}$, we have $J P\left(W_{M\{0\}}\right) \cong J\left(D_{0}\right) \otimes W_{M\{0\}}$, so the lemma is equivalent to

$$
\begin{equation*}
\operatorname{hd}\left(J\left(D_{0}\right) \otimes W_{M\{0\}}\right) \cong\left(V_{\{0,1\}} \otimes W_{M\{0,1\}}\right) \oplus\left(V_{\{0,1\}}^{*} \otimes W_{M\{0,1\}}\right) \tag{5.2}
\end{equation*}
$$

By Lemma 4.4(c), $J\left(D_{0}\right)$ has homomorphic images $V_{\{0,1\}}$ and $V_{\{0,1\}}^{*}$, so by Lemma 4.3(b), the right-hand side of (5.2) is certainly a homomorphic image of $J\left(D_{0}\right) \otimes W_{M\{0\}}$. Since $J\left(D_{0}\right)=R_{0}+R_{0}^{\tau}$, the lemma will be proved once we establish the following statements:
(1) $\left(R_{0} / Q_{0}\right) \otimes W_{M\{0\}}$ has a simple head;
(2) $Q_{0} \otimes W_{M\{0\}} \subseteq J^{2}\left(D_{0} \otimes W_{M\{0\}}\right)$.

Indeed, it is immediate from (2) that $\left(Q_{0}+Q_{0}^{\tau}\right) \otimes W_{M\{0\}} \subseteq J^{2}\left(D_{0} \otimes W_{M\{0\}}\right)$, and from (1) that the head of $\left(\left(R_{0}+R_{0}^{\tau}\right) /\left(Q_{0}+Q_{0}^{\tau}\right)\right) \otimes W_{M\{0\}}$ is a direct sum of two simple modules. It remains to prove (1) and (2).
(1) By Lemma 4.4(b), we have $R_{0} / Q_{0} \cong\left(V_{0} \otimes V_{0}\right) \otimes V_{1}^{*}$, which by Lemma 4.3(b) is isomorphic to a quotient of $V_{0}^{*} \otimes W_{0} \otimes V_{1}^{*}$. Thus, $\left(R_{0} / Q_{0}\right) \otimes W_{M\{0\}}$ is isomorphic to a quotient of $\left(V_{0}^{*} \otimes V_{\{1\}}^{*}\right) \otimes W_{N}$, which by Lemma 3.2(b) has a simple head for $m>2$.
(2) Since by Lemmas 4.4 and 4.3, Q_{0} and $R_{0}^{\tau} / Q_{0}^{\tau}$ have no non-zero homomorphic images in common, we have $\left(Q_{0}+Q_{0}^{\tau}\right) / Q_{0}^{\tau} \subseteq J\left(R_{0}^{\tau} / Q_{0}^{\tau}\right)$. Then by (1) applied to $R_{0}^{\tau} / Q_{0}^{\tau}$ and by (4.5), we have

$$
\left(\left(Q_{0}+Q_{0}^{\tau}\right) / Q_{0}^{\tau}\right) \otimes W_{M\{0\}} \subseteq J\left(\left(R_{0}^{\tau} / Q_{0}^{\tau}\right) \otimes W_{M\{0\}}\right) \subseteq J^{2}\left(D_{0}\right) \otimes W_{M\{0\}}
$$

Also, by Lemma 4.4 and (4.5),

$$
\left(Q_{0} \cap Q_{0}^{\tau}\right) \otimes W_{M\{0\}}=\operatorname{soc}\left(D_{0}\right) \otimes W_{M\{0\}}=\operatorname{soc}\left(D_{0} \otimes W_{M\{0\}}\right) \subseteq J^{2}\left(D_{0} \otimes W_{M\{0\}}\right)
$$

Together, these imply (2), so the lemma is proved.
Corollary 5.3. For $0 \in T \subseteq N$ we have
(a)

$$
\operatorname{soc}\left(W_{0} \otimes W_{T}\right) \cong W_{T} \oplus W_{T} \oplus W_{T \backslash\{0\}}
$$

(b) $\operatorname{soc}^{2}\left(W_{0} \otimes W_{T}\right) / \operatorname{soc}\left(W_{0} \otimes W_{T}\right) \cong \operatorname{soc}\left(\left(V_{\{0,1\}} \otimes W_{T \backslash(0\}}\right) \oplus\left(V_{\{0,1\}}^{*} \otimes W_{T \backslash(0)}\right)\right)$, with

$$
\operatorname{soc}\left(V_{\{0,1\}} \otimes W_{T \backslash\{0\}}\right) \cong \begin{cases}V_{\{0,1\}} \otimes W_{T \backslash 0\}} & \text { if } 1 \notin T \\ V_{\{0,1\}} \otimes W_{T \backslash 0,1\}} & \text { if } 1 \in T\end{cases}
$$

Proof. Part (a) follows from Lemma 4.4(a) and (4.5). It is clear from Lemma 4.4 and the self-duality of D_{0} that

$$
\operatorname{soc}^{2}\left(W_{0} \otimes W_{0}\right) / \operatorname{soc}\left(W_{0} \otimes W_{0}\right) \cong \operatorname{soc}^{2}\left(D_{0}\right) / \operatorname{soc}\left(D_{0}\right)
$$

has at least two simple summands. By Lemma 5.1, $\operatorname{soc}^{2}\left(W_{0} \otimes W_{N}\right) / \operatorname{soc}\left(W_{0} \otimes W_{N}\right)$ has two simple summands. Now since $W_{0} \otimes W_{N}=\left(W_{0} \otimes W_{T}\right) \otimes W_{M T}$, $W_{0} \otimes W_{T}=\left(W_{0} \otimes W_{0}\right) \otimes W_{T \backslash\{0\}}, \quad \operatorname{soc}\left(W_{0} \otimes W_{N}\right)=\operatorname{soc}\left(W_{0} \otimes W_{T}\right) \otimes W_{M T} \quad$ and $\operatorname{soc}\left(W_{0} \otimes W_{T}\right)=\operatorname{soc}\left(W_{0} \otimes W_{0}\right) \otimes W_{T \backslash 0\}}$, it follows that the second socle layer of ($W_{0} \otimes W_{T}$) has two simple factors, which are then easily determined from Lemma 4.4 and Lemma 4.3(b).

Lemma 5.4. Suppose $0,1 \notin K \subseteq N$. Then

$$
\operatorname{Ext}_{F G}^{1}\left(V_{\{0,1\}} \otimes W_{K}, W_{K}\right) \cong F \cong \operatorname{Ext}_{F G}^{1}\left(V_{\{0,1\}} \otimes W_{K}, W_{K \cup\{1\}}\right)
$$

Proof. From Lemma 4.3(a), we see that $\operatorname{Ext}_{F G}^{1}\left(V_{\{0,1\}}, F\right) \neq 0$. The lemma will therefore follow from Lemma 5.1 and the inequalities

$$
\begin{align*}
& d\left(V_{\{0,1\}} \otimes W_{K}, W_{K}\right) \leqslant d\left(V_{\{0,1\}} \otimes W_{K}, W_{K \cup\{1\}}\right) \quad \text { and } \\
& d\left(V_{\{0,1\}} \otimes W_{K}, W_{K \cup\{1\}}\right) \leqslant d\left(V_{\{0,1\}} \otimes W_{K \cup\{t\}}, W_{K \cup\{t\}}\right), \quad \text { for } t \notin K \cup\{0,1\} . \tag{5.5}
\end{align*}
$$

We shall apply Lemma 4.1. In order to prove the second inequality of (5.5), we must check that

$$
\operatorname{Hom}_{F G}\left(X\left(V_{\{0,1\}} \otimes W_{K}, W_{K \cup\{1\}}\right), \operatorname{soc}^{2}\left(W_{t} \otimes W_{K \cup\{t\}}\right)\right)=0
$$

By Corollary 5.3, $V_{\{0,1\}} \otimes W_{K}$ is not even a composition factor of

$$
\operatorname{soc}^{2}\left(W_{t} \otimes W_{K \cup\{t)}\right)
$$

The first inequality in (5.5) is equivalent by duality to

$$
d\left(W_{K}, V_{\{0,1\}}^{*} \otimes W_{K}\right) \leqslant d\left(W_{K \cup\{1\}}, V_{\{0,1\}}^{*} \otimes W_{K}\right)
$$

We shall apply Lemma 4.1 again. We note that $V_{\{0,1\}}^{*} \otimes W_{K}$ occurs in

$$
\operatorname{hd}\left(W_{1} \otimes\left(V_{\{0,1\}}^{*} \otimes W_{K}\right)\right)
$$

by Lemma 4.3(b). Thus, by Lemma 4.1, a sufficient condition for the last inequality to hold is

$$
\operatorname{Hom}_{F G}\left(X\left(W_{K}, V_{\{0,1\}}^{*} \otimes W_{K}\right), W_{1} \otimes\left(V_{\{0,1\}}^{*} \otimes W_{K}\right)\right)=0
$$

Now $W_{1} \otimes\left(V_{\{0,1\}}^{*} \otimes W_{K}\right)$ has a filtration (induced by a composition series of $\left.V_{1}^{*} \otimes W_{1}\right)$ with factors isomorphic to $V_{\{0,1\}}^{*} \otimes W_{K}, V_{2} \otimes\left(V_{0}^{*} \otimes W_{K}\right)$ and

$$
V_{2}^{*} \otimes\left(V_{1} \otimes V_{0}^{*} \otimes W_{K}\right)
$$

There are obviously no (non-zero) homomorphisms from $X\left(W_{K}, V_{\{0,1\}}^{*} \otimes W_{K}\right)$ to the first of these three modules. The second and third modules are simple if $2 \notin K$, since $m>2$, so there are no (non-zero) homomorphisms in this case either. If $2 \in K$, then there are no (non-zero) homomorphisms from $X\left(W_{K}, V_{\{0,1\}}^{*} \otimes W_{K}\right)$, because by Lemma 3.2(b) and Lemma 4.3(b), their socles are isomorphic to $V_{2} \otimes V_{0}^{*} \otimes V_{K \backslash(2)}$ and $V_{\{0,2\}}^{*} \otimes V_{1} \otimes W_{K \backslash\{2\}}$ respectively. This completes the proof of the lemma.

Lemma 5.6. (a) If (I, J, K) is a triple and $I \cup J \cup K \subseteq T \subseteq N$, then

$$
\operatorname{Ext}_{F G}^{1}\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, W_{T}\right)=0 .
$$

(b) For any $S, K \subseteq N$, we have $\operatorname{Ext}_{F G}^{1}\left(W_{S}, W_{K}\right)=0$.

Proof. Part (b) follows from (a) since $\operatorname{Ext}_{F G}^{1}\left(W_{S}, W_{K}\right) \cong \operatorname{Ext}_{F G}^{1}\left(W_{S \cap K}, W_{S U K}\right)$. In order to prove (a) we may assume by taking Galois conjugates that $0 \notin T$. It will suffice to show that

$$
d\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, W_{T}\right) \leqslant d\left(V_{I} \otimes V_{J}^{*} \otimes W_{K \cup\{0\}}, W_{T \cup\{0\}}\right),
$$

because W_{N} is projective. By Lemma 4.1, this inequality will be proved if we verify that

$$
\operatorname{Hom}_{F G}\left(X\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right), \operatorname{soc}^{2}\left(W_{0} \otimes W_{T \cup\{0\}}\right)\right) \cong \begin{cases}F & \text { if } I=J=\varnothing \text { and } K=T, \\ 0 & \text { otherwise } .\end{cases}
$$

This is immediate from Corollary 5.3, so the lemma is proved.
Corollary 5.7. For any triple (I, J, K) we have

$$
\operatorname{Ext}_{F G}^{1}\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)=0
$$

Proof. We have

$$
\operatorname{Ext}_{F G}^{1}\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \cong \underset{K \subseteq T \subseteq I \cup J \cup K}{\bigoplus} \operatorname{Ext}_{F G}^{1}\left(W_{K}, W_{T}\right)
$$

Lemma 5.8. Let $I, J \subseteq N$ with $I \cup J=N$ and $I \cap J=\varnothing$. Then

$$
\operatorname{Ext}_{F G}^{1}\left(W_{T}, V_{I} \otimes V_{J}^{*}\right)=0
$$

for $T \subseteq N$.
Proof. We shall argue by downward induction on $|T|$, the result being true for $T=N$. We are free to replace W_{T} and $V_{I} \otimes V_{J}^{*}$ by their (simultaneous) conjugates by τ or field automorphisms, as the hypotheses and conclusion are not affected and neither is the inductive hypothesis. It will suffice to find some $i \in N \backslash T$ such that

$$
d\left(W_{T}, V_{l} \otimes V_{J}^{*}\right) \leqslant d\left(W_{T \cup\{i\}}, V_{l} \otimes V_{J}^{*}\right)=0 .
$$

Since by Lemma 4.3(b), $V_{I} \otimes V_{J}^{*}$ occurs in the head of $W_{i} \otimes\left(V_{I} \otimes V_{J}^{*}\right)$ for all $i \in N$, this inequality will follow from Lemma 4.1 if we can find $i \in N \backslash T$ such that

$$
\operatorname{Hom}_{F G}\left(X\left(W_{T}, V_{l} \otimes V_{J}^{*}\right), W_{i} \otimes\left(V_{I} \otimes V_{J}^{*}\right)\right)=0
$$

First suppose $|T|>1$. By taking appropriate conjugates, we may assume $0 \notin T$, and then by Lemma 3.4, W_{T} is not a composition factor of the right-hand side, so we have finished in this case. Therefore, we may assume from now on that $|T| \leqslant 1$.

Next we consider the case in which some conjugate of $V_{I} \otimes V_{J}^{*}$ is V_{N}. Let us take such a conjugate so that $I=N$. If $0 \notin T$, we choose $i=0$. Then $W_{0} \otimes V_{N}=$ $\left(W_{0} \otimes V_{0}\right) \otimes V_{M\{0\}}$ has a filtration with factors of the form $V_{0} \otimes V_{M\{0\}}$, $V_{1}^{*} \otimes V_{M\{0\}}$ and $\left(V_{0}^{*} \otimes V_{1}\right) \otimes V_{M\{0\}}$. Since $m>2$, the first two modules have no composition factor W_{T}. It is easy to see that the last module has no composition
factor V_{N}, so that any homomorphism from $X\left(W_{T}, V_{N}\right)$ into it must factor through W_{T}. But we have

$$
\operatorname{Hom}_{F G}\left(W_{T}, V_{0}^{*} \otimes V_{1} \otimes V_{\{1, \ldots, m-1\}}\right) \cong \operatorname{Hom}_{F G}\left(W_{T} \otimes V_{0}, V_{1} \otimes V_{\{1, \ldots, m-1\}}\right)=0
$$

by Lemma 4.6. Thus, if $0 \notin T$, we have finished. If $G=\mathrm{SL}_{3}\left(2^{m}\right)$, then V_{N} is invariant under field automorphisms, and so, since $|T| \leqslant 1$, we can always choose conjugates with $I=N$ and $0 \notin T$. If $G=\mathrm{SU}_{3}\left(2^{m}\right)$ and $T=\{0\}$, we choose $i=1$. It is straightforward to check using Lemmas 3.1 and 4.6 that $W_{1} \otimes V_{N}$ does not have W_{0} as a composition factor.

We may therefore assume from now on that no conjugate of $V_{l} \otimes V_{J}^{*}$ by τ or a field automorphism is V_{N} and that $|T| \leqslant 1$.

We claim that one of the following holds:
(a) there is some conjugate $V_{I^{\prime}} \otimes V_{J^{\prime}}^{*}$ of $V_{I} \otimes V_{J}^{*}$ with $0 \in I^{\prime}, 1 \in I^{\prime}$ and $2 \in J^{\prime}$;
(b) for every conjugate $V_{I^{\prime}} \otimes V_{J^{\prime}}^{*}$ of $V_{I} \otimes V_{J}^{*}$ such that $0 \in I^{\prime}$, we have $1 \in J^{\prime}$ and $2 \in I^{\prime}$.
To see this, consider the set of conjugates $V_{l^{\prime \prime}} \otimes V_{J^{\prime \prime}}^{*}$ of $V_{l} \otimes V_{J}^{*}$ with $0 \in I^{\prime \prime}$. Suppose there is one with $1 \in I^{\prime \prime}$. Then since $I^{\prime \prime} \neq N$, we may choose the smallest r with $r \in J^{\prime \prime}$. Conjugating by $\sigma^{-(r-2)}$ yields a conjugate satisfying the conditions in (a). Suppose then that for every conjugate $V_{I^{\prime \prime}} \otimes V_{J^{\prime \prime}}^{*}$ such that $0 \in I^{\prime \prime}$ we have $1 \in J^{\prime \prime}$. Fix such a conjugate. Then conjugating by $\tau \sigma^{-1}$ gives another conjugate $V_{I} \otimes V_{J^{\prime}}^{*}$ with $0 \in I^{\prime}$. Thus, $1 \in J^{\prime}$, which is to say that $2 \in I^{\prime \prime}$, so (b) holds. This establishes the claim.

For $V_{I^{\prime}} \otimes V_{J^{\prime}}^{*}$ as in (a), the composition factors of $W_{0} \otimes\left(V_{I^{\prime}} \otimes V_{J^{\prime}}^{*}\right)$ are readily calculated to be $V_{I^{\prime}} \otimes V_{J^{\prime}}^{*}, V_{\left.I^{\prime} \backslash 0,1\right\}} \otimes V_{J^{\prime}}^{*}, V_{I^{\prime}\{0,1\}} \otimes V_{J^{\prime}}^{*} \otimes W_{1}, V_{I^{\prime} \backslash\{0,1\}} \otimes V_{J^{\prime} \cup\{0,1\}}^{*}$, $V_{\left.I^{\prime} \backslash 0\right\}} \otimes V_{J^{\prime} \cup\{0\rangle \backslash\{2\}}^{*}$ and $V_{I^{\prime} \backslash\{0\}} \otimes V_{\left.J^{\prime} \cup\{0\} \backslash 2\right\}}^{*} \otimes W_{2}$. Since $m>2$, none of these is F or W_{t} for $t \in N$.

For $V_{I} \otimes V_{J^{\prime}}^{*}$ as in (b), the composition factors of $W_{0} \otimes\left(V_{I} \otimes V_{J^{\prime}}^{*}\right)$ are $\quad V_{I^{\prime}} \otimes V_{J^{\prime}}^{*}, \quad V_{I^{\prime} \backslash\{0\} \cup\{1\}} \otimes V_{J^{\prime} \backslash\{1\}}^{*}, \quad V_{I^{\prime} \backslash\{0,2\}} \otimes V_{J^{\prime} \backslash\{1\}}^{*}, \quad V_{I^{\prime} \backslash\{0,2\}} \otimes V_{J^{\prime} \backslash\{1\}}^{*} \otimes W_{2}$, $V_{I^{\prime} \backslash\{0\}} \otimes V_{J^{\prime} \cup\{0 \backslash \backslash\{1\}}^{*}$ and $V_{I^{\prime} \backslash\{0\}} \otimes V_{\left.J^{\prime} \cup\{0\} \backslash 1\right\}}^{*} \otimes W_{1}$. If $m \geqslant 4$, none of these is F or W_{t} for $t \in N$.

We consider first the generic case $m \geqslant 4$. Suppose (b) holds. Let $V_{I^{\prime}} \otimes V_{J^{\prime}}^{*}$ be a conjugate of $V_{I} \otimes V_{J}^{*}$ with $0 \in I^{\prime}$ and let W_{T}, be the corresponding conjugate of W_{T}. Since $|T| \leqslant 1$, these can be chosen with $0 \notin T^{\prime}$. We choose $i=0$ and then the above calculations show that W_{T}, is not a composition factor of $W_{0} \otimes V_{1} \otimes V_{,}^{*}$.

Suppose (a) holds. We choose a conjugate $V_{l^{\prime}} \otimes V_{J^{\prime}}^{*}$ as in (a), and denote by $W_{T^{\prime}}$ the corresponding conjugate of W_{T}. If $T^{\prime} \neq\{0\}$, then we may choose $i=0$ by the above calculations. Suppose then that $T^{\prime}=\{0\}$. If $3 \in I^{\prime}$, then we choose $i=1$, and may use the result of our calculation in Case (b) above (after conjugating by σ^{-1}) to conclude that no composition factor is W_{0}. If $3 \in J^{\prime}$, then we have $2 \in J^{\prime}$ and $3 \in J^{\prime}$, and it is not difficult to see that there will be another conjugate $V_{r^{\prime \prime}} \otimes V_{J^{\prime \prime}}^{*}$ satisfying (a) but with $T^{\prime \prime} \neq\{0\}$ (for $G=\mathrm{SU}_{3}\left(2^{m}\right)$, we must remember that $V_{l} \otimes V_{J}^{*}$ is not conjugate to V_{N}). Thus, choosing this conjugate places us back in the case where $T \neq\{0\}$. This completes the argument for $m \geqslant 4$.

Finally, suppose $m=3$. We can assume that T is either $\{0\}$ or empty. If $G=\mathrm{SL}_{3}\left(2^{3}\right)$, we can conjugate by τ if necessary so that $V_{l} \otimes V_{J}^{*}$ is $V_{0} \otimes V_{1}^{*} \otimes V_{2}^{*}$ or $V_{0} \otimes V_{1} \otimes V_{2}^{*}$ or $V_{0} \otimes V_{1}^{*} \otimes V_{2}^{*}$. We choose $i=2$ in the first two cases and $i=1$ in the last. Then it is easy to check that no composition factor of $W_{i} \otimes V_{l} \otimes V_{J}^{*}$ is
F or W_{0}. If $G=\mathrm{SU}_{3}\left(2^{3}\right)$, we may assume $V_{I} \otimes V_{J}^{*}=V_{0} \otimes V_{1}^{*} \otimes V_{2}$. We choose $i=2$. The module $W_{2} \otimes V_{0} \otimes V_{1}^{*} \otimes V_{2}=\left(W_{2} \otimes V_{2}\right) \otimes V_{0} \otimes V_{1}^{*}$ has a filtration with factors of the form $V_{2} \otimes V_{0} \otimes V_{1}^{*}, V_{3}^{*} \otimes V_{0} \otimes V_{1}^{*}$ and $\left(V_{2}^{*} \otimes V_{3}\right) \otimes V_{0} \otimes V_{1}^{*}$. Since $V_{3} \cong V_{0}^{*}$, we see using Lemma 4.3(d) that there are no non-zero homomorphisms from $X\left(W_{T}, V_{I} \otimes V_{J}^{*}\right)$ into any of these factors. This completes the proof of the lemma.

Proposition 5.9. Let (I, J, K) be a triple and $T \subseteq N$. Then

$$
\operatorname{Ext}_{F G}^{1}\left(W_{T}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \cong F
$$

if $((\varnothing, \varnothing, T),(I, J, K))$ is conjugate (by field automorphisms and τ) to $((\varnothing, \varnothing, K),(\{0,1\}, \varnothing, K))$ or $((\varnothing, \varnothing, K \cup\{1\}),(\{0,1\}, \varnothing, K))$, where $0,1 \notin K$, and is zero otherwise.

Proof. We may assume that $K \subseteq T$. If $I \cup J \cup K \subseteq T$, then we have finished by Lemma 5.6. Suppose first that $|T \backslash K|>1$. There is no harm in replacing (I, J, K) and T by (simultaneous) conjugates, so we may assume without loss of generality that $0 \in I \backslash T$. Using Lemma 4.1, we shall prove the inequality

$$
d\left(W_{T}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \leqslant d\left(W_{T \cup\{0\}}, V_{l} \otimes V_{J}^{*} \otimes W_{K}\right)
$$

Clearly, this will give a reduction to the case where $I \cup J \cup K \subseteq T$. By Lemma 4.3(b), $W_{0} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ has $V_{I} \otimes V_{J}^{*} \otimes W_{K}$ in its head. Since $|T|>|K|+1$, Lemma 3.4 implies that

$$
\operatorname{Hom}_{F G}\left(X\left(W_{T}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right), W_{0} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)\right)=0
$$

so the inequality follows from Lemma 4.1.
The cases in which $T=K$ and $|T|=|K|+1$ require closer analysis. We have seen in Lemma 5.4 that if the conditions of the proposition hold then the cohomology groups are isomorphic to F as claimed, so it remains to prove vanishing in all other cases. We therefore assume that the conditions of the proposition do not hold. By Lemma 5.8 we may also assume that $I \cup J \subset N$ (where \subset indicates strict inclusion). We first show how to reduce the case where $K=T$ to the case in which $|T|=|K|+1$. Again, by taking Galois conjugates if necessary, we may assume that $0 \in I \cup J$ and $1 \notin I \cup J$. Applying τ if necessary, we can also assume $0 \in I$. We shall show that

$$
d\left(W_{K}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \leqslant d\left(K_{T \cup\{0\}}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)
$$

Since $W_{0} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ has $V_{I} \otimes V_{J}^{*} \otimes W_{K}$ in its head, the inequality will follow from the equation

$$
\operatorname{Hom}_{F G}\left(X\left(W_{K}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right), W_{0} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)\right)=0
$$

Now $W_{0} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ has a filtration with factors isomorphic to

$$
V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{1}^{*} \otimes\left(V_{\wedge\{0\}} \otimes V_{J}^{*} \otimes W_{K}\right)
$$

and $V_{1} \otimes\left(V_{\cap\{0\}} \otimes V_{J \cup\{0\}}^{*} \otimes W_{K}\right)$. If $1 \notin I \cup J \cup K$ then all three of these modules are simple and not isomorphic to W_{K}. If $1 \in K$, then the first module is unchanged, and by Lemma 3.2(b) and Lemma 4.3(a), the socles of the second and third modules are isomorphic to $V_{\wedge\{0\}} \otimes V_{J \cup\{1\}}^{*} \otimes W_{K \backslash\{1\}}$ and $V_{\cap\{0\} \cup\{1\}} \otimes V_{J \cup\{0\}}^{*} \otimes W_{K \backslash\{1\}}$ respectively. Thus in all cases there are no (non-zero) homomorphisms from $X\left(W_{K}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$.

We are reduced to considering the case where $T=K \cup\{t\}$, for some $t \notin K$. This time it will be convenient to take Galois conjugates so that $t=m-1$. Our assumption is that $\{I, J\} \neq\{\varnothing,\{m-2, m-1\}\}$, and we must prove that $\operatorname{Ext}_{F G}^{1}\left(W_{K \cup\{m-1\}}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)=0$. We shall show that we can find $i \in(I \cup J) \backslash\{m-1\}$ such that

$$
d\left(W_{K \cup\{m-1\}}, V_{l} \otimes V_{J}^{*} \otimes W_{K}\right) \leqslant d\left(W_{K \cup\{m-1, i\}}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)
$$

which will put us back into the case where $|T|>|K|+1$.
We claim that one of the following must hold:
(a) there exists $i \in(I \cup J) \backslash\{m-1\}$ with $i+1 \notin I \cup J \cup K$;
(b) there exists $i \in(I \cup J) \backslash\{m-1\}$ with $i+1 \in K$;
(c) $I \cup J=\{m-1-s, m-1-s+1, \ldots, m-2, m-1\}$, for some s with $1 \leqslant$ $s \leqslant m-2$.
This is easy to see; let S be the set of elements x of $I \cup J \backslash\{m-1\}$ such that $x+1 \notin I \cup J \backslash\{m-1\}$. Then $S \neq \varnothing$ since $I \cup J \neq N$. If S contains an element different from $m-2$ then (a) or (b) will hold. If $S=\{m-2\}$ and neither (a) nor (b) holds, then $m-1 \in I \cup J$ and (c) must hold.

We shall prove the inequality using Lemma 4.1 by showing that for a suitable choice of $i \in(I \cup J) \backslash T$,

$$
\operatorname{Hom}_{F G}\left(X\left(W_{K \cup\{m-1\}}, V_{l} \otimes V_{J}^{*} \otimes W_{K}\right), W_{i} \otimes\left(V_{l} \otimes V_{J}^{*} \otimes W_{K}\right)\right)=0 .
$$

Suppose first that it is possible to choose i as in (a) or (b). We may assume that $i \in I$ by conjugating everything by τ if necessary.

Suppose (a) holds. Then the composition factors of $W_{i} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ are $V_{I} \otimes V_{J}^{*} \otimes W_{K}, \quad V_{n\{i\}} \otimes V_{J \cup\{i+1\}}^{*} \otimes W_{K}$ and $V_{I \cup\{i+1\}} \otimes V_{J \cup\{i\}}^{*} \otimes W_{K}, \quad$ none of which is $W_{K \cup\{m-1\}}$, so we have finished in this case.

If (b) holds, then $W_{i} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ has a filtration with factors isomorphic to $V_{I} \otimes V_{J}^{*} \otimes W_{K},\left(V_{i+1}^{*} \otimes W_{i+1}\right) \otimes\left(V_{\Lambda\{i\}} \otimes V_{J}^{*} \otimes W_{K \backslash\{i+1\}}\right)$ and

$$
\left(V_{i+1} \otimes W_{i+1}\right) \otimes\left(V_{\Lambda(i)} \otimes V_{J \cup\{i\}}^{*} \otimes W_{K \backslash\{i+1\}}\right)
$$

The first module is simple and by Lemmas 3.2(b) and 4.3(b), the socles of the second and third are isomorphic to $V_{N\{i\}} \otimes V_{J \cup\{i+1\}}^{*} \otimes W_{K \backslash\{i+1\}}$ and $V_{\Lambda(i\} \cup\{i+1\}} \otimes V_{J \cup\{i\}}^{*} \otimes W_{K \backslash\{i+1\}}$ respectively. Therefore there are no (non-zero) homomorphisms from $X\left(W_{K \cup\{m-1\}}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ into any of the three filtration factors.

Finally, if it is not possible to choose i as in (a) or (b), then (c) must hold. We choose $i=m-2$. We may assume that $m-2 \in I$. Since by assumption we do not have $I=\{m-2, m-1\}$ and $J=\varnothing$, we must have either $m-1 \in J$ or $|I \cup J|=$ $s>1$.

If $m-1 \in J$, then there is a filtration of $W_{m-2} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ with factors isomorphic to $V_{I} \otimes V_{J}^{*} \otimes W_{K}$,

$$
V_{m-1}^{*} \otimes\left(V_{\Lambda\{m-2\}} \otimes V_{J}^{*} \otimes W_{K}\right)=\left(V_{m-1}^{*} \otimes V_{m-1}^{*}\right) \otimes\left(V_{\Lambda\{m-2\}} \otimes V_{\wedge\{m-1)}^{*} \otimes W_{K}\right)
$$

and

$$
\begin{aligned}
V_{m-1} \otimes\left(V_{\Lambda\{m-2\}} \otimes V_{J \cup\{m-2\}}^{*} \otimes W_{K}\right) \cong & \left(V_{\Lambda\{m-2\}} \otimes V_{J \cup\{m-2\} \backslash\{m-1\}}^{*} \otimes W_{K}\right) \\
& \oplus\left(V_{\Lambda\{m-2\}} \otimes V_{J \cup\{m-2\} \backslash\{m-1\}}^{*} \otimes W_{K \cup\{m-1\}}\right)
\end{aligned}
$$

The first of these factors is simple and the third is semisimple and neither has a factor $W_{K \cup\{m-1\}}$. By Lemma 4.3(b), the second filtration factor is isomorphic to a submodule of

$$
\begin{aligned}
\left(V_{m-1} \otimes W_{m-1}\right) \otimes\left(V_{\Lambda\{m-2\}} \otimes V_{\wedge\{m-1)}^{*}\right. & \left.\otimes W_{K}\right) \\
& =V_{\Lambda\{m-2\} \cup\{m-1\}} \otimes V_{\wedge\{m-1\}}^{*} \otimes W_{K \cup\{m-1\}}
\end{aligned}
$$

which, by Lemma 3.2(b) and Lemma 4.3(b) has socle

$$
V_{\Lambda\{m-2\} \cup\{m-1\}} \otimes V_{\Lambda\{m-1\}}^{*} \otimes W_{K}
$$

Therefore, there are no (non-zero) homomorphisms of

$$
X\left(W_{K \cup\{m-1\}}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)
$$

into any of the three filtration factors.
We may therefore assume that $m-1 \in I$, and hence that $|I \cup J|>1$. Then we have a filtration of $W_{m-2} \otimes\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ with factors of the form

$$
\begin{gathered}
V_{I} \otimes V_{J}^{*} \otimes W_{K} \\
\left(V_{\Lambda\{m-2, m-1\}} \otimes V_{J}^{*} \otimes W_{K}\right) \oplus\left(V_{N\{m-2, m-1\}} \otimes V_{J}^{*} \otimes W_{K \cup\{m-1\}}\right)
\end{gathered}
$$

and

$$
\left(V_{m-1} \otimes V_{m-1}\right) \otimes V_{N\{m-2, m-1\}} \otimes V_{J \cup\{m-2\}}^{*} \otimes W_{K}
$$

The first two factors are semisimple and have no factor $W_{K \cup(m-1\}}$, as $|I \cup J|>1$, and the third filtration factor has simple socle $V_{\Lambda\{m-2, m-1\}} \otimes V_{J \cup\{m-2, m-1\}}^{*} \otimes W_{K}$, by Lemma 4.3(b) and Lemma 3.2(b). Therefore, there are no (non-zero) homomorphisms of $X\left(W_{K \cup\{m-1\}}, V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)$ into any of the three filtration factors.

The proposition is proved.
Lemma 5.10. $V_{i} \otimes V_{i} \otimes W_{i}$ has a direct summand isomorphic to $V_{i+1} \otimes W_{i}$.
Proof. By Galois conjugation we can assume that $i=0$. By Remark 4.2, it suffices to show that $V_{1} \otimes W_{0}$ is a homomorphic image, since $V_{0} \otimes V_{0} \otimes W_{0}$ has a unique composition factor $V_{1} \otimes W_{0}$. By Lemma 4.3(d), $V_{0} \otimes V_{0} \otimes V_{1}^{*}$ has a uniserial quotient with series $V_{\{0,1\}}^{*}, F$. By Lemma 4.4, $W_{0} \otimes W_{0}$ has a uniserial submodule with series $V_{\{0,1\}}^{*}, F$. Since $\operatorname{Ext}_{F G}^{1}\left(V_{\{0,1\}}^{*}, F\right) \cong F$ by Lemma 5.4, these uniserial modules are in fact isomorphic. Thus,

$$
\operatorname{Hom}_{F G}\left(V_{0} \otimes V_{0} \otimes W_{0}, V_{1} \otimes W_{0}\right) \cong \operatorname{Hom}_{F G}\left(V_{0} \otimes V_{0} \otimes V_{1}^{*}, W_{0} \otimes W_{0}\right) \neq 0
$$

Lemma 5.11. $\mathrm{Ext}_{F G}^{1}\left(V_{i}, V_{i}^{*} \otimes V_{i+1}\right)=0$.
Proof. We may assume that $i=0$. By Lemma 5.4, $\operatorname{Ext}_{F G}^{1}\left(V_{0}^{*}, V_{1}\right) \cong F$. By Lemma 4.3(a), $V_{0} \otimes V_{0}$ is uniserial with series, $V_{0}^{*}, V_{1}, V_{0}^{*}$. Thus, if $\operatorname{Ext}_{F G}^{1}\left(V_{0}, V_{0}^{*} \otimes V_{1}\right) \cong \operatorname{Ext}_{F G}^{1}\left(V_{0} \otimes V_{0}, V_{1}\right)$ were not zero, there would exist a uniserial module U such that $U / \operatorname{soc}(U) \cong J\left(V_{0} \otimes V_{0}\right)$ and

$$
J U \cong\left(V_{0} \otimes V_{0}\right) / \operatorname{soc}\left(V_{0} \otimes V_{0}\right) .
$$

Therefore, by Lemma 5.10, we have

$$
J U \otimes W_{0} \cong\left(V_{1} \otimes W_{0}\right) \oplus\left(V_{0}^{*} \otimes W_{0}\right) \cong U / \operatorname{soc}(U)
$$

By Corollary 5.7, we have $\operatorname{Ext}_{F G}^{1}\left(V_{1} \otimes W_{0}, V_{1} \otimes W_{0}\right)=0$, so we deduce that

$$
U \otimes W_{0} \cong\left(V_{1} \otimes W_{0}\right) \oplus\left(V_{1} \otimes W_{0}\right) \oplus\left(V_{0}^{*} \otimes W_{0}\right)
$$

Thus, $\operatorname{Hom}_{F G}\left(U \otimes W_{0}, V_{1} \otimes W_{0}\right)$ is 2-dimensional.
On the other hand, from the structure of $U / \operatorname{soc}(U)$ and $J U$ given above and the structure of $V_{0} \otimes V_{0} \otimes V_{1}^{*}$ given in Lemma 4.3(d), we see that the Loewy layers of $U \otimes V_{1}^{*}$ are

$$
F \oplus W_{1}, \quad V_{\{0,1\}}^{*}, F \oplus W_{1}
$$

Thus, F is the only homomorphic image of $U \otimes V_{1}^{*}$ with no composition factor W_{1}. From the filtration $0 \subset Q_{0}^{\tau} \subset R_{0}^{\tau} \subset J\left(D_{0}\right)$ of Lemma 4.4(b), we see that the unique composition factor W_{1} of $W_{0} \otimes W_{0}$ is a composition factor of $R_{0}^{\tau} / Q_{0}^{\tau} \cong$ $V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}$. Since $\operatorname{soc}\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}\right) \cong V_{\{0,1\}}$, by Lemma 4.3(d), it follows that any submodule of $W_{0} \otimes W_{0}$ which has W_{1} as a composition factor also has $V_{\{0,1\}}$ as a composition factor. Since the latter is not a composition factor of $U \otimes V_{1}^{*}$, we conclude that the only (non-zero) homomorphisms of $U \otimes V_{1}^{*}$ into $W_{0} \otimes W_{0}$ have image isomorphic to F. Thus, from the structure of $W_{0} \otimes W_{0}$ given in Lemma 4.4, we have

$$
\operatorname{Hom}_{F G}\left(U \otimes V_{1}^{*}, W_{0} \otimes W_{0}\right) \cong F
$$

which is contrary to our previous calculation. Therefore, U does not exist and the lemma is proved.

Lemma 5.12. $V_{i} \otimes W_{i}$ has Loewy layers

$$
V_{i}, \quad V_{i+1}^{*}, \quad V_{i} \oplus\left(V_{i}^{*} \otimes V_{i+1}\right), \quad V_{i+1}^{*}, \quad V_{i} .
$$

Proof. We may assume that $i=0$. By Lemma 4.3(b), $V_{0} \otimes W_{0}$ has a submodule S and a quotient Q, both isomorphic to $V_{0}^{*} \otimes V_{0}^{*}$. Since $S \subseteq J\left(V_{0} \otimes W_{0}\right)$, by Lemma 4.3(b), and since V_{0} occurs three times as a composition factor of $V_{0} \otimes W_{0}$, it must be the case that the image of $\operatorname{hd}(S)$ in Q is $\operatorname{soc}(Q)$. Thus, the Loewy length of $V_{0} \otimes W_{0}$ is at least 5 . It is then easily seen from Lemma 5.11 that the Loewy layers are as claimed.

The structure of $V \otimes W$ as a module for $\mathrm{SL}_{3}(F)$ has been given previously in [3].

In the following two lemmas we need to assume that $G \neq \mathrm{SU}_{3}(8)$. Lemma 5.13 is false for this group, but the statement of Lemma 5.14 is true and will be proved in the supplementary Lemma 5.14' below.

Lemma 5.13. Assume $G \neq \mathrm{SU}_{3}(8)$. Suppose $0 \notin K \subseteq N$. Then

$$
\operatorname{Ext}_{F G}^{1}\left(W_{K}, V_{2} \otimes\left(V_{0}^{*} \otimes W_{K}\right)\right)=0
$$

Proof. If $2 \notin K$ then the result is a special case of Proposition 5.9. We assume $2 \in K$. Then $V_{2} \otimes\left(V_{i}^{*} \otimes W_{K}\right)$ has a filtration (induced by a composition series of $V_{2} \otimes W_{2}$) with factors (ignoring multiplicities and order) isomorphic to

$$
V_{2} \otimes V_{0}^{*} \otimes W_{K \backslash\{2\}}, V_{3}^{*} \otimes\left(V_{0}^{*} \otimes W_{K \backslash\{2\}}\right) \text { and } V_{3} \otimes\left(V_{\{0,2\}}^{*} \otimes W_{K \backslash\{2\}}\right) .
$$

It will suffice to show that $\operatorname{Ext}_{F G}^{1}\left(W_{K},-\right)$ vanishes on each of these three modules. For $V_{2} \otimes V_{0}^{*} \otimes W_{K \backslash\{2\}}$ this is just Proposition 5.9 again. Next we note that by Proposition 5.9, $\mathrm{Ext}_{F G}^{1}\left(W_{K},-\right)$ vanishes on all modules of mass less than $2|K|$. By Lemma 3.3(c), the second module can have as large a mass as $2|K|$ only if $3 \notin K \cup\{0\}$, and if this is so then Proposition 5.9 gives the required vanishing. For the third module, we may again apply Proposition 5.9 immediately if $3 \notin$ $K \cup\{0\}$. If $V_{3} \cong V_{0}$, then the module is $V_{2}^{*} \otimes W_{K \backslash\{2\}} \oplus V_{2}^{*} \otimes W_{K \backslash\{2\} \cup\{0\}}$ and Proposition 5.9 applies. Finally, if $3 \in K$, we get a filtration on $V_{3} \otimes V_{\{0,2\}}^{*} \otimes W_{K \backslash\{2\}}$ (induced by a composition series of $V_{3} \otimes W_{3}$) with factors of the form

$$
V_{3} \otimes V_{\{0,2\}}^{*} \otimes W_{K \backslash\{2,3\}}, V_{4}^{*} \otimes\left(V_{\{0,2\}}^{*} \otimes W_{K \backslash\{2,3\}}\right) \text { and } V_{4} \otimes\left(V_{\{0,2,3\}}^{*} \otimes W_{K \backslash\{2,3\}}\right)
$$

By Lemma 3.3(c), all of these factors have mass less than $2|K|$ except perhaps the last one, which will have mass $2|K|$ if W_{4} is not a tensor factor of W_{K} and V_{4} is not isomorphic to V_{0}^{*}. But then either $V_{4} \cong V_{0}$ and the module is

$$
\left(V_{\{2,3\}}^{*} \otimes W_{K \backslash\{2,3\}}\right) \oplus\left(V_{\{2,3\}}^{*} \otimes W_{K \backslash\{2,3\} \cup\{0\}}\right)
$$

or else the module is simple. In both cases $\operatorname{Ext}_{F C}^{1}\left(W_{K},-\right)$ vanishes on it, by Proposition 5.9.

Lemma 5.14. Assume $G \neq \mathrm{SU}_{3}(8)$. For $0,1 \notin K \subseteq N$ we have

$$
\operatorname{Ext}_{F G}^{1}\left(V_{1}^{*} \otimes W_{K}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right) \cong F
$$

Proof. We have

$$
\operatorname{Ext}_{F G}^{1}\left(V_{1}^{*} \otimes W_{K}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right) \cong \operatorname{Ext}_{F G}^{1}\left(V_{0} \otimes W_{K}, V_{1} \otimes V_{1} \otimes W_{K}\right)
$$

Now $\left(V_{1} \otimes V_{1}\right) \otimes W_{K}$ has a filtration with factors (in order)

$$
V_{1}^{*} \otimes W_{K}, \quad V_{2} \otimes W_{K}, V_{1}^{*} \otimes W_{K}
$$

Also, $\left(V_{1} \otimes V_{1}\right) \otimes W_{K}$, being a quotient of $\left(V_{1}^{*} \otimes W_{1}\right) \otimes W_{K}=V_{1}^{*} \otimes W_{K \cup\{1\}}$, has simple head and socle isomorphic to $V_{1}^{*} \otimes W_{K}$. Thus,

$$
\begin{aligned}
\operatorname{soc}^{2}\left(\left(V_{1} \otimes V_{1}\right) \otimes W_{K}\right) / \operatorname{soc}\left(\left(V_{1} \otimes V_{1}\right) \otimes W_{K}\right) & \cong \operatorname{soc}\left(V_{2} \otimes W_{K}\right) \\
& \cong \begin{cases}V_{2} \otimes W_{K} & \text { if } 2 \notin K, \\
V_{2} \otimes W_{K \backslash\{2\}} & \text { if } 2 \in K .\end{cases}
\end{aligned}
$$

Therefore, $\operatorname{Hom}_{F G}\left(V_{0} \otimes W_{K}, \operatorname{soc}^{2}\left(\left(V_{1} \otimes V_{1}\right) \otimes W_{K}\right) / \operatorname{soc}\left(\left(V_{1} \otimes V_{1}\right) \otimes W_{K}\right)\right)=0$, so we have an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{F G}^{1}\left(V_{0} \otimes W_{K}, V_{1}^{*} \otimes W_{K}\right) \rightarrow \operatorname{Ext}_{F G}^{1}\left(V_{0} \otimes W_{K},\left(V_{1} \otimes V_{1}\right) \otimes W_{K}\right)
$$

which by Lemma 5.4 proves that $\operatorname{Ext}_{F G}^{1}\left(V_{0} \otimes W_{K},\left(V_{1} \otimes V_{1}\right) \otimes W_{K}\right) \neq 0$.
Suppose for a contradiction that $d\left(V_{0} \otimes W_{K},\left(V_{1} \otimes V_{1}\right) \otimes W_{K}\right)>1$. Then from the structure of $\left(V_{1} \otimes V_{1}\right) \otimes W_{K}$ described above, and by Lemma 5.13 and Lemma 5.4 , there would exist a module M with $\operatorname{hd}(M) \cong V_{0} \otimes W_{K}$ and $J(M) \cong\left(V_{1} \otimes V_{1}\right) \otimes W_{K}$.

We would then have, on the one hand,

$$
\operatorname{Hom}_{F G}\left(M \otimes V_{1}, W_{K \cup\{1\}}\right) \cong \operatorname{Hom}_{F G}\left(M, V_{1}^{*} \otimes W_{K \cup\{1\}}\right)
$$

The composition factors of $V_{1}^{*} \otimes W_{K \cup\{1\}}$ are $V_{1}^{*} \otimes W_{K}$, those of $V_{2} \otimes W_{K}$ and those of $V_{2}^{*} \otimes\left(V_{1} \otimes W_{K}\right)$. Using Lemma 3.3(c), we can easily see that the
first two modules have no composition factor $V_{0} \otimes W_{K}$ (since $m>2$). This is also clear for the last module if $2 \notin K$. If $2 \in K$ then its composition factors are $V_{1} \otimes V_{2}^{*} \otimes W_{K \backslash\{2\}}$, those of $V_{3} \otimes\left(V_{1} \otimes W_{K \backslash\{2\}}\right)$ and those of $V_{3}^{*} \otimes\left(V_{\{1,2\}} \otimes W_{K \backslash\{2\}}\right)$, and now we can use Lemma 3.3(c) to see that none of these composition factors is $V_{0} \otimes W_{K}$. Thus, $\operatorname{Hom}_{F G}\left(M \otimes V_{1}, W_{K \cup\{1\}}\right)=0$.

On the other hand, $(M / J M) \otimes V_{1} \cong V_{0.1} \otimes W_{K}$ and

$$
J M \otimes V_{1} \cong\left(V_{1} \otimes V_{1} \otimes V_{1} \otimes W_{K}\right) \cong W_{K \cup\{1\}} \oplus W_{K \cup\{1\}} \oplus\left(L_{1} \otimes W_{K}\right)
$$

by Lemma 4.3(c). By Lemma 5.4, $\operatorname{Ext}_{F G}^{1}\left(V_{0,1} \otimes W_{K}, W_{K \cup\{1\}}\right)$ is only onedimensional, so $M \otimes V_{1}$ must have $W_{K \cup\{1\}}$ as a homomorphic image. This contradiction proves the lemma.

Lemma 5.14'. Let $G=\mathrm{SU}_{3}(8)$. Then
(a) $\operatorname{Ext}_{F G}^{1}\left(V_{0}^{*} \otimes V_{1}, V_{1}^{*}\right) \cong F$,
(b) $\operatorname{Ext}_{F G}^{1}\left(V_{0}^{*} \otimes V_{1} \otimes W_{2}, V_{1}^{*} \otimes W_{2}\right) \cong F$.

Proof. We know by Lemma 4.6 that the group in (a) is not trivial. We shall show first that $d\left(V_{0}^{*} \otimes V_{1}, V_{1}^{*}\right) \leqslant d\left(V_{0}^{*} \otimes V_{1} \otimes W_{2}, V_{1}^{*} \otimes W_{2}\right)$. By Lemma 4.1, this follows from the fact that $W_{2} \otimes W_{2} \otimes V_{1}^{*}$ does not have $V_{0}^{*} \otimes V_{1}$ as a composition factor, which is easy to check using Lemma 3.1.

Now we shall show that $d\left(V_{0}^{*} \otimes V_{1} \otimes W_{2}, V_{1}^{*} \otimes W_{2}\right) \leqslant 1$, that is, that

$$
\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(J P\left(V_{0}^{*} \otimes V_{1} \otimes W_{2}\right), V_{1}^{*} \otimes W_{2}\right) \leqslant 1
$$

By Lemma 3.2(b) we have

$$
P\left(V_{0}^{*} \otimes V_{1} \otimes W_{2}\right) \cong V_{0}^{*} \otimes V_{1} \otimes W_{N} \cong\left(V_{1} \otimes W_{1}\right) \otimes V_{0}^{*} \otimes W_{0} \otimes W_{2}
$$

Now by Lemmas 4.3 and 3.1, we know that $V_{1} \otimes W_{1}$ has a filtration

$$
0 \subset S_{1} \subset J\left(V_{1} \otimes W_{1}\right) \subset V_{1} \otimes W_{1}
$$

where $S_{1} \cong V_{1}^{*} \otimes V_{1}^{*}$ and the head of $V_{1} \otimes W_{1}$ is isomorphic to V_{1}. It will therefore suffice to check the following three statements:
(1) $\operatorname{Hom}_{F G}\left(J\left(V_{1} \otimes V_{0}^{*} \otimes W_{0} \otimes W_{2}\right), V_{1}^{*} \otimes W_{2}\right) \cong F$;
(2) $\operatorname{Hom}_{F G}\left(\left(J\left(V_{1} \otimes W_{1}\right) / S_{1}\right) \otimes V_{0}^{*} \otimes W_{0} \otimes W_{2}, V_{1}^{*} \otimes W_{2}\right)=0$;
(3) $\operatorname{Hom}_{F G}\left(V_{1}^{*} \otimes V_{1}^{*} \otimes V_{0}^{*} \otimes W_{0} \otimes W_{2}, V_{1}^{*} \otimes W_{2}\right)=0$.

Part (3) is immediate since $V_{1}^{*} \otimes V_{1}^{*} \otimes V_{0}^{*} \otimes W_{0} \otimes W_{2}$ is a quotient of $P\left(V_{1}^{*} \otimes V_{0}^{*} \otimes W_{2}\right)$.

In Part (2) we know by Lemmas 4.3 and 3.1 that the composition factors of $J\left(V_{1} \otimes W_{1}\right) / S_{1}$ are V_{2}^{*} and $V_{1}^{*} \otimes V_{2}$, so (2) follows because by Lemma 3.2(b), both $V_{2}^{*} \otimes V_{0}^{*} \otimes W_{0} \otimes W_{2}$ and $\left(V_{1}^{*} \otimes V_{2}\right) \otimes V_{0}^{*} \otimes W_{0} \otimes W_{2}$ have simple heads isomorphic to $V_{2}^{*} \otimes V_{0}^{*}$ and $V_{1}^{*} \otimes V_{2} \otimes V_{0}^{*}$ respectively.

To prove (1) we consider the filtration

$$
0 \subset S_{0}^{*} \subset J\left(V_{0}^{*} \otimes W_{0}\right) \subset V_{0}^{*} \otimes W_{0}
$$

similar to the one above. Now

$$
\operatorname{hd}\left(V_{0}^{*} \otimes W_{0} \otimes V_{1} \otimes W_{2}\right)=\operatorname{hd}\left(V_{0}^{*} \otimes W_{0}\right) \otimes V_{1} \otimes W_{2}
$$

so $J\left(V_{1} \otimes V_{0}^{*} \otimes W_{0} \otimes W_{2}\right)=J\left(V_{0}^{*} \otimes W_{0}\right) \otimes V_{1} \otimes W_{2}$. Therefore, by considering the subquotients in the above filtration, we see that (1) follows from the three statements

$$
\begin{gathered}
\operatorname{Hom}_{F G}\left(V_{1} \otimes\left(V_{1} \otimes W_{2}\right), V_{1}^{*} \otimes W_{2}\right) \cong F, \\
\left.\operatorname{Hom}_{F G}\left(V_{0} \otimes V_{1}^{*}\right) \otimes\left(V_{1} \otimes W_{2}\right), V_{1}^{*} \otimes W_{2}\right)=0
\end{gathered}
$$

and

$$
\operatorname{Hom}_{F G}\left(\left(V_{0} \otimes V_{0}\right) \otimes\left(V_{1} \otimes W_{2}\right), V_{1}^{*} \otimes W_{2}\right)=0,
$$

which are all easily verified.
Lemma 5.15. $\operatorname{Ext}_{F G}^{1}\left(V_{0} \otimes W_{M(0)}, V_{0}^{*} \otimes V_{1} \otimes W_{M\{0.1\}}\right)=0$.
Proof. By Lemma 3.2(b),

$$
P\left(V_{0} \otimes W_{M\{0\}}\right) \cong V_{0} \otimes W_{N} \cong\left(V_{0} \otimes W_{0}\right) \otimes W_{M\{0\}} .
$$

Since $\operatorname{hd}\left(V_{0} \otimes W_{N}\right)=\operatorname{hd}\left(V_{0} \otimes W_{0}\right) \otimes W_{M\{0,1\}}$, we have

$$
J P\left(V_{0} \otimes W_{M\{0\}}\right) \cong J\left(V_{0} \otimes W_{0}\right) \otimes W_{M\{0\}} .
$$

Now by Lemma 4.3(b), $J\left(V_{0} \otimes W_{0}\right)$ has a submodule $S \cong V_{0}^{*} \otimes V_{0}^{*}$, and by Lemma 5.12, we see that $T=J\left(V_{0} \otimes W_{0}\right) / S$ is uniserial with series $V_{1}^{*}, V_{0}^{*} \otimes V_{1}$. Now $S \otimes W_{M(0)}$ is a quotient of $V_{0} \otimes W_{N} \cong P\left(V_{0} \otimes W_{M(0)}\right)$, by Lemma 4.3(b) and Lemma 3.2(b), so it has no quotient isomorphic to $V_{0}^{*} \otimes V_{1} \otimes W_{\text {M }}(0,1)$. It remains to show that $\operatorname{Hom}_{F G}\left(T \otimes W_{M\{0,}, V_{0}^{*} \otimes V_{1} \otimes W_{M\{0,1\}}\right)=0$. We claim that T is a homomorphic image of $V_{0}^{*} \otimes V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*}$. From the structure of L_{0}^{*} given in Lemma 4.3(c) and from Lemma 4.3(a), $\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{0}^{*}\right) \otimes V_{1}^{*}$ certainly has a quotient with composition factors (in descending order) V_{1}^{*} and $V_{0}^{*} \otimes V_{1}$, so the claim will follow from Lemma 5.13 if we show that this quotient is not semisimple. This in turn is immediate from the calculation

$$
\begin{aligned}
& \operatorname{Hom}_{F G}\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*}, V_{0}^{*} \otimes V_{1}\right) \\
& \quad \cong \operatorname{Hom}_{F G}\left(V_{0}^{*} \otimes V_{1}^{*}, V_{0} \otimes V_{1}\right) \oplus \operatorname{Hom}_{F G}\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*}, W_{0} \otimes V_{1}\right)=0,
\end{aligned}
$$

by Lemma 3.1(e).
Thus, in order to prove that $\operatorname{Hom}_{F G}\left(T \otimes W_{M\{0\}}, V_{0}^{*} \otimes V_{1} \otimes W_{M\{0,1\}}\right)=0$, it will suffice to show that

$$
\operatorname{Hom}_{F G}\left(\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*}\right) \otimes W_{M\{0,}, V_{0}^{*} \otimes V_{1} \otimes W_{M\{0,1\}}\right)=0 .
$$

We have
$\operatorname{Hom}_{F G}\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*} \otimes W_{M(0)}, V_{0}^{*} \otimes V_{1} \otimes W_{M\{0,1\}}\right)$

$$
\cong \operatorname{Hom}_{F G}\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*} \otimes W_{M\{0\}},\left(V_{1} \otimes W_{M\{0,1\}}\right) \oplus\left(V_{1} \otimes W_{M(1)}\right)\right) .
$$

Now $V_{0}^{*} \otimes V_{0}^{*}$ is a quotient of $V_{0} \otimes W_{0}$, by Lemma 4.3(a), so

$$
\left(V_{0}^{*} \otimes V_{0}^{*}\right) \otimes V_{1}^{*} \otimes W_{M\{0\}}
$$

is a quotient of $V_{0} \otimes V_{1}^{*} \otimes W_{N} \cong P\left(V_{0} \otimes V_{1}^{*} \otimes W_{M\{0,1\}}\right)$, by Lemma 3.2(b). Thus the above space of homomorphisms is zero and the lemma is proved.

Lemma 5.16. Let $0,1 \notin K \subseteq N$. Then
(a) $\operatorname{Ext}_{F G}^{1}\left(V_{\{0,1\}} \otimes W_{K}, V_{\{0,1\}}^{*} \otimes W_{K}\right)=0$,
(b) $\operatorname{Ext}_{T_{G}}^{1}\left(V_{0} \otimes W_{K}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)=0$,
(c) $\mathrm{Ext}_{F \mathrm{C}}^{1}\left(V_{0} \otimes W_{K \cup(1)}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)=0$.

Proof. We shall first reduce (a) and (b) to (c). By Lemma 4.3(b),

$$
\left(V_{\{0,1\}}^{*} \otimes W_{K}\right) \otimes V_{1}^{*}
$$

has $V_{0}^{*} \otimes V_{1} \otimes W_{K}$ in its head. Also

$$
\operatorname{Hom}_{F G}\left(X\left(V_{\{0,1\}} \otimes W_{K}, V_{\{0,1\}}^{*} \otimes W_{K}\right), V_{1} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)\right)=0
$$

because by Lemma 3.1(a) and Lemma 3.3, $\left(V_{1} \otimes V_{1}\right) \otimes V_{0}^{*} \otimes W_{K}$ has no composition factor $V_{\{0,1\}} \otimes W_{K}$. Therefore, by Lemma 4.1, we have

$$
\begin{aligned}
d\left(V_{\{0,1\}} \otimes W_{K}, V_{\{0,1\}}^{*} \otimes W_{K}\right) \leqslant & d\left(V_{0} \otimes W_{K}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right) \\
& +d\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)
\end{aligned}
$$

and (a) is reduced to (b) and (c).
Next, $W_{1} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)$ has $V_{0}^{*} \otimes V_{1} \otimes W_{K}$ in its head, by Lemma 4.3(b). Also it has a filtration (induced by a composition series of $V_{1} \otimes W_{1}$) with factors isomorphic to $V_{0}^{*} \otimes V_{1} \otimes W_{K}, V_{2}^{*} \otimes\left(V_{0}^{*} \otimes W_{K}\right)$ and $V_{2} \otimes\left(V_{\{0,1\}}^{*} \otimes W_{K}\right)$. If $2 \notin K$, then these three modules are simple, because $m>2$, and not isomorphic to $V_{0} \otimes W_{K}$. If $2 \in K$, then the first of the three is unchanged and since $m>2$, Lemma 4.3(b) and Lemma 3.2(b) show that the second and third have socles isomorphic to $V_{\{0,2\}}^{*} \otimes W_{K \backslash\{2\}}$, and $V_{2} \otimes V_{\{0,1\}}^{*} \otimes W_{K \backslash\{2\}}$ respectively. Therefore,

$$
\operatorname{Hom}_{F G}\left(X\left(V_{0} \otimes W_{K}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right), W_{1} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)\right)=0
$$

so by Lemma 4.1 we have

$$
d\left(V_{0} \otimes W_{K}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right) \leqslant d\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)
$$

Thus, we are reduced to proving (c).
We shall show that for $r \in N \backslash(K \cup\{0,1\})$, we have

$$
d\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right) \leqslant d\left(V_{0} \otimes W_{K \cup(1, r)}, V_{0}^{*} \otimes V_{1} \otimes \dot{W}_{K \cup\{r\}}\right)
$$

Then (c) will follow from Lemma 5.15. By Lemma 4.1, this inequality will be proved if we prove that

$$
\operatorname{Hom}_{F G}\left(X\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right), W_{r} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K \cup\{r\}}\right)\right)=0
$$

The module $W_{r} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K \cup\{r\}}\right)$ has a filtration (induced by a composition series of $\left.W_{r} \otimes W_{r}\right)$ with factors of the form $V_{0}^{*} \otimes V_{1} \otimes W_{K \cup\{r\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}$,
(α) $V_{r+1} \otimes\left(V_{0}^{*} \otimes V_{\{1, r\}} \otimes W_{K}\right)$,
(β) $V_{r+1}^{*} \otimes\left(V_{\{0, r\}}^{*} \otimes V_{1} \otimes W_{K}\right)$, and
$(\gamma) W_{r+1} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)$,
so it suffices to show that there are no (non-zero) homomorphisms of

$$
X\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)
$$

into any of these modules. Clearly, we need only concern ourselves with (α), (β) and (γ).
(α) If $r+1 \notin K \cup\{0\}$ and $r \neq m-1$, the result is clear. If $r+1 \in K$, then by Lemma 3.2(b) and Lemma 4.3(b), the module has simple socle

$$
V_{\{1, r+1\}} \otimes V_{0}^{*} \otimes W_{K \backslash\{r+1\}},
$$

so there are no (non-zero) homomorphisms from $X\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)$. If $r=m-1 \notin K$, we must consider the cases $G=\mathrm{SL}_{3}\left(2^{m}\right)$ and $G=\mathrm{SU}_{3}\left(2^{m}\right)$
separately. For $\mathrm{SL}_{3}\left(2^{m}\right)$, the module is $\left(V_{\{1, m-1\}} \otimes W_{K}\right) \oplus\left(V_{\{1, m-1\}} \otimes W_{K \cup\{0\}}\right)$, so there are no (non-zero) homomorphisms. For $\mathrm{SU}_{3}\left(2^{m}\right)$, the module is isomorphic to a submodule of

$$
\left(V_{0}^{*} \otimes W_{0}\right) \otimes V_{\{1, m-1\}} \otimes W_{K}=V_{\{1, m-1\}} \otimes V_{0}^{*} \otimes W_{K \cup\{0\}}
$$

so by Lemma 3.2(b) and Lemma 4.3(b) it has a simple socle isomorphic to $V_{\{1, m-1\}} \otimes V_{0}^{*} \otimes W_{K}$, so again there are no maps.
(β) If $r+1 \notin K \cup\{0\}$ and $r \neq m-1$, the result is clear. If $r+1 \in K$, then by Lemma 3.2(b) and Lemma 4.3(b), the module has simple socle

$$
V_{\{1, r, r+1\}} \otimes V_{0}^{*} \otimes W_{K \backslash(r+1\}}
$$

so there are no (non-zero) homomorphisms from

$$
X\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)
$$

If $r=m-1 \notin K$, we consider the cases where $G=\mathrm{SL}_{3}\left(2^{m}\right)$ and $G=\mathrm{SU}_{3}\left(2^{m}\right)$ separately. For $\mathrm{SL}_{3}\left(2^{m}\right)$, the module is isomorphic to a submodule of

$$
\left(V_{0} \otimes W_{0}\right) \otimes V_{1} \otimes V_{r}^{*} \otimes W_{K}=V_{\{0,1\}} \otimes V_{r}^{*} \otimes W_{K \cup\{0\}}
$$

so by Lemma 3.2(b) and Lemma 4.3(b), it has a simple socle isomorphic to $V_{\{0,1\}} \otimes V_{r}^{*} \otimes W_{K}$, so there are no maps. If $G=\mathrm{SU}_{3}\left(2^{m}\right)$, the module is

$$
V_{\{1, m-1\}} \otimes W_{K} \oplus V_{\{1, m-1\}} \otimes W_{K \cup\{0\}}
$$

and so there are no maps.
(γ) If $r+1 \notin K \cup\{0\}$ and $r \neq m-1$, the result is clear. If $r+1 \in K$, then the module has composition factors $V_{0}^{*} \otimes V_{1} \otimes W_{K}, V_{0}^{*} \otimes V_{1} \otimes W_{K \cup\{r+1\}}$, those of $V_{r+2} \otimes\left(V_{0}^{*} \otimes V_{\{1, r+1\}} \otimes W_{K \backslash(r+1\}}\right)$, and those of

$$
V_{r+2}^{*} \otimes\left(V_{\{0, r+1\}}^{*} \otimes V_{1} \otimes W_{K \backslash\{r+1\}}\right)
$$

By Lemma 3.3, none of the composition factors is $V_{0} \otimes W_{K \cup\{1\}}$, so there are no (non-zero) homomorphisms from $X\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)$. Finally, suppose $r=m-1 \notin K$. Then by Lemma 3.2(b) and Lemma 4.3(b),

$$
W_{0} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)
$$

has socle $V_{0}^{*} \otimes V_{1} \otimes W_{K}$, so if there were a non-zero homomorphism from $X\left(V_{0} \otimes W_{K \cup\{1\}}, V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)$, there would be a factor $V_{0} \otimes W_{K \cup\{1\}}$ in the second socle layer of $W_{0} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)$. If this were so, then setting $J=$ $N \backslash(K \cup\{0,1\})$, we would have by Lemma 3.2(b),

$$
\begin{aligned}
\operatorname{soc}\left(W_{0} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)\right) \otimes W_{J} & \cong V_{0}^{*} \otimes V_{1} \otimes W_{M\{0,1\}} \\
& \cong \operatorname{soc}\left(V_{0}^{*} \otimes V_{1} \otimes W_{M\{0\}}\right) \\
& =\operatorname{soc}\left(\left(W_{0} \otimes\left(V_{0}^{*} \otimes V_{1} \otimes W_{K}\right)\right) \otimes W_{J}\right)
\end{aligned}
$$

Then we could deduce that $V_{0}^{*} \otimes V_{1} \otimes W_{M\{0\}}$ has a factor $\left(V_{0} \otimes W_{K \cup\{1\}}\right) \otimes W_{J} \cong$ $V_{0} \otimes W_{M\{0\}}$ in its second socle layer, whence

$$
\operatorname{Ext}_{F G}^{1}\left(V_{0} \otimes W_{M\{0\}}, V_{0}^{*} \otimes V_{1} \otimes W_{M\{0,1\}}\right) \neq 0
$$

contradicting Lemma 5.15. This completes the proof of Lemma 5.16.
We now come to the last step in the proof of the theorem. In view of Lemma 2.1, it suffices to prove the theorem for pairs of triples satisfying Condition (1) of that lemma. It is easy to see that for such pairs of triples, Conditions (a), (b) and
(c) of the theorem are equivalent to Conditions (a), (b) and (c) of the following proposition. Since we have already calculated the extension groups for pairs of triples satisfying the latter conditions in Lemmas 5.4 and 5.14, the proof of the theorem will be completed by our next and final result.

Proposition 5.17. Let (I, J, K) and (A, B, C) be triples such that $A \subseteq J \cup K$, $B \subseteq I \cup K$ and $C \subseteq K$. Then

$$
\mathrm{Ext}_{F G}^{1}\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{A} \otimes V_{B}^{*} \otimes W_{C}\right)=0
$$

unless a variant of one of the following holds:
(a) $K=C, I=\{0,1\}, J=A=B=\varnothing$;
(b) $K=C \cup\{1\}, I=\{0\}, J=A=\varnothing, B=\{1\}$;
(c) $K=C, I=\{0\}, J=A=\{1\}, B=\varnothing$.

Proof. By Corollary 5.7, we may assume that $(I, J, K) \neq(A, B, C)$. Let $X=X\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{A} \otimes V_{B}^{*} \otimes W_{C}\right)$. By Lemma 4.3,

$$
\mathrm{hd}\left(\left(V_{I}^{*} \otimes V_{J}\right) \otimes\left(V_{A} \otimes V_{B}^{*} \otimes W_{C}\right)\right)
$$

contains a factor

$$
V_{(K \cap A) \cup(I \cap B) \cup(\cap A)} \otimes V_{(K \cap B) \cup(J \cap A) \cup(\cap B)}^{*} \otimes W_{C} .
$$

Also, we have

$$
\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \otimes\left(V_{I}^{*} \otimes V_{J}\right) \cong \bigoplus_{K \subseteq s_{\Xi I U J \cup K}} W_{s}
$$

Our first step is to prove the inequality

$$
\begin{align*}
d & =d\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}, V_{A} \otimes V_{B}^{*} \otimes W_{C}\right) \tag{5.18}\\
& \leqslant \sum_{K \subseteq S_{\subseteq} I \cup J \cup K} d\left(W_{S}, V_{(K \cap A) \cup(I \cap B) \cup(\cap A)} \otimes V_{(K \cap B) \cup(J \cap A) \cup(\cap B)}^{*} \otimes W_{C}\right) .
\end{align*}
$$

Suppose first that $I=N$; then by Lemma 4.1, (5.18) follows from the fact that

$$
\operatorname{Hom}_{F G}\left(X\left(V_{N}, V_{N}^{*}\right), \operatorname{soc}^{2}\left(V_{N} \otimes V_{N}\right)\right)=0
$$

which is true by Lemma 4.7. We may apply Remark 4.2 if $J=N$, so in proving (5.18) we may assume from now on that $I, J \neq N$.

We shall prove (5.18) by means of Lemma 4.1 by showing that

$$
\begin{align*}
\operatorname{Hom}_{F G}\left(X,\left(V_{I} \otimes V_{J}^{*}\right)\right. & \otimes\left(V_{(K \cap A) \cup(I \cap B) \cup(Л A)}\right. \tag{5.19}\\
& \left.\left.\otimes V_{(K \cap B) \cup(J \cap A) \cup(\cap B)}^{*} \otimes W_{C}\right)\right)=0 .
\end{align*}
$$

The left-hand side of (5.19) may be rewritten as

$$
\begin{gather*}
\operatorname{Hom}_{F G}\left(X, \underset{T \subseteq(\cap A) \cup(\cap B)}{ }\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right)\right. \tag{5.20}\\
\left.\otimes V_{K \cap A} \otimes V_{K \cap B}^{*} \otimes W_{C} \otimes W_{T}\right) \\
\cong \bigoplus_{T \subseteq(\cap A) \cup(\cap B)} \operatorname{Hom}_{F G}\left(X \otimes W_{T},\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right)\right. \\
\left.\otimes\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes V_{K \cap A} \otimes V_{K \cap B}^{*} \otimes W_{C}\right)
\end{gather*}
$$

By Lemmas 3.1(a) and 3.3(c), we have

$$
\operatorname{mass}\left(\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right)\right) \leqslant|I \cap B|+|J \cap A|
$$

so by Lemma 3.3(c), we have
$\operatorname{mass}\left(\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes V_{K \cap A} \otimes V_{K \cap B}^{*} \otimes W_{C}\right) \leqslant|A|+|B|+2|C|$.
For $T=\varnothing$, since mass $\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right)=|I|+|J|+2|K|$, we see that

$$
\operatorname{Hom}_{F G}\left(X,\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes V_{K \cap A} \otimes V_{K \cap B}^{*} \otimes W_{C}\right)=0
$$

unless $A=J, B=I$ and $K=C$. Suppose this to be the case. Then

$$
\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes V_{K \cap A} \otimes V_{K \cap B}^{*} \otimes W_{C}
$$

becomes $\left(V_{I} \otimes V_{J}^{*}\right) \otimes\left(V_{I} \otimes V_{J}^{*}\right) \otimes W_{K}$. By Lemma 3.1(a) and Lemma 3.3(c),

$$
\operatorname{mass}\left(\left(V_{I} \otimes V_{J}^{*}\right) \otimes\left(V_{I} \otimes V_{J}^{*}\right)\right) \leqslant|I|+|J|,
$$

and since $I, J \neq N$, Lemma 3.5 tells us that $\left(V_{l} \otimes V_{J}^{*}\right) \otimes\left(V_{l} \otimes V_{J}^{*}\right)$ has no composition factor $V_{I} \otimes V_{J}^{*}$. Then it follows from Lemma 3.3(c) that

$$
\left(V_{l} \otimes V_{J}^{*}\right) \otimes\left(V_{l} \otimes V_{J}^{*}\right) \otimes W_{K}
$$

has no composition factor $V_{I} \otimes V_{J}^{*} \otimes W_{K}$. Thus, there are no non-zero homomorphisms from X in this case either. We have shown that the term in (5.20) for $T=\varnothing$ is zero.

Suppose now that $T \neq \varnothing$. Then $X \otimes W_{T}$ has a submodule Y isomorphic to the direct sum of d copies of $V_{A} \otimes V_{B}^{*} \otimes W_{C \cup T}$, with quotient isomorphic to $\left(V_{I} \otimes V_{J}^{*} \otimes W_{K}\right) \otimes W_{T}=\left(V_{I} \otimes V_{J}^{*}\right) \otimes W_{K \cup T}$. Since $V_{A} \otimes V_{B}^{*} \otimes W_{C \cup T}$ is simple of mass $|A|+|B|+2|C|+2|T|>|A|+|B|+2|C|$, we obviously have ,

$$
\operatorname{Hom}_{F G}\left(Y,\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes V_{K \cap A} \otimes V_{K \cap B}^{*} \otimes W_{C}\right)=0 .
$$

To show that

$$
\begin{aligned}
& \operatorname{Hom}_{F G}\left(\left(X \otimes W_{T}\right) / Y,\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right)\right. \\
&\left.\otimes\left(V_{I \cap B} \otimes V_{J \cap A}^{*}\right) \otimes V_{K \cap A} \otimes V_{K \cap B}^{*} \otimes W_{C}\right)=0,
\end{aligned}
$$

we observe that by Lemma 3.2(b) and Lemma 4.3(b), the head of

$$
\left(V_{I} \otimes V_{J}^{*}\right) \otimes W_{K \cup T}
$$

is $V_{I} \otimes V_{J}^{*} \otimes W_{K}$, which, since $T \neq \varnothing$, has mass greater than $|A|+|B|+2|C|$.
This establishes (5.19), and hence also (5.18), by Lemma 4.1.
We consider the terms on the right of (5.18). By Proposition 5.9, we have

$$
d\left(W_{S}, V_{(K \cap A) \cup(I \cap B) \cup(\cap A)} \otimes V_{(K \cap B) \cup(\cap \cap A) \cup(\cap B)}^{*} \otimes W_{C}\right)=0
$$

unless, after taking suitable conjugates, we have $S=C$ or $C \cup\{1\}$ and

$$
\begin{aligned}
\{(K \cap A) \cup(I \cap B) \cup(J \backslash A),(K \cap B) \cup(J \cap A) \cup(I \backslash B)\}= & \{\{0,1\}, \varnothing\}, \\
& \text { for some } 0,1 \notin C .
\end{aligned}
$$

Suppose these conditions hold. Since $C \subseteq K \subseteq S$, we must have $K=C$ or $K=C \cup\{1\}$. Suppose $K=C \cup\{1\}$. Then the conditions

$$
(K \cap A) \cup(I \cap B) \cup(J \backslash A)=\{0,1\}, \quad(K \cap B) \cup(J \cap A) \cup(I \backslash B)=\varnothing,
$$

together with the assumptions $A \subseteq J \cup K$ and $B \subseteq I \cup K$, imply that $I=B$, $A=\{1\}$ and $I \cup J=\{0\}$. The possibilities for $((I, J, K),(A, B, C))$ are then
(i) $((\varnothing,\{0\}, C \cup\{1\}),(\{1\}, \varnothing, C))$ and
(ii) $((\{0\}, \varnothing, C \cup\{1\}),(\{1\},\{0\}, C))$.

The conditions

$$
(K \cap A) \cup(I \cap B) \cup(J \backslash A)=\varnothing, \quad(K \cap B) \cup(J \cap A) \cup(I \backslash B)=\{0,1\}
$$

are the $(I J)(A B)$-variants of the conditions just considered, so they yield the $(I J)(A B)$-variants of (i) and (ii).

Now (i) is a variant of (b) and Lemma 5.16(c) shows that the group of extensions for the pair of triples in (ii) is zero.

Suppose that $K=C$. Then the conditions

$$
\begin{aligned}
& (K \cap A) \cup(I \cap B) \cup(J \backslash A)=\{0,1\} \quad \text { (respectively } \varnothing) \\
& (K \cap B) \cup(J \cap A) \cup(I \backslash B)=\varnothing \quad \text { (respectively }\{0,1\})
\end{aligned}
$$

yield $I=B, A=\varnothing$ and $I \cup J=\{0,1\}$ (and their $(I J)(A B)$-variants). The possible pairs of triples $((I, J, K),(A, B, C))$ are then
(iii) $((\varnothing,\{0,1\}, C),(\varnothing, \varnothing, C))$,
(iv) $((\{1\},\{0\}, C),(\varnothing,\{1\}, C))$,
(v) $((\{0\},\{1\}, C),(\varnothing,\{0\}, C))$ and
(vi) $((\{0,1\}, \varnothing, C),(\varnothing,\{0,1\}, C))$,
and the $(I J)(A B)$-variants of these.
We see that (iii) is a variant of (a) and that (iv) is a variant of (c). The groups of extensions for (variants of) the pairs of triples in (v) and (vi) have been shown to be zero in Lemma 5.16(b) and Lemma 5.16(a) respectively.

The proof is finished.

Appendix: $m \leqslant 2$

Case 1: $m=1$. The module W is projective, so its multiplicity as a direct summand of a module is simply its multiplicity as a composition factor. Also, Lemma 3.1(a) is still valid. Some straightforeward calculations now yield
(i) $V \otimes W \cong W \oplus P(V)$ and
(ii) $W \otimes W \cong W \oplus W \oplus W \oplus P(V) \oplus P\left(V^{*}\right) \oplus P(F)$.

Since $\operatorname{Hom}_{F G}\left(V^{*} \otimes V^{*}, V^{*}\right) \cong \operatorname{Hom}_{F G}\left(V^{*}, F \oplus W\right)=0, \quad V^{*} \otimes V^{*}$ is uniserial and, just as before, it is isomorphic to both a submodule and a quotient of $V \otimes W$. Also, since the composition factors of $P(V)$ are V, V^{*} and F, we must have $\operatorname{Ext}_{F G}^{1}(V, F) \neq 0$. It follows easily from these facts that $P(V)$ has the structure in the following picture:

From (i) and (ii) we see that $\operatorname{dim}_{F} P(F)=8$, and then since $P(F) \cong P(F)^{\tau}$, we
obtain the following structure for $P(F)$:

These modules for $\mathrm{SL}_{3}(2)$ are described in [3].

Case 2: $m=2$. In the statement of the following proposition, the results for the unitary group are placed in parentheses.

Proposition. Let $G=\mathrm{SL}_{3}(4)$ (respectively $\mathrm{SU}_{3}(4)$). Then
(a) $\operatorname{Ext}_{F G}^{1}\left(K, V_{\{0,1\}}\right) \cong \operatorname{Ext}_{F G}^{1}\left(V_{0}^{*}, V_{1}\right) \cong F^{2}(F)$,
(b) $\operatorname{Ext}_{F G}^{1}\left(W_{1}, V_{\{0,1)}\right) \cong \operatorname{Ext}_{F G}^{1}\left(V_{0}^{*} \otimes W_{1}, V_{1}\right) \cong F(F)$,
(c) $\operatorname{Ext}_{F G}^{1}\left(V_{1}^{*}, V_{0}^{*} \otimes V_{1}\right) \cong F(F)$.

Except for variants of these, all other extensions between simple modules are trivial.

The remainder of this appendix is a proof of the proposition. We give the argument in detail for $G=\mathrm{SL}_{3}(4)$ only. The calculation for $\mathrm{SU}_{3}(4)$ is similar. Thus from now on, $G=\mathrm{SL}_{3}(4)$. All results up to Lemma 5.1 remain valid for $m=2$. Using (1.1), duality and τ-conjugation, Galois conjugation, the tensor identity for Ext and the projectivity of $W_{N}=W_{\{0,1\}}$, we find that the problem is reduced to computing the following groups of extensions:
(1) $\mathrm{Ext}_{F G}^{1}(F, F)$,
(2) $\operatorname{Ext}_{F G}^{1}\left(F, V_{0}\right)$,
(3) $\operatorname{Ext}_{F G}^{1}\left(F, W_{0}\right)$,
(4) $\operatorname{Ext}_{F G}^{1}\left(F, V_{\{0,1\}}\right)$,
(5) $\mathrm{Ext}_{F G}^{1}\left(F, V_{0} \otimes V_{1}^{*}\right)$,
(6) $\mathrm{Ext}_{F G}^{1}\left(F, W_{0} \otimes V_{1}\right)$,
(7) $\mathrm{Ext}_{F G}^{1}\left(V_{0}, V_{0}^{*} \otimes V_{1}\right)$,
(8) $\operatorname{Ext}_{F G}^{1}\left(V_{0}, V_{\{0,1)}^{*}\right)$,
(9) $\operatorname{Ext}_{F G}^{1}\left(V_{0}, W_{0}\right)$,
(10) $\operatorname{Ext}_{F G}^{1}\left(V_{0}, V_{1} \otimes W_{0}\right)$,
(11) $\operatorname{Ext}_{F G}^{1}\left(F, V_{0} \otimes V_{1}^{*}\right)$,
(12) $\operatorname{Ext}_{F G}^{1}\left(V_{\{0,1\}}, V_{\{0,1\}}^{*}\right)$,
(13) $\operatorname{Ext}_{F G}^{1}\left(V_{\{0,1\}}, V_{0}^{*} \otimes W_{1}\right)$,
(14) $\operatorname{Ext}_{F G}^{1}\left(V_{0}^{*} \otimes V_{1}, V_{0} \otimes V_{1}^{*}\right)$,
(15) $\operatorname{Ext}_{F G}^{1}\left(V_{0}^{*} \otimes V_{1}, V_{0} \otimes W_{1}\right)$,
(16) $\operatorname{Ext}_{F G}^{1}\left(W_{0}, W_{0}\right)$,
(17) $\mathrm{Ext}_{F G}^{1}\left(W_{0}, V_{1} \otimes W_{0}\right)$,
(18) $\operatorname{Ext}_{F G}^{1}\left(V_{0} \otimes W_{1}, V_{0}^{*} \otimes W_{1}\right)$.

By Lemma 5.1, we see that the groups in (3), (6), (9), (10), (16) and (17) are trivial and that the group in (11) is one-dimensional. From the composition factors of $V_{i} \otimes V_{i}$ and using the groups just computed and the long exact sequence for Ext, we also see the triviality of the groups in (12) and (18). For any two modules L and M, we write $d(L, M)$ for $\operatorname{dim}_{F} \operatorname{Ext}_{F G}^{1}(L, M)$. Then using Lemma 4.1, one can prove without difficulty that

$$
\begin{aligned}
& d(F, F) \leqslant d\left(W_{i}, W_{i}\right) \\
& d\left(F, V_{0}\right) \leqslant d\left(W_{1}, V_{0} \otimes W_{1}\right) \\
& d\left(F, V_{0}^{*} \otimes V_{1}\right) \leqslant d\left(W_{0}, V_{0}^{*} \otimes V_{1}\right)
\end{aligned}
$$

which gives vanishing in (1), (2) and (5). Using the long exact sequence again, we also obtain

$$
d\left(V_{1}, V_{0}^{*} \otimes V_{0}^{*}\right) \leqslant 2 d\left(V_{1}, V_{0}\right)+d\left(V_{1}, V_{1}^{*}\right) \leqslant 2 d\left(V_{1}, V_{0}\right)+2 d\left(F, V_{1}\right)+d\left(F, V_{0}^{*}\right)
$$

the right-hand terms are all zero by (2) and (5), so we have proved that the group in (8) is zero. Similarly, the inequality

$$
d\left(V_{0}^{*} \otimes V_{0}^{*}, V_{1}^{*} \otimes V_{1}^{*}\right) \leqslant 2 d\left(V_{0}^{*} \otimes V_{0}^{*}, V_{1}\right)+d\left(V_{0}^{*} \otimes V_{0}^{*}, V_{0}^{*}\right)
$$

shows by (8), (2) and (6) that the group in (14) is trivial.
Next we consider (4). By Lemma 3.2 we have

$$
P\left(V_{\{0,1\}}\right) \oplus W_{N} \cong V_{\{0,1\}} \otimes W_{N}=\left(V_{0} \otimes W_{0}\right) \otimes\left(V_{1} \otimes W_{1}\right)
$$

Thus, by Lemma 4.3(b) we see that $P\left(V_{\{0,1\}}\right)$ has a quotient which has a filtration with factors (in descending order)

$$
V_{\{0,1\}}, \quad\left(F \oplus W_{0}\right) \oplus\left(F \oplus W_{1}\right)
$$

Therefore $d\left(V_{\{0,1\}}, F\right) \geqslant 2$. Now $\left(V_{0} \otimes W_{0}\right)$ has a filtration with factors (in descending order)

$$
V_{0}, V_{1}^{*}, V_{0}^{*} \otimes V_{1}, V_{0}^{*} \otimes V_{0}^{*}
$$

It is easy to check that $\left(V_{0}^{*} \otimes V_{0}^{*}\right) \otimes\left(V_{1} \otimes W_{1}\right)$ and $\left(V_{0}^{*} \otimes V_{1}\right) \otimes\left(V_{1} \otimes W_{1}\right)$ do not have F in their heads, and that $\operatorname{Hom}_{F G}\left(V_{1}^{*} \otimes\left(V_{1} \otimes W_{1}\right), F\right) \cong F$. Also by considering the corresponding filtration of $V_{1} \otimes W_{1}$, it can be seen that $\operatorname{Hom}_{F G}\left(J\left(V_{0} \otimes\left(V_{1} \otimes W_{1}\right)\right), F\right) \cong F$. This proves that $d\left(V_{\{0,1\}}, F\right) \leqslant 2$, so the group in (4) is 2-dimensional.

It remains to determine the groups in (7), (11), (12) and (15). For these, we need the Loewy structure of $V_{0} \otimes W_{0}$. The argument of Lemma 5.12 no longer works because Lemma 5.11 is false for $m=2$. However, the highest weights of the composition factors are 2^{2}-restricted, so [2, Proposition 2.7] tells us that the Loewy structure will be the same as that for $\mathrm{SL}_{3}(16)$, namely, as stated in Lemma 5.12. We know by Lemma 4.3(b) that $V_{0} \otimes W_{0}$ has a submodule $S \cong V_{0}^{*} \otimes V_{0}^{*}$. Let $E=J\left(V_{0} \otimes W_{0}\right) / S$. Thus E is uniserial of length 2 with head V_{1}^{*} and socle $V_{0}^{*} \otimes V_{1}$. We shall need the following calculations.

Lemma. We have

(a) $\operatorname{Hom}_{F G}\left(E \otimes W_{1}, V_{0}^{*} \otimes V_{1}\right)=0$;
(b) $\operatorname{Hom}_{F G}\left(\left(V_{0}^{*} \otimes V_{0}^{*}\right) \otimes W_{1}, V_{0}^{*} \otimes V_{1}\right)=0$;
(c) $\operatorname{Hom}_{F G}\left(J\left(V_{1} \otimes W_{1} \otimes V_{0}^{*}\right), V_{0}\right) \cong F$;
(d) $\operatorname{Hom}_{F G}\left(J\left(V_{1} \otimes W_{1} \otimes V_{0}\right), V_{0}^{*} \otimes V_{1}^{*}\right)=0$;
(e) $\operatorname{Hom}_{F G}\left(\left(V_{0}^{*} \otimes V_{0}^{*}\right) \otimes\left(V_{1} \otimes W_{1}\right), V_{\{0,1\}}^{*}\right)=0$.

Proof. (a) Applying duality, τ - and Galois conjugation, and the filtration $0 \subset S \subset J\left(V_{0} \otimes W_{0}\right) \subset V_{0} \otimes W_{0}$, we have

$$
\begin{aligned}
\operatorname{dim}_{F} \operatorname{Hom}_{F G} & \left(E \otimes W_{1}, V_{0}^{*} \otimes V_{1}\right) \\
= & \operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(\left(V_{0} \otimes W_{0}\right) \otimes V_{1}^{*}, E_{1}^{* \tau}\right) \\
\leqslant & \operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(V_{0} \otimes V_{1}^{*}, E_{1}^{* \tau}\right)+\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(E \otimes V_{1}^{*}, E_{1}^{* \tau}\right) \\
& +\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(\left(V_{0}^{*} \otimes V_{0}^{*}\right) \otimes V_{1}^{*}, E_{1}^{* \tau}\right)
\end{aligned}
$$

Now $E_{1}^{* \tau}$ has head $V_{0} \otimes V_{1}^{*}$ and radical V_{0}^{*}, so the first of the three terms on the right of the inequality is clearly zero, and the third term is zero by Lemma 4.6. The fact that the second term is zero follows because

$$
\operatorname{Hom}_{F G}\left(E \otimes V_{1}^{*}, V_{0}^{*}\right) \cong \operatorname{Hom}_{F G}\left(E, V_{1} \otimes V_{0}^{*}\right)=0
$$

and

$$
\operatorname{Hom}_{F G}\left(E \otimes V_{1}^{*}, V_{0} \otimes V_{1}^{*}\right) \cong \operatorname{Hom}_{F G}\left(E, V_{0} \oplus\left(V_{0} \otimes W_{1}\right)\right)=0
$$

Part (b) is straightforward. For (c) and (d) we note that $J\left(V_{1} \otimes W_{1} \otimes V_{0}^{*}\right) \cong$ $J\left(V_{1} \otimes W_{1}\right) \otimes V_{0}^{*}$ and $J\left(V_{1} \otimes W_{1} \otimes V_{0}\right) \cong J\left(V_{1} \otimes W_{1}\right) \otimes V_{0}$. The results then follow from the structure of $V_{1} \otimes W_{1}$, using the structure of $V_{0} \otimes V_{0}$ in (c) and that of $V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*}$ in (d) (Lemma 4.6). To prove (e) we have

$$
\begin{aligned}
\operatorname{Hom}_{F G}\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1} \otimes\right. & \left.W_{1}, V_{0}^{*} \otimes V_{1}^{*}\right) \\
& \cong \operatorname{Hom}_{F G}\left(V_{0}^{*} \otimes V_{1} \otimes W_{1}, V_{1}^{*} \oplus\left(W_{0} \otimes V_{1}^{*}\right)\right)=0
\end{aligned}
$$

since by Lemma 3.2(b), $V_{0}^{*} \otimes V_{1} \otimes W_{1}$ has a simple head isomorphic to $V_{0}^{*} \otimes V_{1}$. All parts of the lemma are proved.

We now consider (15). By Lemma 3.2, we have

$$
J P\left(V_{0} \otimes W_{1}\right) \cong J\left(V_{0} \otimes W_{N}\right)=J\left(V_{0} \otimes W_{0}\right) \otimes W_{1} .
$$

Since $J\left(V_{0} \otimes W_{0}\right)$ has a submodule isomorphic to $V_{0}^{*} \otimes V_{0}^{*}$ with quotient E, the triviality of the group in (15) follows from (a) and (b) of the lemma.

Next we turn to (7). It is clear from Lemma 4.6 that the group of extensions is not trivial, so it remains to bound the dimension. By Lemma 3.2(b) we have

$$
P\left(V_{0}^{*} \otimes V_{1}\right) \cong\left(V_{0}^{*} \otimes W_{0}\right) \otimes\left(V_{1} \otimes W_{1}\right) .
$$

Using the filtration of $V_{0}^{*} \otimes W_{0}$ with factors (in descending order) V_{0}^{*}, E^{τ}, $V_{0} \otimes V_{0}$, we see that the result follows from Part (c) and the τ-twisted versions of (a) and (b) of the lemma.

Finally, we must prove the triviality of the group in (12). By Lemma 3.2(a), we have

$$
P\left(V_{\{0,1\}}\right) \oplus W_{N} \cong\left(V_{0} \otimes W\right) \otimes\left(V_{1} \otimes W_{1}\right)
$$

By considering the filtration $0 \subset S \subset J\left(V_{0} \otimes W_{0}\right) \subset V_{0} \otimes W_{0}$, we see that it will suffice to show that
(1) $\operatorname{Hom}_{F G}\left(J\left(V_{0} \otimes\left(V_{1} \otimes W_{1}\right)\right), V_{\{0,1\}}^{*}\right)=0$,
(2) $\operatorname{Hom}_{F G}\left(E \otimes\left(V_{1} \otimes W_{1}\right), V_{\{0,1\}}^{*}\right)=0$ and
(3) $\operatorname{Hom}_{F G}\left(\left(V_{0}^{*} \otimes V_{0}^{*}\right) \otimes\left(V_{1} \otimes W_{1}\right), V_{\{0,1\}}^{*}\right)=0$.

The first and third of these are Parts (d) and (e) of the lemma. To prove (2), we note, as in the proof of Lemma 5.15, that since $\operatorname{Ext}_{F G}^{1}\left(V_{1}^{*}, V_{0}^{*} \otimes V_{1}\right) \cong F, E$ is a homomorphic image of $V_{0}^{*} \otimes V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*}$. We have

$$
\begin{aligned}
& \operatorname{Hom}_{F G}\left(\left(V_{0}^{*} \otimes V_{0}^{*} \otimes V_{0}^{*} \otimes V_{1}^{*}\right) \otimes\left(V_{1} \otimes W_{1}\right), V_{\{0,1\}}^{*}\right) \\
& \quad \cong \operatorname{Hom}_{F G}\left(V_{1} \otimes V_{0}^{*} \otimes W_{1}, V_{0} \otimes W_{1}\right) \oplus \operatorname{Hom}_{F G}\left(V_{1} \otimes V_{0}^{*} \otimes W_{N}, V_{0} \otimes W_{1}\right)=0,
\end{aligned}
$$

by Lemma 3.2(b). This proves (2) and completes the proof of the proposition.
The calculation of extensions for $\mathrm{SU}_{3}(4)$ was first made in a recent paper [5] by other methods.

References

1. J. L. Alperin, 'Projective modules for SL(2, $\left.2^{n}\right)^{\prime}$ ', J. Pure Appl. Algebra 15 (1979) 219-234.
2. H. H. Andersen, 'Extensions of simple modules for finite Chevalley groups', J. Algebra 111 (1986) 388-403.
3. H. H. Andersen, J. Jørgensen, and P. Landrock, 'The projective indecomposable modules of SL(2, $\left.p^{n}\right)^{\prime}$, Proc. London Math. Soc. (3) 46 (1983) 38-52.
4. J. ARCHER, 'Projective modules for some three-dimensional special linear groups', Bull. Austral. Math. Soc. 22 (1980) 439-455.
5. D. Benson and S. Martin, 'On the mod 2 cohomology of $U\left(3,2^{n}\right)^{\prime}$ ', Comm. Algebra 19 (1991) 3125-3144.
6. L. Chastkofsky and W. Feit, 'On the projective characters in characteristic 2 of the groups $\mathrm{SL}_{3}\left(2^{m}\right)$ and $\mathrm{SU}_{3}\left(2^{m}\right)^{\prime}$, J. Algebra 63 (1980) 124-142.
7. E. Cline, B. Parshall, L. Scott, and W. van der Kallen, 'Rational and generic cohomology', Invent. Math. 39 (1977) 143-163.
8. P. Sin, 'Extensions of simple modules for $\mathrm{Sp}_{4}\left(2^{n}\right)$ and $\operatorname{Suz}\left(2^{m}\right)$ ', Bull. London Math. Soc. 24 (1992) 159-164.

Department of Mathematics

University of Florida
201 Walker Hall
Gainesville
Florida 32611
U.S.A.

[^0]: Financial support for this work was provided by NSF grant number DMS 900-1273 and by a postdoctoral fellowship at the Mathematical Sciences Research Institute, Berkeley.
 1991 Mathematics Subject Classification: Primary 20G40; Secondary 20C20.

[^1]: \dagger The cases where $m \leqslant 2$ do not all follow the same pattern and are described in the appendix.

