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ABSTRACT

The group of extensions between any two irreducible 2-modular representations of the groups
SL3(2

m) and SU3(2
m) is determined.

1. Introduction

Let F be a fixed algebraic closure of F2. We shall regard finite extensions of F2 as
subfields of F. Let m be a natural number. We denote by G = Gm either the
group SL3(2"1) or the group SU3(2

m). The latter is defined to be the subgroup of
SL3(2

2w) preserving the hermitian form on V = F22« which is represented in the
standard basis by the identity matrix. Thus, we have Gm c SL3(2

2m) <= SL3(F).
For any finite-dimensional vector space E over F, we shall denote its dual by

E*. Let o: A •-> A2 be the Frobenius automorphism of F and for i e N let E, be the
F-vector space whose underlying group is the same as E but on which A € F
operates as cr"'(A) operates on E. If E is an FG-module then so is Eh since the
actions of G and F commute. For any FSL3(2

m)-module E we have Em = E. Let
V = F3 = V<S>\Fl2mF. Extending our notation to F^-modules in the obvious way,
we have Vm = V* as FSL^^-modules , by definition of SU3(2

W), and hence
Vm = V*. In view of these remarks, we see that indices for Frobenius twists
should be read modulo m when considering modules for SL3(2'"), but they should
be read modulo 2ra for FSU3(2

w)-modules.
We shall now describe the simple FG-modules. The 'restricted' modules are V,

V* and the 8-dimensional space W of traceless 3 x 3 matrices over F on which
SL3(F) acts by conjugation. These are of course related by the formula

(1.1) V®V* = F®W,

where F denotes the trivial module and the symbol '<8>' stands for tensor product
over F (we shall keep these conventions throughout).

Let N = {0, 1,..., m — 1} c.N and for each subset / c N, we define

Vi = ®Vi, Vf=<g)V* and W, = ®W,.
(6/ ;'e/ j'e/

Then by Steinberg's tensor product theorem, the 22m modules V, <8> V* 0 WK,
where /, / and K are disjoint subsets of N, form a complete set of non-isomorphic
simple FG-modules (by convention, the empty tensor product is F). They are
also the ^-restricted' modules for SL3(F). The module WN is the Steinberg
module. For convenience, we shall refer to the ordered triple (/, J, K) of disjoint
subsets of N merely as a triple from now on.
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Galois action. The powers & of the Frobenius map permute the (isomorphism
classes of) simple FG-modules, but in different ways for SL^"1) and SU3(2

W).
For SL3(2

m), the effect of & is simply to add r and take the remainder modulo m
to all indices in a triple. For SU3(2

m), we must first add r and take remainders
modulo 2m and then 'dualize' those resulting indices which lie between m and
2m - 1; for example, for SU3(2

3), we have

(Vo® Wx)°
5= V5® W6= V5<8> Wo= V\ <8> Wo.

Note that &" simply dualizes each simple module for SU3(2
m).

It is clear that in both cases, the permutations induced on the set of triples
preserves the total size \IUJUK\ of a triple (/,/, K) and also the size of the
third component.

The automorphism x. The group SL3(F) has an outer automorphism r sending
an element to the transpose of its inverse, which clearly maps G back to itself. It
interchanges the FG-module structures of V and V* and hence, by the
description of the simple modules given above, it also interchanges the FG-
module structures of every simple module and its dual. However, it is not true for
a general FG-module M that M* is isomorphic to the r-twisted module Mz, so
the simple modules possess an extra symmetry. An example of this is the
following: if (/, J, K) and (A, B, C) are triples, then applying r and duality, we
obtain

WK, VA®V*B® Wc) = ExtFG(V, <8> V7 ® WK, VB ® V% <8> Wc)

iYA ®v*B® wc, v, ® v ; ® wK)
(yB <8> v*A ® wc, Vj ® vy ® wK).

Regarding these formulae as statements about pairs of triples, we see that they
are obtained from the pair ((/, / , K), (A, B, C)) by applying the permutations id,
(IJ)(AB), (IA)(JB)(KC) and (IB)(JA)(KC). In the preceding paragraph, we saw
that the group of field automorphisms of G acts on the set of triples, and hence
also on the set of pairs of triples. We shall call two statements about pairs of
triples which can be obtained from each other by a combination of field
automorphisms of G and the four permutations above variants of each other. Of
course, the set of variants of a given pair of triples will depend on which group we
are considering, so when necessary, we shall use the terms 'L-variant' and
'U-variant' according to whether G is the linear group or the unitary group.

With all of these conventions we may now state our result.

THEOREM. Suppose^ m>2. Then for triples (/, J, K) and (A, B, C) we have

^CK <g> VJ <8> WK, VA®V%® Wc) = 0

unless a variant of one of the following holds, in which case the space of extensions
is one-dimensional:

(a)(i) K = C,I = AU{O,1}, andB=J (0,1$A);
(ii) K = C, I = A\J{0}, and B =

fThe cases where m =s2 do not all follow the same pattern and are described in the appendix.
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(b)(i) K = CU {1}, I = A and B=J U{0,l} (0,1*7);

(ii) K = CU{l},I = AU{0} and B=JU{1}

(c) K=C,I

REMARKS. (1) The parts (i) and (ii) in (a) and (b) reflect the natural
isomorphism Ext(A, B* ® C) s Ext(A ® B, C).

(2) The variants of the statements (a)-(c) may be described easily. For
example, to obtain the L-variants corresponding to field automorphisms we
replace 0 and 1 by i and i + 1 for 0 =s i *s n — 2 or by n and 0. The U-variants are
slightly less obvious. Let us consider just the U-variants obtained by applying
a"1"1. For instance, the U-variant of (a)(i) would be

K = C, J = BU{0}, I = AU{m-l}.

(3) It is known from a result of Cline, Parshall, Scott and van der Kallen [7,
Theorem 7.2D] (see also [2, Proposition 2.7]) that the restriction to SL^"1) (or
SU3(2

m)) of a non-split extension between two simple (rational) SL3(F)-modules
having '2m-restricted' highest weights does not split. Since it will be clear that the
non-trivial extensions of our theorem are in fact restrictions of SL3(F)-module
extensions, the theorem also describes the extensions between simple modules for
the algebraic group SL3(F). This also explains why it is possible to treat the
twisted and untwisted groups simultaneously, and why the answer is in some
sense the same for the two cases. These comments require clarification. In
particular, we point out that not all non-split extensions of simple modules for the
finite groups will be restrictions of non-split extensions of 2m -restricted simple
modules for the algebraic group, as the following example illustrates.

Let G = SL3(2
2m), so that according to the theorem there is a non-split

extension of V£ by Vm-\ as FG-modules. By the result mentioned above, the
restriction to SL3(2

W) yields a non-split extension of VQ by Vm_y and the
restriction to SU3(2

OT) gives a non-split extension of Vo by Vm_x. However, there
are no non-split extensions of VQ or of VQ by Vn_A as rational SL3(F)-modules.
These 'wrap-around' effects are due to the identifications of modules for the finite
groups with some of their Frobenius twists.

Tensor factors. Given an FG-module we shall often refer to its tensor factors,
by which we shall mean those modules which may be tensored with some other to
give back the module in question. Clearly the tensor factors of the simple module
Vj <S> V* <8> WK for a triple (/, / , K) are precisely those simple modules indexed by
triples (/', / ' , K') for / ' <= /, J' cj and K' c K.

Except in the appendix, we shall assume throughout that m>2.

2. A reduction

LEMMA 2.1. Let (I, J, K) and (A, B, C) be triples. Then

(y/ <g> VJ ® WK, VA®V%® Wc)

= 0 Extlc(yr®v;.®wK.,vA.®v%.®wc.),
WJ'K'MA'B'C'))
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where the summation runs over certain pairs ((/', / ' , K'), (A1, B', C')) of triples
satisfying:

(1) A'cJ'U K', B'^I'U K', C c K';

(2) if ((I, J, K), (A, B, C)) satisfies one of the conditions of the theorem (that is,
a variant of (a), (b) or (c)) then there is a unique pair
((/', / ' , K'), (A', B', C')) which satisfies a condition of the theorem (though
not necessarily the same one);

(3) if any pair ((/', / ' , K'), (A', B', C')) satisfies a condition of the theorem,
then so must the original pair ((I, J, K), (A, B, C)).

Proof We set L = N\(IUJUK) and D = N\(AUBUC). Subdividing the
sets in the obvious fashion and applying (1.1), we obtain

ExtW v, ® v ; ® wK> vA®v*B® wc)
— ExtFC(V(/n/i)u(/nfl)u(/nc)u(/nD) ® V(jr\A)u(jnB)u(jnc)u(jnD) ® WK,

0 C
Tc(IDA)\J(Jr\B)

Setting

/' = (/ n B) u (/ n D) u (L n B), J' = (J n A) U (/ n D) U (L n ^),

we see that (1) holds for the pairs ((/', / ' , K'), (A1, B', C')), and we shall check
that (2) and (3) also hold. It is not hard to see that variants of the original pair
((/, / , K), (A, B, C)) correspond to variants of the primed pairs
((r,J',K'),(A',B',C)), so in checking (2) and (3) we may assume that
Conditions (a), (b) or (c) of the theorem are satisfied rather than a variant. First
we check (2) for each of the Conditions (a), (b) and (c).

(a)(i) We easily obtain / ' = {0, 1}, / ' = 0 , K' = KUT, A' = 0, B' = 0 and
C = K. Thus, for T = 0 we obtain a pair ( ( / ' , / ' , K'), (A', B', C')) satisfying
(a)(i). We claim that none of the pairs for T =£0 satisfies a variant of (a), (b) or
(c). To see this, we may consider, for example, the quantity

for each pair of triples ((/, / , K), (A, B, C)), which is clearly preserved upon
taking variants. If T =£ 0 , this number would be at least 4 for the primed pairs of
triples but it is at most 2 for the pairs in (a), (b) and (c).

(a)(ii) We obtain / ' = {0, 1}, / ' = 0 , K' = K U T, A' = 0 , B' = 0 and C = K,
which is the same as in Case (a)(i).

(b)(i) We obtain / ' = {0}, J' = 0, K' = CU{1}UT, A' = 0, B' = {1} and
C" = C. As in Case (a)(i), we see that the only pair satisfying a condition of the
theorem is the one for T = 0 , which satisfies (b)(ii).

(b)(ii) We again obtain / ' = {0}, J' = 0, K' = CU{1}UT, A' = 0, B' = {1}
and C" = C, the same pairs as in Case (b)(i).
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(c) We obtain / ' = {0}, / ' = {1}, K' = K U T, A' = {1}, B' = 0 and C = K,
and again T = 0 gives the unique pair which satisfies a condition of the theorem,
in this instance Condition (c). This proves (2).

Now we shall prove (3), so we suppose that some pair
( ( / ' , / ' , K'), {A1, B', C')) satisfies (a), (b) or (c) of the theorem. We consider
them in turn.

(a)(i) We have K U C U T = K n C, so T = 0 and K = C. Also we have

(/ n B) u (/ n D) u (L n B) = (j n A) U (K n A) u (/ n c) u {o, l},

where 0, 1 $ (J D A) U (K n A) U (/ n C), and

(/ n >4) u (J n D) u (L n A) = (/ n B) U (K n 5) u (/ n c).

From these equations and the fact that the sets in a triple are disjoint, it is easy to
deduce that I = AU(ir\D), B=JU(LnB), K = C and (in D) U(LD B) =
{0, 1}. The four possibilities for the latter equation all imply that the pair
((/, J, K), (A, B, C)) satisfies a variant of Condition (a) of the theorem, for
example, if 7DD = {0} and L n # = {l}, then the pair ((/, J, K), (A, B, C))
satisfies (a)(i).

(a)(ii) Since (1) is preserved under r and taking Galois conjugates, we see that
no variant of the pair of triples in (a)(ii) of the theorem satisfies (1), so there is
nothing to check in this case. The same applies to (b)(i).

(b)(ii) We have

/cucur = (/cnc)u{o, i},
(/ n B) u (/ n D) u (L n B) = (J n A) u (K n A) u (J n c) u {0},

and
(/ n A) u (/ n D) u (L n A) u {1} = (/ n B) U (K n B) U (/ n c),

where 0 $ (J C\A) U (K n>4) U (/ n C) and 1 $ (J DA) U (J n D) U ( L H 4 Thus,
/ D 5 = 0 and 7 c £, so 1 e (K D B) U (/ n C) c /C U C, whence 7 = 0 . Suppose
1 e ATIB. Then £ = CU{1} and 7DC = 0 . Then if / f l D = {0}, we obtain
l = A\J {0}, fi = / U {1}, /C = C U {1}, which is (b)(ii), and if L D B = {0}, we
obtain I = A, B=JU{0, 1}, A: = CU{1}, which is (b)(i). The case where
lei DC is the variant of the case where 1 e K C\ B under the permutation
(IB)(JA)(KC), so in this case the original pair ((/, / , K), (A, B, C)) must satisfy a
variant of (b) as well,

(c) We have K U C U T = K n C, so T = 0 and K = C. Also we have

(/ n #) u (/ n D) u (L n B) = {0},
(/ n A) u (/c n 4) u (/ n c) = {1}

and
(/ n A) u (/ n D) u (L n >i) = (/ n B) U (K n B) U (/ n c) u {l},

where 1 £ (/ H B) U (K C\ B) U (/ D C). The second of these equations reduces to
/ Dy4 = {1} and then it is easy to infer that

; = (;nB)u{i}, i = (inA)u(inD), A = (inA)u{i},

B = (JnB)U(LnB) and (Id D) U (Lfl B) = {0}.

If Oe /HD, we obtain 7 = BU{1}, / = (/n>l)U{0} and A = (I HA) U {1},
which is (c). The case where 0 e L D B is the (/B)(/,4)(/CC)-variant of this.

The lemma is proved.
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3. Lemmas on characters

The results of this section may be stated and proved in terms of Brauer
characters, but for ease of reference later we shall present them in module-
theoretic language, using the notation of § 1. Most of the results in this section
are simply variations of results proved in [6] and independently in [4].

LEMMA 3.1 (cf. [6, Lemma 3.2]).

(a) Vi 0 Vt has composition factors V? (twice) and Vi+V

(b) V^0 Wj has composition factors Vt (three times), Vf+l (twice) and V* 0 Vi+V

(c) Vi;0 V,: 0 Vt has composition factors Wt (twice), F (twice) and V{iti+1).
(d) W,0 Wj has composition factors F (four times), Wt (twice), Wi+U V{u+i)

(twice) and V*u+1} (twice).

(e) Vi®Vi® V?+i has composition factors V*u+l) (twice), F and Wi+l.

Proof For any finite-dimensional vector space E over F, £ 0 E has a natural
filtration with factors A2(£), £1( A2(E), so (a) is immediate from this and
the fact that since V is 3-dimensional, there is a natural isomorphism A2(V) =
V* 0 A3(V). The other parts follow easily from (a) and (1.1).

Later we shall return to the modules of Lemma 3.1 and study their sub-
module structures. We shall denote the projective cover of the simple module
v, 0 K; 0 wK by P(V, 0 v; 0 wK).

LEMMA 3.2.

WN, if U = 5>L3(Z ),

(a) WN9V"-{P{V) , /C = SU3(2'»).

(b) / / / and J are disjoint, proper subsets of N, then

wN (8> (v, <g> v;> s P(V, <8> v ; <s> w
(c) Wt®WN = P(W^{i}) ®WN® WN.

Proof These are all consequences of [6, Lemma 6.1]; for (c) it is necessary
that m > 1.

The above lemma, though character-theoretic in nature, has powerful implica-
tions about modules. For example, from (b) we may deduce that any tensor
factor of WN 0 (V, 0 V*), such as V, 0 WK, must have a simple head and a
simple socle (the socle of a module is the maximal semisimple submodule and the
head is the maximal semisimple quotient, namely the quotient by the radical).
Lemma 3.2 will often be applied in this way.

We define the mass of the simple module V, 0 Vy* 0 WK to be |/| + |/ | + 2 \K\
and the mass of an arbitrary FG-module to be the maximum of the masses of its
composition factors. We observe that mass is preserved when taking duals. Galois
conjugates and r-conjugates. The following statements follow from Lemma 3.1
by an easy induction.
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LEMMA 3.3. Let (I, J, K) and (A, B, C) be triples.

(a) IfielUKthen

mass(V; <8> (V, <8> Vj (8) WK)) ^ \I\ + \J\ + 2 \K\.

(c)

»vi7/i g îifl/iry if and on/3; */ (/ U K) D (A U C) = 0 = (/ U K) D (B U C).

In the following lemma and also later, when we are interested only in the
isomorphism classes of the composition factors (or, more generally, filtration
factors) of a module, we shall usually ignore both the multiplicities and the order
of the factors.

LEMMA 3.4. Let (I, J, K) be a triple and i e N.

(a) Vt (8) (V/ <8> V* <8) WK) has no composition factor of the form WT with
\T\ > \K\ + 1, and none with \T\ > \K\ if i e K.

(b) V̂r ® (V, <8> V* <8> WK) has no composition factor of the form WT with
\T\ > \K\ + 1, and none with \T\ > \K\ if i e K.

Proof, (a) We use induction on \I\JJ\JK\ and, given | /U/U/C| , on \K\. We
may assume by taking Galois conjugates that / = 0. All statements are obvious if
0 ^ / U / U ^ , so we shall consider the cases

(i) OeJ, (ii) 0 e / and (iii) OeK.

(i) By (1.1), we have

v0 ® (v, ® v ; <8> wK) = (v, <8> v^{0} e wK)
and neither of these simple modules is WT for |T| > \K\ + 1.

(ii) By Lemma 3.1 (a), the composition factors of

v0 <g> (v, 0 v; ® w^) = (v0 0 v0) ® (vA{o} ® v ; ® H ^ )
are VA{0} <S> V*u{0} <S> H -̂ and those of Vx <S> (VA{0} <S> Vj" <S) W/c), so induction on
|/ U / U K\ applies (after conjugation by o~l).

(iii) By Lemma 3.1(b), the composition factors of Wo (8) (V, ® Vf ® WK) =
(Vo ® Wo) ® (V# ® v ; ® W^{0}) are V/u{0} (8) Vy* ® W^{0}, those of

and those of V̂  ® (V/<8> ^*u{o} ® W^{0}). We can apply induction on | /U/U K\ to
the second last of these (suitably dualized) and induction on \K\ to the last module,

(b) If 0 e / U /, say 0 e /, then

wQ ® (y, <8) v ; <8) w o = v0 ® (vA { 0 } ® v ; <8> ^ u { 0 } )
and we have finished, by (a). If OeK, we use induction on \K\. For K = {0},
Lemma 3.1(d) gives the composition factors of (Wo ® Wo) <8> (V, <8> V^) as
Wo <8> V# <8) v ; , V, (8) v ; , those of V, <8> (V/u{0} ® v;>, those of V? <8> (V, <8> VJU{0})
and those of Wx <8> (F7 ® VJ), all of which are covered by (a).
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If \K\>1, the composition factors of (IVO® Wo) ®(K,® K,* <g> W^oj) are
V# ® V; ® WKMO,, V# <8) V; <8> WK, those of V, ® (V, <g> V,u<0) ® W^|o}), those of
Kf ® (V, ® V,u{0} <S> W*\{0}) and those of W, ® (V, ® Ky* <8) WV{()}). The result is
true for the last module by (a) and for the other two non-simple modules by
induction. This completes the proof of the lemma.

We end this section with a special case of Theorem 4.5 of [6].

LEMMA 3.5. Let (I, J, K) be a triple.
(a) / / / and J are proper subsets of N with / U / =£ 0 , then V, ® V * is not a

composition factor of {V, <8> Vf) <g> (V, <8> V?).
(b) VN <8> VN has a unique composition factor isomorphic to VN if G = SL3(2"')

and no such composition factor if G = SU3(2'").

4. Lemmas on modules

Let / denote the Jacobson radical of FG. By the Loewy layers of an
FG-module M we shall mean the sequence hd(Af) = MUM, JM/J2M,..., and by
the socle layers the sequence soc(A/), soc2(A/)/soc(A/),..., where soc'(M) is
defined recursively as the preimage in M of soc(M/soc'~'(A/)). Thus, for a
uniserial module the Loewy layers are the socle layers in reverse order; we shall
call the Loewy layers of such a module its series.

We begin with a simple observation of a very general kind which will provide
the basic mechanism for the inductive parts of the proof in § 5 of the theorem. It
is a more general form of Alperin's induction step used in [1] and [8].

LEMMA 4.1. Let H be a finite group, k an algebraically closed field, L and M
simple kH-modules and d = dim* Ext{H(L, M). Let X be a kH-module with head
isomorphic to L and maximal submodule isomorphic to the direct sum of d copies
of M. Suppose S is a kH-module such that L<8)kS is semisimple, and let E be a
simple quotient of M®kS. Then

HomkH(X®k S, E) = HomkH(L ®* 5, E)

implies that d =£ dim* Ext}w(L <8>* 5, E).

Since the Loewy length of X is at most 2, the condition of the lemma is
equivalent to

(4.1') HomfcW(Z, soc2(5* ®k E)) = HomkH(L ®k S, E),

which is how the lemma will sometimes be applied. Most frequently, we shall
have HomkH(L ®k S, E) = 0, and we shall actually check the stronger condition

(4.1") Hom*^*, S* ®k E) = 0,

by checking, for example, that L is not a composition factor of S* <8)k E.
The situations we have in mind are when L = V, <S> V* <S> WK and S is chosen to

be either V, ® Vf or Wt for t$ IU / U K.
It will often be necessary to consider modules like X in Lemma 4.1, so for any

two simple FG-modules L and M we introduce the notation d(L, M) =
dinv ExtJrC(L, M) and X(L, M) for the (unique up to isomorphism) FG-module
with head L and maximal submodule a direct sum of d{L, M) copies of M.
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REMARK 4.2. At this point we wish to make a further observation about the
automorphism r. We consider FG-modules M such that M* = Mr. As we have
already pointed out, these include the simple modules, and hence also their
projective covers and direct sums and tensor products of any of these. Given such
a module M, suppose it has a quotient Q with the same property. Then by
duality, Q* is a submodule of M* and by r-conjugacy, Q is isomorphic to a
submodule of M. This additional symmetry implies, for example, that the Loewy
layers and socle layers of such a module are the same, that is, M/JM = soc(A/),
JM/J2M = soc2(M)/soc(M), etc. We shall make use of these properties many
times, starting with the next lemma.

LEMMA 4.3. We have the following statements:

(a) Vj®Vj is uniserial with series Vf, Vi+X, Vf;

(b) Vj <8> W{ has head and socle isomorphic to V{. It has a quotient and a
submodule isomorphic to Vf <8> Vf;

(c) Vi<8) Vt<8) Vi; = Wti © Wt; © Lh where L, is uniserial with series F, V{ifi+l), F;

(d) Vt ® V, ® Vf+, has Loewy layers V{*,./+1}, F © Wi+U V*{u+l).

Proof. The composition factors are given in Lemma 3.1. Part (a) follows from
Remark 4.2 and the calculation

HomFC(V;. (8) Vh Vi+1) = Honv c (K, Vf ® V/+1) = 0.

(b) That Vt ® V̂  has a simple head and socle follows from the fact that it is a
tensor factor of Vt ® WN and Lemma 3.2(b). Since V; <8> V; <g) Vf = K © (V, <8) Wt),
by (1.1), and since, by (a), (V; <g> Vi) <8> Vf has a quotient V* <S> Vf which, again
by (a), is uniserial of length 3, it follows that Vf <8> Vf is a homomorphic image
of Vi <S> Wt. In view of Remark 4.2, (b) is proved.

(c) We have

HomFC(V; ® K ® Vh Wt) = HomFC(V; ® Vh Vf <g> W,),

which, by (a) and (b), has dimension not less than 2. Since W-, occurs twice as a
composition factor of V, ® V, <8> Vj, it follows from Remark 4.2 that V̂  © W; is a
direct summand. The structure of a complementary summand now follows from
the composition factors and the calculation

HomFC(K (8) Vt ® Vt, V{(,/+1}) = HomFC(V; ® V,, Vl+l © (V,+1 ® W,)) = 0,

using (1.1) and (a).
(d) By (a), we know that (Vi<8)Vi)<g)Vf+l has a filtration with factors (in

order)

The result therefore follows from the calculation

HomFC(V; ® VJ ® Vf+1, F © Wi+l) - HomFC(V; ® Vf+1, Vf © (Vf (8) W,+l)) = 0

and Remark 4.2.
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LEMMA 4.4. We have W( ® Wt = Wt (B Wt (B Dh where D, is an indecomposable
module with the following properties:

(a) hd(A) = ̂  = soc(A);
(b) /(A) has two filiations:

0c(2,c/?(c/(D,.)
with

and
O^QfczRJ

with

QJ^LJ, Rl/Ql^V*®V*®

(c) we have Qt c RJ, Q] c Rh 0, n QJ = soc(Df) and Rt + RJ = / (A) .

Proo/. We may assume i = 0. First, we have HomFC(Wo <S> Wo, F) =
HomFG(W0, Wo) = F. Next, we compute HomFG(W0 <8> W ,̂ Wo). Since

and

(V0 (g) V* (g) Ko <g> Vo*, K, ® ^0*)

(V0 ® Vo ® Vo, Vo^Vo® Vo),

which, by Lemma 4.3(c), is 6-dimensional, it follows easily that

HomFG(W0®W0, Wo)

is 2-dimensional. Since Wo occurs twice as a composition factor of WQ^WQ,
Remark 4.2 implies that Wo <8> Wo has a summand isomorphic to Wo 0 Wo.
Let Do be a complementary summand. By Lemma 3.2(c), we have

from which we see that

(4.5) D0®

This shows that Do has simple head and socle, which we have already seen must
be F, proving (a). Let n be the projection of ( V o ® ^ ) ® ^ ® ^ * ) onto Do.
The socle series of V% <8> VQ induces a filtration

0 <= £ <= C <= (Vo ® vy ® (V£ ® y*)

of (Vo®Vo*)<8>(Vb®KS) w i t h 5sVo®Vo®Vo and C/fi s Vo® Vo® V*. We
define R0 = Jt(C) and Qo = ^(5). By Lemma 4.3(c), B = Z®L, where Z =
WQSVVO and L = L0. Clearly, ZcKerjr . We claim that n\L is injective. Since
V{0 1} occurs twice as a composition factor of both Do and of
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we see from the structure of Lo that J(L) £ Ker x. Then since soc(D0) = F, we
cannot have L n Ker n = soc(L) either, so our claim is true. Thus Q0 = L0. The
induced map It: C/B^D0/QQ is also injective, since soc(Vr

0 <S> Vo <8> V*) = V*o>1},
by Lemma 4.3(d), and by comparing the composition factors of DQ/QQ and
(V0<8> Vo) <8> (VO <8> Vo), we see that V*0>i) is not a composition factor of ker jr.
Thus, Ro/Qo= Vo® Vo® V*. Now by considering the composition factors of RQ,
we see that it is a maximal submodule of J(D0) with J(D0)/R0 = V{01). The
existence of the second filtration follows from the fact that Do is the unique
non-simple indecomposable summand of Wo (%)W0 = (Wo <8> W0)

T, so that Do = DQ.
Thus, (b) is proved. Since Ro and RQ are distinct maximal submodules of J(D0),
their sum equals J(D0), and since F is the only module isomorphic to both a
submodule of Lo and a submodule of LI, we have Qo n Ql = soc(D0). Finally,
since Ql = Ll has no quotient V{0>1} =J(D0)/R0, we have Q 5 c / ? 0 and similarly
Qo&Ro, proving (c).

It is often helpful to keep the following pictures of modules in mind (although
we shall not attempt to use such pictures in our proofs):

V *«•.«•+1}

V* F • / \
VQVr.v,^ Lr.vlu+l) v,®vt®vr+l: F wl+l

V* F \ /
*

/ \ / \
Dt: F Wt+l F

\ / \ /
y .+ V?,,+u

\ /
F

LEMMA 4.6. Let / c { f ) i + l ) . . . ) j + m - l } c f s j . Then V, <£> Vy is uniserial.
Moreover, if J = {i, i + 1, ..., i + k}, with 0 «£ fc ** m — 1, then the series <?/ V, <8> V,
is

V* 6b V, ., V* . 6b V, -, .,• V* , V . V* V*

® V • • V* 6§ V

Proof. We may assume i = 0. It is enough to prove the second statement since
Vo <8> Vj is a tensor factor of Vo ® VN. We proceed by induction on k, the result
being true for k = 0 by Lemma 4.3(a). We assume k 2= 1.

Now V0<8>V{0 *r} = (Vo <E> Vo) ® V{1 *.} has a filtration (induced by the socle
series of Vo ® Vo), with factors (in order)

The top and bottom factors are simple and by the inductive hypothesis, the
middle factor is uniserial with series

K i < # K{2 A } , • • • , V k> Vk + \> y k , •••> V \ <> ^ { 2 fc}j



276 PETER SIN

so the lemma follows from the calculation

HonV c(V0 <g> V . . , f c } , v* ® v(2 * > ) a HomF C(y{ 0 k), Vf0>1) <g> V{2 k)) = 0.

LEMMA 4.7. V^ « nof a composition factor of soc2(V/v <S> V^).

Proof. By Lemma 3.5(b), we may assume G = SL3(2
W) and in that case we

know that VN ® VN has a unique composition factor isomorphic to VN. By Lemma
4.6, the uniserial module ^ ^ 1 ^ = (Vx <8> VM{0}) ® Vo has a unique filtration

OcJTcycV,®!^

such that Y/X = Vo <8> Vo. Now V, is a composition factor of Vo ® Vo. Therefore,
in the induced filtration

of VN ® VN, the unique composition factor VN occurs in the factor

(Y/X) ® FM { 1 } s (Vo (8> Vo) (3) VM{1}.

We claim that the lemma will be proved as soon as we show that

(1) H o n W V m (Vo ® Vo) ® VM(l}) = 0 and
(2) HonvG(soc(VJ ® VM{1}), VN ® Vw) = 0.
Indeed, (1) implies that V)y is a composition factor of

which in turn implies (by Lemma 3.1 (a)) that any simple submodule of
(Y/X)<8) VJSA{I} is isomorphic to one in SOC(VQ ® V/v\{i}). Then (2) implies that
soc((Y/X) <8> VM{1}) maps injectively into (VN ® VN)/(X + soc(V^ <8> VN)), which
shows that VN is not a composition factor of soc2(Vyv <8> VN).

It therefore remains to check (1) and (2).
(1) We have

H o n W V * , Vo (g) Vo ® VM{1}) s HomFC((V0* <8> Vo) ® VW{0}, Vo ® V ^ . j )

= HomFC(VM{0} 0 (VM{0} 0

= Homf C( W { 0 } ® VJ, V/v\{1

0 HomFC(VM{0} ® Ŵ o, Vo

The first term in the last line is obviously zero, and the second is zero because by
Lemma 4.6, Vo® V^{1} is uniserial and, using Lemma 4.3(a), one sees that its
socle is Vo <8> V{2 w_1}.

(2) We have Vo* ® VM{1} = V^{0>1> 0 (V^{0.1} ® Wo). By Lemma 3.2(b) and
the remark following it, both of these direct summands have simple socles, which
we can determine using Lemma 4.3(b), yielding

soc(v0* <g> v M { l } ) = vM { 0 , 1 } e v M { 1 } .
By (1.1), we obtain

HomFC(VM{0,1}, VN ®VN)= © HomFG(Wr ® Vfo.,}, VN) = 0
TcN\{0,l)

and
HomFC(VM{1}, V ^ ^ V ^ ) ^ 0 HomFG(WT®V*{l), VN) = 0.

7-cM{l)

Thus (2) holds and the lemma is proved.
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5. Proof of the theorem

As in [1] and [8], our plan will be to determine ExtJrC for 'maximal' simple
modules, in this case W^^ and Vt <8> W^{i}} for / e N, and then to reduce the
general case to these with the aid of Lemma 4.1.

We keep the notation of Lemmas 4.3 and 4.4.

LEMMA 5.1. Let (I, J, K) be a triple. Then

Extic(WM{o>,V;®V;®W*)sF if K = N\{O,1} and {/, /} = {0, {0, 1}},

and is zero otherwise.

Proof. By (4.5), we have Do ® WM{0} = P(W^ { 0 ) ) . Since hd(D0 ® WM{0}) =
hd(Z)0) <8> W^op we have JP(W^{0})=J(D0)<S> WM{0}, so the lemma is equiv-
alent to

(5.2) hd(/(D0) <g> WV{0}) ^ (V{0,,} ® WM{0>1}) 0

By Lemma 4.4(c), 7(Z)0) has homomorphic images V{0A} and V*o>1}, so by
Lemma 4.3(b), the right-hand side of (5.2) is certainly a homomorphic image of
/(Do) <8> Wyv\(0}. Since /(Do) = /?0 + ^o» the lemma will be proved once we
establish the following statements:

(1) (Ro/Qo) ® WV{0} has a simple head;

(2) Qo ® ^N\{O} E / 2 (D 0 <S> W^{0}).

Indeed, it is immediate from (2) that (Qo + Ql) ® Wyv\{0} c / 2 ( D 0 ® WM{0}), and
from (1) that the head of ((Ro + Rl)l{Q0 + Ql)) <S> W^{0) is a direct sum of two
simple modules. It remains to prove (1) and (2).

(1) By Lemma 4.4(b), we have Ro/Qo = (Vo® VQ) <E> V*x, which by Lemma
4.3(b) is isomorphic to a quotient of V% <8>W0<8>Vt. Thus, (Ro/Qo)I® VKM{0}

is isomorphic to a quotient of (VQ <8> V*1}) <S> WN, which by Lemma 3.2(b) has a
simple head for m > 2.

(2) Since by Lemmas 4.4 and 4.3, Qo and RllQl have no non-zero homomor-
phic images in common, we have (Qo + Qo)/Qo^J(Ro/Qo)- Then by (1) applied
to Rl/Qo and by (4.5), we have

((Go + QDIQl) ® w^{0] s/((/?5/G5) ®

Also, by Lemma 4.4 and (4.5),

(Go n G5) ® ^M{O} = soc(D0) (8) WM{0} = soc(Z)0

Together, these imply (2), so the lemma is proved.

COROLLARY 5.3. For 0 e T c N we have

(a) soc(Wo ® WV) = Wr 0 Wr 0

(b) soc2(W0 <g) Wr)/soc(W0 ® WT) = soc((K{0>1} ® Wn{0}) 0 (Vf0>
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Proof. Part (a) follows from Lemma 4.4(a) and (4.5). It is clear from Lemma
4.4 and the self-duality of DQ that

soc2(W0 0 W0)/soc(Wo 0 Wo) = soc2(D0)/soc(A>)

has at least two simple summands. By Lemma 5.1, soc2(Wo0 WN)/soc(WQ 0 WN)
has two simple summands. Now since Wo 0 WN = (Wo 0 WT) 0 W^-p,
Wo 0 WT = (Wo 0 Wo) 0 Wn{0}, soc(Wo 0 W*) = soc(Wo 0 Wr) 0 WMr and
soc(Wo 0 WT) = SOC(WQ 0 Wo) 0 Wn{0}, it follows that the second socle layer of
(Wo 0 WT) has two simple factors, which are then easily determined from Lemma
4.4 and Lemma 4.3(b).

LEMMA 5.4. Suppose 0, l ^ c A f . Then

Ext],c(V{0(1} ® WK, WK)szF^ ExtFG(V(0>l) 0 WK, WKU{1}).

Proof. From Lemma 4.3(a), we see that Ext]rC(V{oJi}, F)=£0. The lemma will
therefore follow from Lemma 5.1 and the inequalities

d(V{0,i}®WK)WK)^d(V{0A}®WK,WKU{1}) and

d{V{0A} 0 WK, WKUW)^d(V{0A} 0 WKU{t}, WKU{1}), for t*KU {0, 1}.

We shall apply Lemma 4.1. In order to prove the second inequality of (5.5), we
must check that

V 1 } 0 WK, WKU{1)), soc2(Wt 0 WKU{t))) = 0.

By Corollary 5.3, V{0>i} 0 WK is not even a composition factor of

soc2(Wt®WKuU}).

The first inequality in (5.5) is equivalent by duality to

d(WK) V*{0,l}®WK)^d(WKU{1}, V*{0,l}®WK).

We shall apply Lemma 4.1 again. We note that V*o,\} 0 WK occurs in

by Lemma 4.3(b). Thus, by Lemma 4.1, a sufficient condition for the last
inequality to hold is

HomFG{X(WK, V*{0A} 0 WK), Wi 0 (V*{0A) 0 H^)) = 0.

Now Wx 0 (V*o 1} 0 WK) has a filtration (induced by a composition series of
V? 0 W^ with factors isomorphic to Vfo.i> ® WK, V2 0 (VJ 0 WK) and

VI ® (Vx ® Vt 0 WK).

There are obviously no (non-zero) homomorphisms from X(WK, V*0l) ® WK)
to the first of these three modules. The second and third modules are simple if
2 $ K, since m > 2, so there are no (non-zero) homomorphisms in this case either.
If 2 G K, then there are no (non-zero) homomorphisms from X(WK, V*0A) 0 WK),
because by Lemma 3.2(b) and Lemma 4.3(b), their socles are isomorphic to
V2® Vo 0 V*\{2) anc* *̂o,2} ® V\ ® W/c\{2) respectively. This completes the proof
of the lemma.
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LEMMA 5.6. (a) / / (/, J,K)is a triple and / U 7 U K c T cAf, then

ExtFG(Vl®Vj®WK>WT) = O.

(b) For any S,K<zN, we have Extlc( W5, WK) = 0.

Proof. Part (b) follows from (a) since ExtJ^Ws, WK) = Extl
FG(WsnK, WSUK).

In order to prove (a) we may assume by taking Galois conjugates that 0$T. It
will suffice to show that

diy, <8> V* <8> wK, WT) =s d(V, <8> V* <8> W*u(0), Wr u ( O ) ) ,

because WN is projective. By Lemma 4.1, this inequality will be proved if we
verify that

& V; <8> W*), soc2(W0 <8> WTU{0})) =

This is immediate from Corollary 5.3, so the lemma is proved.

COROLLARY 5.7. For any triple (I, J, K) we have

Proof. We have

Ext)rC(V, 0 V7 <8> WK, V, <8> v ; <8> WK) = 0 ExtJ^W*, WT).

LEMMA 5.8. Lef I,J^N with IDJ = N and IHJ = 0. Then

ExtFG(WT, V,®V?) = 0

or Tciv,

Proof We shall argue by downward induction on |7"|, the result being true for
T = N. We are free to replace Wj- and Vt ® V* by their (simultaneous) conjugates
by T or field automorphisms, as the hypotheses and conclusion are not affected
and neither is the inductive hypothesis. It will suffice to find some i e N\T such
that

d{WT, Vt ® V7) ̂  d(WTUli), V, ® V*) = 0.

Since by Lemma 4.3(b), V, ® V* occurs in the head of W. ® (V, ® V*) for all
i e N, this inequality will follow from Lemma 4.1 if we can find / e N\T such that

HomFG(X(WT, V, ® V$), W{ ® (V, ® Vj)) = 0.

First suppose \T\ > 1. By taking appropriate conjugates, we may assume 0$T,
and then by Lemma 3.4, WT is not a composition factor of the right-hand side, so
we have finished in this case. Therefore, we may assume from now on that

Next we consider the case in which some conjugate of V, (8> V* is VN. Let us
take such a conjugate so that I = N. If 0 £ T, we choose i = 0. Then Wo ® VN =
(Wo® Vo)® Vf^{0) has a filtration with factors of the form V0®VN\{0},
V* ® VM{0} and (Vo ® Vi) <8> VM<O}- Since m > 2, the first two modules have no
composition factor WT. It is easy to see that the last module has no composition
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factor VN, so that any homomorphism from X(WT, VN) into it must factor
through WT. But we have

HomFG(WT, V*Q <8> V, <8> V{1 „ _ „ ) = Hom F C (W r ® ̂  V, <g> V{1 „_,>) = 0

by Lemma 4.6. Thus, if 0 <£ T, we have finished. If G = SL3(2"J), then VN is
invariant under field automorphisms, and so, since \T\ =s 1, we can always choose
conjugates with / = N and 0 $ T. If G = SU3(2

m) and T = {0}, we choose / = 1. It
is straightforward to check using Lemmas 3.1 and 4.6 that W{ ® V^ does not have
Wo as a composition factor.

We may therefore assume from now on that no conjugate of V, <8> V* by x or a
field automorphism is VN and that \T\ =s 1.

We claim that one of the following holds:

(a) there is some conjugate Vr ® V*. of V, ® Vy* with 0 e / ' , 1 e / ' and 2eJ'\

(b) for every conjugate Vr <8> V*. of V/(8>V7 such that Oel', we have l e / '
and2e / ' .

To see this, consider the set of conjugates Vr <8> K*» of V, ® V* with 0 e /".
Suppose there is one with 1 € /". Then since /" =£ N, we may choose the smallest r
with reJ". Conjugating by o~(r~2) yields a conjugate satisfying the conditions in
(a). Suppose then that for every conjugate Vr®V*<< such that 0 e / " we have
leJ". Fix such a conjugate. Then conjugating by ra"1 gives another conjugate
V,® VJ. with 0 e / ' . Thus, 1 eJ', which is to say that 2 el", so (b) holds. This
establishes the claim.

For Vr ® Vr as in (a), the composition factors of Wn® (Vr ® V*-) are readily
calculated to be Vr ® K;, Kn{0,,} ® Vr, Kn{Oll} ® v;. ® W,, KrM(U} 0 v;.u{Oil),
VA{0} ® Vrum{2) and V/^o} <8> Vru{0}\{2} ® M̂ 2. Since m >2, none of these is F
or W, for f e M

For Ky ®K*. as in (b), the composition factors of W0<8>(Vr®V*)
are Vr®Vr, Vn{0}u{1}® Vy\{1), ^n{0,2} ® Ky\{1}, K/A{0,2) (8) K,\{1} ® W2,
Vn{o)®V*'u{o}\{i} and V^{0) ® K;.u{0}Mi) ® W,. If m ^ 4 , none of these is F
or VV; for t e N.

We consider first the generic case m 5= 4. Suppose (b) holds. Let Vr <8> V*. be a
conjugate of V, <8> K* with 0 e / ' and let WT. be the corresponding conjugate of
WT. Since |T| =s 1, these can be chosen with 0 £ T'. We choose i = 0 and then the
above calculations show that WT. is not a composition factor of Ŵ  <8> Vr <8> V*•.

Suppose (a) holds. We choose a conjugate Vr ® Vr as in (a), and denote by
WT- the corresponding conjugate of WT. If T' =£ {0}, then we may choose / = 0 by
the above calculations. Suppose then that T = {0}. If 3 el', then we choose
i = 1, and may use the result of our calculation in Case (b) above (after
conjugating by a"1) to conclude that no composition factor is Wo. If 3eJ', then
we have 2eJ' and 3 eJ', and it is not difficult to see that there will be another
conjugate Vr®V$. satisfying (a) but with T"*{0} (for G = SU3(2"t), we
must remember that V, ® V* is not conjugate to VN). Thus, choosing this
conjugate places us back in the case where T =£ {0}. This completes the argument
for m ? 4 ,

Finally, suppose m =3. We can assume that T is either {0} or empty. If
G = SL3(2

3), we can conjugate by r if necessary so that V, ® V* is Vo <8> Vf <8> V*
or Vo ® V, <8> VI or Vo ® V,* <8> V|. We choose i = 2 in the first two cases and i = 1
in the last. Then it is easy to check that no composition factor of W, <8> V, ® V* is
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F or Wo. If G = SU3(2
3), we may assume V,0 Vf = Vo 0 V? 0 V2. We choose

i = 2. The module W2 0 Vo 0 V? 0 V2 = (W2 0 V2) 0 Vo 0 V\ has a filtration with
factors of the form V2 0 Vo 0 V?, V3* 0 Vo 0 Vf and (Vj 0 V3) 0 V« ® V?. Since
V3 = VQ, we see using Lemma 4.3(d) that there are no non-zero homomorphisms
from X(WT, VI0 VJ) into any of these factors. This completes the proof of the
lemma.

PROPOSITION 5.9. Let (I, J, K) be a triple and T^N. Then

ExtJ,c(Wr, V, 0 v ; 0 WK) = F

if ( ( 0 , 0 , T), (I, J, K)) is conjugate (by field automorphisms and r) to
((0, 0 , K), ({0, 1}, 0 , *)) or ((0, 0 , K U {1}), ({0, 1}, 0 , tf)), vv^ere 0, H K,
and is zero otherwise.

Proof. We may assume that Kc,T. If / U / U K c T, then we have finished by
Lemma 5.6. Suppose first that \T\K\ > 1. There is no harm in replacing (/, J, K)
and T by (simultaneous) conjugates, so we may assume without loss of generality
that 0 eI\T. Using Lemma 4.1, we shall prove the inequality

d(wT, v, 0 v; 0 wK) ^ d(wTU{0}, v, 0 v ; 0 wK).

Clearly, this will give a reduction to the case where / U / U / C c T . By Lemma
4.3(b), W0®(V,®V5®WK) has V,<S>V* <S>WK in its head. Since \T\>\K\ + 1,
Lemma 3.4 implies that

HomFG(X(WT, V, 0 V7 0 WK), Wo 0 (V, 0 Vy* 0 WK)) = 0,

so the inequality follows from Lemma 4.1.
The cases in which T = K and \T\ = \K\ + 1 require closer analysis. We have

seen in Lemma 5.4 that if the conditions of the proposition hold then the
cohomology groups are isomorphic to F as claimed, so it remains to prove
vanishing in all other cases. We therefore assume that the conditions of the
proposition do not hold. By Lemma 5.8 we may also assume that IUJczN
(where c= indicates strict inclusion). We first show how to reduce the case where
K= T to the case in which \T\ = \K\ + 1. Again, by taking Galois conjugates if
necessary, we may assume that OelUJ and 1 £ / U / . Applying r if necessary, we
can also assume 0 e /. We shall show that

d(WK, V, 0 V* 0 WK) ^ d(KTU{0}> Vj 0 V* 0 WK).

Since Wo 0 (V, 0 Vy* 0 W*) has V,®V5®WK in its head, the inequality will
follow from the equation

HomFG(X(WK, V, 0 V*j 0 WK), Wo 0 {V, 0 V* 0 WK)) = 0.

Now Wo 0 (V, 0 V* 0 WK) has a filtration with factors isomorphic to

V, 0 V7 0 WK, VI 0 (VA{0} 0 VJ 0 WK)

and Vx 0 (VA{o} 0 V/*u{0} ® WK). lfl$lUJUK then all three of these modules
are simple and not isomorphic to WK. If 1 e K, then the first module is unchanged,
and by Lemma 3.2(b) and Lemma 4.3(a), the socles of the second and third mod-
ules are isomorphic to VA{0} 0 V0*u{1} 0 W^(1> and VA{o)u{1) 0 Vju{0} 0 W^{1}

respectively. Thus in all cases there are no (non-zero) homomorphisms from
X(WK,V,®VJ®WK).



282 PETER SIN

We are reduced to considering the case where T = KU{t}, for some t$K.
This time it will be convenient to take Galois conjugates so that t = m — 1.
Our assumption is that {/, /} =£ {0, {m -2, m - 1}}, and we must prove
that ExtJrC(^u{m_1}, V, ® VJ? ® WK) = 0. We shall show that we can find
/ e ( / U / ) \ { m - l } such that

d(wKU{m_l}, v, <8> v ; 0 w«) ^ </( w*u{m_1>l}, v, <8> v ; ® M^),
which will put us back into the case where |T| > \K\ + 1.

We claim that one of the following must hold:

(a) there exists i e (/ U J)\{m - 1} with i + 1 $ IU / U K;

(b) there exists i e (/ U/)\{m - 1} with i + 1 e K;

(c) / U / = {m — 1 — s, m — 1 — s + 1,..., m — 2, m - 1}, for some 5 with 1 ^
s^m-2.

This is easy to see; let 5 be the set of elements x of I\JJ\{m -1} such that
x + l$IUJ\{m-l}. Then 5=^0 since IUJ^N. If 5 contains an element
different from m — 2 then (a) or (b) will hold. If 5 = {m — 2} and neither (a) nor
(b) holds, then m-leIUJ and (c) must hold.

We shall prove the inequality using Lemma 4.1 by showing that for a suitable
choice of ie(IUJ)\T,

HomFG(X(WKU{m_1}, V, <g> V* (8) WK), Wi (8) (V# 0 V? (8) WK)) = 0.

Suppose first that it is possible to choose i as in (a) or (b). We may assume that
ielby conjugating everything by r if necessary.

Suppose (a) holds. Then the composition factors of Wi (8) (V, <8> V* <8> WK) are
Vt®v;®WK, VAW ® V;u{,+1} ® W* and V/U{I+1} (8) v; u { , } <8> Wfc, none of
which is WKU{m-i}, so we have finished in this case.

If (b) holds, then Wt <8> {V, ® V* <8> W^) has a filtration with factors isomorphic
to V, <8> v ; <8) M^, (v ; + 1 (8) Wi+l) ® (VA{/} (8) v ; <8» W^{/+,}) and

The first module is simple and by Lemmas 3.2(b) and 4.3(b), the socles
of the second and third are isomorphic to VA{l} <8> V*u{/+1} <8> Wr

/f\{/+1} and
VA{/}u{i+i} ® ^*u{i> ® Wx\{l-+1} respectively. Therefore there are no (non-zero)
homomorphisms from X(WKL){m_1}, V, <8> V* <8> W^) into any of the three filtration
factors.

Finally, if it is not possible to choose / as in (a) or (b), then (c) must hold. We
choose i = m — 2. We may assume that m — 2 e /. Since by assumption we do not
have / = {m - 2, m — 1} and 7 = 0 , we must have either m — 1 € J or |/ U / | =
5 > 1 .

If m - 1 eJ, then there is a filtration of Wm_2 <8> (V, <8> K? <8> W*) with factors
isomorphic to V, <8> V* <8> W*,

v : _ i ® ( ^ A { W - 2 } <8> v ; <8> wK) = ( v * _, <8> v*m _ o <

and
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The first of these factors is simple and the third is semisimple and neither has a
factor WKU{m_l}. By Lemma 4.3(b), the second filtration factor is isomorphic to a
submodule of

_0 <8> (VHm-2) <8> VX{m-i) ® WK)

® V/\{m-l}

which, by Lemma 3.2(b) and Lemma 4.3(b) has socle

V/

Therefore, there are no (non-zero) homomorphisms of

into any of the three filtration factors.
We may therefore assume that m — lei, and hence that |/ U / | > 1. Then we

have a filtration of Wm_2 <8> {V, <8> V* <8> W*) with factors of the form

v, ® v ; <8> w*,
(vv ,_ 2 , m _ 1 } <8> v ; 0 w*) e (KA{m_2>m_1} ® v ; ® ^ u { m _ 1 } ) ,

and

The first two factors are semisimple and have no factor WKU{m-l)t as | / U / | > 1,
and the third filtration factor has simple socle V/\{m_2,m-i} ® Vju{m_2,m-i} ® WK,
by Lemma 4.3(b) and Lemma 3.2(b). Therefore, there are no (non-zero)
homomorphisms of X(WKU{m-iy, V, <8> V* <8> WK) into any of the three filtration
factors.

The proposition is proved.

LEMMA 5.10. Vt: <8> V, <8) Wt has a direct summand isomorphic to Vi+X <S> Wh

Proof. By Galois conjugation we can assume that i = 0. By Remark 4.2, it
suffices to show that Vx <8) Wo is a homomorphic image, since Vo (8> Vo ® Wo has a
unique composition factor Vx <8> Wo. By Lemma 4.3(d), Vo<8 Vo® V* has a
uniserial quotient with series V*01}, F. By Lemma 4.4, W0®W0 has a uniserial
submodule with series V*0l), F. Since ExtJrC(K*Oji}, F) = Fby Lemma 5.4, these
uniserial modules are in fact isomorphic. Thus,

Wo, V, <8) Wo) = HomFG(Vr
0 <8> Vo ® Vf, Wo <8> Wo) ̂  0.

LEMMA 5.11. ExtJ.G(V^ V* <8> Vl+1) = 0.

Proof. We may assume that i = 0. By Lemma 5.4, Extl
FG(Vo, VX) = F. By

Lemma 4.3(a), V0®V0 is uniserial with series, V%, Vj, KQ- Thus, if
E x t ^ V o , ^o <8> Vi) = Extj^Vo <8> Vo, Vi) were not zero, there would exist a
uniserial module U such that U/soc(U) =J(V0<S) Vo) and

JU = (V0®V0)/soc(V0®V0).

Therefore, by Lemma 5.10, we have

0 = (V, (8) Wo) 0 (V£ ® Wo) = U/soc(U).
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By Corollary 5.7, we have Ext)rG(V, ^Wo.V,® Wo) = 0, so we deduce that

U® Wo = (V, 0 Wo) © (V, <8) Wo) 0 (Vo* 0 Wo).

Thus, HomFG(U 0 Wo, Vi 0 Wo) is 2-dimensional.
On the other hand, from the structure of U/soc(U) and JU given above and the

structure of VO0 V O 0 V? given in Lemma 4.3(d), we see that the Loewy layers
o f£ /0V?a re

U V*{QA}, Few,.

Thus, F is the only homomorphic image of U 0 V* with no composition factor
Wx. From the filtration OCZQQCZRQCZJ(D0) of Lemma 4.4(b), we see that the
unique composition factor Wx of W0®W0 is a composition factor of RllQl =
Vo*®Vo®Vi. Since soc(V0* 0 ^o 0 Vi) = V{Otl}, by Lemma 4.3(d), it follows
that any submodule of Wo 0 Wo which has Wx as a composition factor also has
V{Oii} as a composition factor. Since the latter is not a composition factor of
f / 0 V*, we conclude that the only (non-zero) homomorphisms of U®V* into
Wo 0 Wo have image isomorphic to F. Thus, from the structure of Wo 0 Wo given
in Lemma 4.4, we have

HomFG(U®VlW0®W0) = F,

which is contrary to our previous calculation. Therefore, U does not exist and the
lemma is proved.

LEMMA 5.12. Vt\® W-, has Loewy layers

vh vf+u v;e(v*0v/ + 1 ) , v*+u vh

Proof. We may assume that / = 0. By Lemma 4.3(b), Vo 0 Wo has a submodule
5 and a quotient Q, both isomorphic to Vo 0 VQ. Since 5c / (V o 0W o ) , by
Lemma 4.3(b), and since Vo occurs three times as a composition factor of
VO0 Wo, it must be the case that the image of hd(5) in Q is soc(Q). Thus, the
Loewy length of VO0 WQ is at least 5. It is then easily seen from Lemma 5.11 that
the Loewy layers are as claimed.

The structure of V 0 W as a module for SL3(F) has been given previously in
[3]-

In the following two lemmas we need to assume that G ^ S L ^ ) . Lemma 5.13
is false for this group, but the statement of Lemma 5.14 is true and will be proved
in the supplementary Lemma 5.14' below.

LEMMA 5.13. Assume G *SU3(8). Suppose 0$K^N. Then

Ext),c(WK, V2 0 (Vo* 0 WK)) = 0.

Proof. H2$K then the result is a special case of Proposition 5.9. We assume
2 e K. Then V2 0 (Vf 0 WK) has a filtration (induced by a composition series of
V2 0 W2) with factors (ignoring multiplicities and order) isomorphic to

V20Vo*0W^{2}, V3* 0 (V0* 0 W^{2}) and V,0 (VfOi2) 0 W^{2}).
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It will suffice to show that E\tFG(WK) - ) vanishes on each of these three modules.
For V2 ® VJ ® WK\{2} this is just Proposition 5.9 again. Next we note that by
Proposition 5.9, E\tFG(WK, —) vanishes on all modules of mass less than 2 \K\.
By Lemma 3.3(c), the second module can have as large a mass as 2\K\ only if
3$KU {0}, and if this is so then Proposition 5.9 gives the required vanishing.
For the third module, we may again apply Proposition 5.9 immediately if 3 ^
K U {0}. If V3 = Vo, then the module is V | <8> W*\{2} 0 V2* <8> W^{2}u{0} and Prop-
osition 5.9 applies. Finally, if 3eK, we get a filtration on V3<8> V*02} <S> W ^ j
(induced by a composition series of V3 <8> W3) with factors of the form

V3®V*{Oi2}®W,«{2.3}> v;®{Vto,2}®W«l2.3)) and V4<g> (V{*0,2>3} <g> W ^ O -

By Lemma 3.3(c), all of these factors have mass less than 2 \K\ except perhaps
the last one, which will have mass 2\K\ if W4 is not a tensor factor of WK and V4 is
not isomorphic to VQ. But then either V4 = Vo and the module is

(V{*2,3}0

or else the module is simple. In both cases Extl
FG(WK, ~) vanishes on it, by

Proposition 5.9.

LEMMA 5.14. Assume G =£ SU3(8). For 0, 1$ Kc.N we have

ExtJrC(Vf 0 WK, V% 0 V, 0 WK) = F.

Proof. We have

Now (V! 0 VO 0 WK has a filtration with factors (in order)

Vf 0 WK, V2 0 WK, V* 0 WK.

Also, (V! 0 VO 0 WK, being a quotient of (Vf 0 W{) ®WK = Vf 0 WKU{1), has
simple head and socle isomorphic to Vf 0 WK. Thus,

soc2((Vx 0 VO 0 W*)/soc((V, 0 VO 0 WK) = soc(V2 0 WK)

,.®WK if2$K,

Therefore, HomFC(V0 ® W ,̂ soc2((V, ® VO ® W^)/soc((V, ® VO <8> W,,)) = 0, so
we have an exact sequence

0-» ExtJ,c(V0 ® WJC, V? (8) W*)^ Exttc(V0 ® WK, (Vt <8) VO <8> WK),

which by Lemma 5.4 proves that ExtJrC(V0 <S> W ,̂ ( ^ ® VO <8> W )̂ # 0.
Suppose for a contradiction that rf(V0® W ,̂ (Vi ® V0<S> W^)> 1. Then

from the structure of (Vj ® Vv) ® W^ described above, and by Lemma 5.13
and Lemma 5.4, there would exist a module M with hd(M) = V0®WK and
J(M) = {Vx ® V0 ® WK.

We would then have, on the one hand,

HomFG(M 0 Vu WKU{1}) = HomFG(M, Vf <g> WKU{1)).

The composition factors of Vf 0 W/Cu{1} are Vf 0 W ,̂ those of V2<E>WK and
those of V|®(V1®W/f). Using Lemma 3.3(c), we can easily see that the



286 PETER SIN

first two modules have no composition factor Vo 0 WK (since m > 2). This is
also clear for the last module if 2$K. If 2eK then its composition factors are
Vi 0 VI0 W^{2}, those of V3 0 (Vi 0 W^m) and those of V3* ® (V{1>2} 0 W^{2}),
and now we can use Lemma 3.3(c) to see that none of these composition
factors is Vo 0 WK. Thus, HomFG(M 0 Vx, WKU(l)) = 0.

On the other hand, {MUM) 0 Vx = V0A 0 W* and

vx = {vx 0 vi 0 vx 0 wK) = w*u{1) e w*u{1) e (L, 0 wK),

by Lemma 4.3(c). By Lemma 5.4, ExtJrG(Vo^0 W*, WKU{]}) is only one-
dimensional, so M®VX must have W^u{1} as a homomorphic image. This
contradiction proves the lemma.

LEMMA 5.14'. Let G = SU3(8). Then

(a) Ext^(Ko*0V1,V1*) = F,

(b) ExtJc(Vj 0 Vi 0 W2, Vf 0 W2) = F.

Proof. We know by Lemma 4.6 that the group in (a) is not trivial. We shall
show first that d(V% 0 VX) V\*) ̂  d(V$ 0 ^ 0 W2) Vf 0 W2). By Lemma 4.1, this
follows from the fact that W2 0 W2 0 V* does not have VQ 0 Vx as a composition
factor, which is easy to check using Lemma 3.1.

Now we shall show that d(V£® Vx 0 W2) VX 0 W2) ^ 1, that is, that

HomFG(JP(VZ ®VX® W2), VX 0 W2) ^ 1.

By Lemma 3.2(b) we have

P{Vt 0 Vx 0 W2) = V5 0 V! 0 WN = (Vi 0 Wi) 0 Vo* 0 Wo

Now by Lemmas 4.3 and 3.1, we know that Vx 0 Wx has a filtration

0 c 5 l C J(VX 0 WO c V, 0 Wi,

where Sx = Vf 0 Vf and the head of Vi 0 Wi is isomorphic to Vi. It will therefore
suffice to check the following three statements:

(1) HomFG(J(Vx 0 Vo* 0 Wo 0 W2), VX 0 W2) = F;
(2) HomFG((J(Vx 0 Wx)/Sx) 0 VI 0 Wo 0 W2, V*x 0 W2) = 0;
(3) UomFG{V*x 0 VX 0 V^ 0 Wo 0 W2, Vf 0 W2) = 0.
Part (3) is immediate since VX 0 VX 0 VQ 0 WO0 W2 is a quotient of

P(VX 0 Vo* 0 W2).
In Part (2) we know by Lemmas 4.3 and 3.1 that the composition factors of

J(VX 0 Wx)/Sx are VI and Vf 0 V̂ , so (2) follows because by Lemma 3.2(b),
both V2*0Vo*0Wo0W2 and (Kf 0 V2)0 V% 0 WO0 W2 have simple heads
isomorphic to V* 0 Ko and Vf 0 V2 0 VQ respectively.

To prove (1) we consider the filtration

0c5 0 *c J{Vt 0 Wo) c Vo* 0 Wo

similar to the one above. Now

hd( Vo* 0 Wo 0 Vi 0 W2) = hd( Vo" 0 Wo) 0 Vx 0 W2,
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so J(Vl®VS®W0®W2)=J(Vt;®W0)®Vl®W2. Therefore, by considering
the subquotients in the above filtration, we see that (1) follows from the three
statements

Homw(K 0 (V, 0 W2), V? 0 W2) = F,

UomFG{(V0 0 Vf) 0 (V, 0 W2), Vf 0 W2) = 0

and
HomFC((V0 0 Vo) 0 (Vi 0 W2), V? 0 W2) = 0,

which are all easily verified.

LEMMA 5.15. Extj,c(V0 0 WM{0), Vo*0 V, 0 WM{0>1}) = 0.

Proof. By Lemma 3.2(b),

P( Vo 0 WM{0}) = Vo 0 WN = (Vo 0 Wo) 0

Since hd(V0 0 WN) = hd(V0 0 Wo) 0 W^{Otl}, we have

/P(K0 0 WM{0}) a/(Vo 0 Wo) 0

Now by Lemma 4.3(b), /(Vr
o0Wo) has a submodule 5 s V * 0 V * , and by

Lemma 5.12, we see that T = J(V0® Wo)/S is uniserial with series V*, V% 0 Vx.
Now 5 0 WM{0} is a quotient of V0®WN = P(V00 WM{0}), by Lemma 4.3(b)
and Lemma 3.2(b), so it has no quotient isomorphic to VQ 0 V] 0 W^^o.i}-
It remains to show that HomFC(r 0 WM{0}, VQ 0 Vx 0 WM(0>1}) = 0. We claim
that T is a homomorphic image of VI 0 VQ 0 VQ 0 VJ". From the structure of
Lt given in Lemma 4.3(c) and from Lemma 4.3(a), (VJ 0 K£ 0 VJ) 0 Kf
certainly has a quotient with composition factors (in descending order) V*
and F o ® ^ , so the claim will follow from Lemma 5.13 if we show that this
quotient is not semisimple. This in turn is immediate from the calculation

Honvc(V0* 0 Vo 0 V*o 0 V\, Vo* 0 Vi)
= Honvc(V0* 0 Vf, Vo 0 V,) 0 Homw(Vo* 0 Vo* 0 Vf, Wo 0 V,) = 0,

by Lemma 3.1(e).
Thus, in order to prove that HomFG(T 0 WM{0}, Vo 0 V, 0 W^{Otl)) = 0, it

will suffice to show that

Homw((K0* 0 VS 0 Ko* 0 Vf) 0 W^{0}, Vo* ® V, ® W^o.,,) = 0.

We have

HomFC(V0* 0 Vo* 0 Vo* 0 Vf 0 WM{0}, Vo* 0 Vx 0 WM{0>1})
= HonvG(V0* 0 Vo* 0 Vf 0 Wmo}, (V, 0 Wmo,1}) 0 (V, 0 WM{I))).

Now Vo 0 VQ is a quotient of Vo 0 Wo, by Lemma 4.3(a), so

(Vo*0Vo*)0V*0WM{O}

is a quotient of Vo 0 Vf 0 WN s P(V0 0 Vf 0 WM{(U>), by Lemma 3.2(b). Thus
the above space of homomorphisms is zero and the lemma is proved.

LEMMA 5.16. Let 0, 1 $KcN. Then
(a) Ext>c(V{0>1} 0 WK, V{*Otl} 0 WK) = 0,
(b) Extj,c(Vo 0 WK, Vt 0 V, 0 WK) = 0,
(c) Ext>G(V0 0 WKU{1}, Vt 0 V, 0 WO = 0.
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Proof. We shall first reduce (a) and (b) to (c). By Lemma 4.3(b),

has V% <8> V, <8> WK in its head. Also

HonvG(*(V{0>1} <8> W*, V*o,1} ® Wfc)/ V, <8> (V* (8) V, (8) M^)) = 0,

because by Lemma 3.1(a) and Lemma 3.3, (V, <8> V,) <8> V,? (8> W* has no
composition factor V{0>1} <8> WK. Therefore, by Lemma 4.1, we have

} ® ^ , V*o.,} ® W W ^ M ® Wfc, V* (8) V, <8> Wfe)

and (a) is reduced to (b) and (c).
Next, Wx <g> (Vo* <8> V, <8> W^) has Vo* <8> V, <8> W* in its head, by Lemma 4.3(b).

Also it has a filtration (induced by a composition series of V, ® W,) with factors
isomorphic to V£ <8> V, <8> WK, K | ® (V^ <8> VVK) and V2 ® (Kj, i l } ® M^). If 2 ̂  /C,
then these three modules are simple, because m > 2 , and not isomorphic to
Vo ® M^. If 2e K, then the first of the three is unchanged and since m > 2,
Lemma 4.3(b) and Lemma 3.2(b) show that the second and third have socles
isomorphic to V*02} <8> W^{2}, and K2<8> V"*o>1} <8> W^{2} respectively. Therefore,

HomFC(^(Vo ® WK, K5 ® V, ® W^), W, ® (V* ® V, ® WK)) = 0,

so by Lemma 4.1 we have

Hfc, Ko* ® V, ® H^) ̂ d ( V 0 ® W ^ , , , Vo* ® V, <g> W^).

Thus, we are reduced to proving (c).
We shall show that for r e N\(K U {0, 1}), we have

d(V0 (8) ^ u { 1 } , Vo* ® V, ® Hk) ^ d(Vo (8)

Then (c) will follow from Lemma 5.15. By Lemma 4.1, this inequality will be
proved if we prove that

> WKull), V% <8> V, ® WK), Wr (8) (V* <8> V, <8> WKU(r))) = 0.

The module Wr <8> (Vo <8> V, <8> WKL){r}) has a filtration (induced by a composition
series of Wr <8> W,.) with factors of the form V« <8> V, <8> W^u{r), V(* <8> V, 0 \yK,

(a) Vr + 1(8)(Vo*0V{ 1 > r }(8»^),

(P) V * ^ ® ^ , , } ^ ^ ® ^ ) , and
(Y) ^+i®(n*<8)^®M^),

so it suffices to show that there are no (non-zero) homomorphisms of

X(V0®WKU[l), Vo* <8> V, <8> WK)

into any of these modules. Clearly, we need only concern ourselves with (a), ((3)
and (Y).

(a) If r + 1 $ K U {0} a n d r ^ m - 1, the result is clear. If r + 1 e K, then by
Lemma 3.2(b) and Lemma 4.3(b), the module has simple socle

so there are no (non-zero) homomorphisms from A^VQ <8> WKL){X}, V% <8> V, <8> WK).
If r = m-l$K, we must consider the cases G = SL3(2

W) and G = SU3(2W)
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separately. For SL3(2
m), the module is (V{hm_x)® WK) ® (V{Xtm.l} ® WKKJ{0}),

so there are no (non-zero) homomorphisms. For SU3(2
m), the module is iso-

morphic to a submodule of

(Vo* ® Wo) ® V{x,m-X} ®WK = V(1>m_1} 0 Vo* ® W^u{0},

so by Lemma 3.2(b) and Lemma 4.3(b) it has a simple socle isomorphic to
V{lw_1} ® FQ ® W ,̂ so again there are no maps.

(|3) If r + 1 <£ A" U {0} a n d r # m - l , the result is clear. If r + 1 € K, then by
Lemma 3.2(b) and Lemma 4.3(b), the module has simple socle

v{1,r>r+1) ® v0* ® w M { r + 1 } ,

so there are no (non-zero) homomorphisms from

X{VQ ® W*u{i>, Vo ® Vx ® WW).

If r = m - i $ K, we consider the cases where G = SL3(2
m) and G = SU3(2

W)
separately. For SL3(2

W), the module is isomorphic to a submodule of

> V, ® V*r ®WK = Vm} ® V* ® W

so by Lemma 3.2(b) and Lemma 4.3(b), it has a simple socle isomorphic to
V{o,i} ® y* ® WK> so there are no maps. If G = SU3(2

W), the module is

v{l,m-n ®wK® v{l.m.l} ® wKU{0},

and so there are no maps.
(y) If r + 1 $ K U {0} and r =£ m - 1, the result is clear. If r + 1 e K, then the

module has composition factors VQ ® Vx ® WK, VQ ® Vx ® WKU{r+i}, those of
Vr+2 ® (Fo* ® V{i,r+v ® WV{r+1}), and those of

By Lemma 3.3, none of the composition factors is Vo ® W^u{1}, so there are no
(non-zero) homomorphisms from X(V0® WKU{n, V% ® Vx ® WK). Finally, sup-
pose r = m — 1 £ K. Then by Lemma 3.2(b) and Lemma 4.3(b),

W0®{Vt®Vy®WK)

has socle VQ ® Vx ® WK, so if there were a non-zero homomorphism from
X{V0 ® WKU{n, VQ ® Vx ® WK), there would be a factor Vo ® WKU{1} in the second
socle layer of W0®(VQ ® Vx ® WK). If this were so, then setting J =
N\(K U {0, 1}), we would have by Lemma 3.2(b),

soc(W0 ® {V*o ®VX® WK)) ® Wj = Vt ® Vx ®

= soc((Wo ® (Y5 ®V:® WK)) ® Wj).

Then we could deduce that V%®VX® WM{0} has a factor (Vo ® WKU{i}) ®Wj =
VQ ® WM{o> in its second socle layer, whence

Vo* ®VX® H^{0. ,>) * 0,

contradicting Lemma 5.15. This completes the proof of Lemma 5.16.

We now come to the last step in the proof of the theorem. In view of Lemma
2.1, it suffices to prove the theorem for pairs of triples satisfying Condition (1) of
that lemma. It is easy to see that for such pairs of triples, Conditions (a), (b) and
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(c) of the theorem are equivalent to Conditions (a), (b) and (c) of the following
proposition. Since we have already calculated the extension groups for pairs of
triples satisfying the latter conditions in Lemmas 5.4 and 5.14, the proof of the
theorem will be completed by our next and final result.

PROPOSITION 5.17. Let (I, J, K) and (A, B, C) be triples such that A^JUK,
B^IUKandC^K. Then

tJoC v# ® v ; ® wK, vA ® v*B ® wc) = o
unless a variant of one of the following holds:

(a) K = C,I={0, 1},J = A = B = 0;

(b) K = CU{1), /={0}, J = A = 0, B = {1};
(c) K = C, / = {0}, J = A = {\), B = 0.

Proof. By Corollary 5.7, we may assume that {I,J,K)i=(A,B,C). Let
X = X(Vj ® yy* ® WK, VA ® V*B <8) Wc). By Lemma 4.3,

hd((v; ® Vj) ® (yA ® v% ® wc))

contains a factor

V(Kr\A)U(inB)U(J\A) ® V(KnB)\J(jnA)U(l\B) ® ^C-

Also, we have
(V, (8) V* ®WK)®(V?®Vj)= © Ws.

KcScIUJUK

Our first step is to prove the inequality

(5.18) d = d(Vi®Vf®WK,VA®VB®Wc)

Suppose first that I = N; then by Lemma 4.1, (5.18) follows from the fact that

V%), soc2(^ ® VN)) = 0,

which is true by Lemma 4.7. We may apply Remark 4.2 if / = N, so in proving
(5.18) we may assume from now on that I,JJ=N.

We shall prove (5.18) by means of Lemma 4.1 by showing that

(5.19) HomePC (V, <g> V]) ® (ViKnA)uilnB)u(^A)

V*{Knfl)U(/rvt)u(/\*) ® We)) = 0.
{Knfl)U(/rvt)u(/\*)

The left-hand side of (5.19) may be rewritten as

(5.20) KomJx, 0 (VInB ® V]nA) ® (VInB ® V]nA)
\ r(A»)U(AB)

0 W WT, (VInB ® V*nA)
rg(A/)U(AB)

® VKnA ® V*KnB ® Wc).

By Lemmas 3.1 (a) and 3.3(c), we have

mass((VinB ® V]nA) ® (V/nB ® VjnA)) ^ \I D B\ + \J D A\,
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so by Lemma 3.3(c), we have

mass((V/nfl 0 VjnA) 0 (VInB 0 VjnA) 0 VKnA 0 V*KnB ®Wc)*z\A\ + \B\+2\C\.

For T = 0 , since mass(V, 0 Vf 0 W*) = |/| + |/| + 2 \K\, we see that

HomFC(Z, (V,nfl ® v;™) 0 (V/na 0 V*™) 0 V ^ 0 V£n* 0 Wc) = 0

unless A =J, B = 1 and /£ = C. Suppose this to be the case. Then

(vInB 0 vjnA) ® (vw ® v;™) 0 v*n/4 0 v*KnB 0 wc

becomes (V, 0 Vf) 0 (V, 0 Vj) 0 WK. By Lemma 3.1(a) and Lemma 3.3(c),

mass((V, 0 v ; ) 0 (V# 0 V*)) ^ \I\ + |/|,

and since 1,J±N, Lemma 3.5 tells us that (V,0 Vy*) 0 (V, 0 Vy*) has no
composition factor V70 V*. Then it follows from Lemma 3.3(c) that

(Vj 0 v;> 0 (vy 0 v ; ) 0 wK

has no composition factor V7 0 V* 0 W .̂ Thus, there are no non-zero homo-
morphisms from X in this case either. We have shown that the term in (5.20) for
T = 0 is zero.

Suppose now that T =£ 0 . Then X 0 WT has a submodule Y isomorphic to the
direct sum of d copies of VA 0 V% 0 WCur, with quotient isomorphic to
(V, 0 K; 0 W*) 0 WT = {V, 0 y;> 0 WKL)T. Since V,4 0 V*B 0 W c u r is simple of
mass |i4| + \B\ + 2\C\ + 2\T\> \A\ + \B\ + 2 |C|, we obviously have t

HomFC(y, (VInB 0 yy*ni4) 0 (V/ria 0 V ^ ) 0 ^ O M 0 ^ ^ O B 0 Wc) = 0.

To show that

HomFC((AT 0 WT)/Y, (V/nB 0 Vy*n/t)

0 (vlnB 0 v;^) 0 vKnA 0 v^nB 0 wc) = o,
we observe that by Lemma 3.2(b) and Lemma 4.3(b), the head of

is V, 0 V* 0 W/o which, since T ̂  0 , has mass greater than |i4| + |J5|+2|C|.
This establishes (5.19), and hence also (5.18), by Lemma 4.1.
We consider the terms on the right of (5.18). By Proposition 5.9, we have

d(Ws, V(KnA)u(inB)u(j\A) 0 V*KnB)u(jnA)u(AB) 0 We) = 0

unless, after taking suitable conjugates, we have 5 = C or C U {1} and

{(K D A) U (/ D B) U (J\A), (KnB)U(JHA)U (I\B)} = {{0, 1}, 0} ,
for some 0, 1 $ C.

Suppose these conditions hold. Since C c.K c 5 , we must have K = C or
K = C U {1}. Suppose K = C U {1}. Then the conditions

= {0, 1}, (K n B)\J (J n A)U (I\B) = 0,
together with the assumptions A^J U K and B c / U K , imply that / = B,
A = {1} and / U / = {0}. The possibilities for ((/, / , #) , (A, £, C)) are then

(i)
(ii)
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The conditions

(K n A) U (/ D B) U (J\A) = 0, (KnB)U(JHA)U (I\B) = {0, 1}

are the (7/)(j4Z?)-variants of the conditions just considered, so they yield the
(//)(,4£)-variants of (i) and (ii).

Now (i) is a variant of (b) and Lemma 5.16(c) shows that the group of
extensions for the pair of triples in (ii) is zero.

Suppose that K = C. Then the conditions

(K fl A) U (/ n B) U (J\A) = {0, 1} (respectively 0 ) ,
(K D B) U (/ HA) U (I\B) = 0 (respectively {0,1})

yield / = B, A = 0 and IUJ = {0, 1} (and their (7/)04£)-variants). The possible
pairs of triples ((/, J, K), (A, B, C)) are then

(iii)

(v)

(vi)
and the (7/)(y4fl)-variants of these.

We see that (iii) is a variant of (a) and that (iv) is a variant of (c). The groups
of extensions for (variants of) the pairs of triples in (v) and (vi) have been shown
to be zero in Lemma 5.16(b) and Lemma 5.16(a) respectively.

The proof is finished.

Appendix: m=?2

Case 1: m = l. The module W is projective, so its multiplicity as a direct
summand of a module is simply its multiplicity as a composition factor. Also,
Lemma 3.1 (a) is still valid. Some straightforeward calculations now yield

(i) V <8> W = W 0 P(V) and
(ii) W ®W = W ®W ®W @ P(V)<$ P(V*)® P(F).

Since HomFC(K* ® V*, V*) = HomFC(K*, F 0 W) = 0, V* <g> V* is uniserial
and, just as before, it is isomorphic to both a submodule and a quotient of
V ® W. Also, since the composition factors of P{V) are V, V* and F, we must
have ExtJrC(K, F)*=0. It follows easily from these facts that P(V) has the
structure in the following picture:

V F

V

From (i) and (ii) we see that dimF P(F) = 8, and then since P(F) = P(F)T, we
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obtain the following structure for P(F):

F
/ \

V V*
\ /
F

These modules for SL3(2) are described in [3].

Case 2: m = 2. In the statement of the following proposition, the results for
the unitary group are placed in parentheses.

PROPOSITION. Let G = SL3(4) (respectively SU3(4)). Then

(a) ExtFG(K, Vm)) = ExtFG(V$, V,) = F2 (F),

(b) Ext}c(Wif V{0>1}) = ExtJ,c(V0* ®WUV,) = F (F),
(c) ExtFG(Vt,V$®Vx)^F(F).

Except for variants of these, all other extensions between simple modules are
trivial.

The remainder of this appendix is a proof of the proposition. We give the
argument in detail for G = SL3(4) only. The calculation for SU3(4) is similar. Thus
from now on, G = SL3(4). All results up to Lemma 5.1 remain valid for m = 2.
Using (1.1), duality and T-conjugation, Galois conjugation, the tensor identity for
Ext and the projectivity of WN = W{0A), we find that the problem is reduced to
computing the following groups of extensions:

(1) ExtJ,c(F, F), (2) Ext],c(F, Vo),
(3) E < C ( F , Wo), (4) ExtJ,c(F, V{0A)),

(5) ExtJcCF, Vo ® Vf), (6) ExtJ^F, Wo ® Vx),
(7) ExtJ,c(V0, V*o ® V,), (8) ExtJ,c(Vo, V*{0A}),

(9) Exttc(Vo, ^o), (10) Ext^Vo, V, ® Wo),
(11) ExtJ^F, Vo® V?), (12) Extj,c(V{0>1}, V{*0>1}),
(13) ExtJ,c(V{0,1}, Vo* ® Wx), (14) Ext},c(V0* <8> Vu Vo® V*x),
(15) ExtJ,c(V0* <S) Vu Vo ® Wx), (16) Extx

FG(W0, Wo),
(17) ExtFG(W0, V, <8) Wo), (18) ExtJ^CVo ® W,, Vo* ® Wi).
By Lemma 5.1, we see that the groups in (3), (6), (9), (10), (16) and (17) are

trivial and that the group in (11) is one-dimensional. From the composition
factors of Vt ® Vj and using the groups just computed and the long exact sequence
for Ext, we also see the triviality of the groups in (12) and (18). For any two
modules L and M, we write d(L, M) for dimF ExtFC(L, M). Then using Lemma
4.1, one can prove without difficulty that

d{F,V0)*d(WuV0®W1),

d(F, Vo* (8) V,) ̂  d(WOt Vo* <
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which gives vanishing in (1), (2) and (5). Using the long exact sequence again, we
also obtain

d(Vx, V*o®V*o)^2d{Vx, V0) + d{Vu Vt)^2d(Vu V0) + 2d{F, Vx) + d{F, Vo*);

the right-hand terms are all zero by (2) and (5), so we have proved that the group
in (8) is zero. Similarly, the inequality

d(Yt ® Vt Vf ® Vf) ^2d{V*0 ® V*o, Vx) + d{V*Q ® Vt, V*o)

shows by (8), (2) and (6) that the group in (14) is trivial.
Next we consider (4). By Lemma 3.2 we have

N = V{0,1} ®WN = (Vo ® Wo) ® (Vi

Thus, by Lemma 4.3(b) we see that ^(^{o.i}) has a quotient which has a filtration
with factors (in descending order)

Therefore d(Vm), F)^2. Now (V0®W0) has a filtration with factors (in
descending order)

Vo, Vt, V^®VX> Vo*®Vl

It is easy to check that (Vo* ® V$) ® (Vi ® Wx) and (Vo* ® Vi) ® (Vi ® Wx) do not
have F in their heads, and that HomFG(Vf ®(V1®Wl), F) = F. Also by
considering the corresponding filtration of Vi®Wi, it can be seen that
HomFG(J(V0 ® (Vi ® WJ), F) = F. This proves that d(V{Otl), F) ̂  2, so the group
in (4) is 2-dimensional.

It remains to determine the groups in (7), (11), (12) and (15). For these, we
need the Loewy structure of Vo® H .̂ The argument of Lemma 5.12 no longer
works because Lemma 5.11 is false for m = 2. However, the highest weights of
the composition factors are 22-restricted, so [2, Proposition 2.7] tells us that the
Loewy structure will be the same as that for SL3(16), namely, as stated in Lemma
5.12. We know by Lemma 4.3(b) that V0®W0 has a submodule S = VO®VQ.

Let E =J(V0®W0)/S. Thus E is uniserial of length 2 with head V* and socle
Vo ® Vx. We shall need the following calculations.

LEMMA. We have
(a) UomFG{E ® Wx, Vo* ® VO = 0;

(b) HomfC((V0* ® Vo*) ® Wu Vo* ® Vx) = 0;
(c) Homro(/( V, ®WX® Vo*), Vo) = F;
(d) Honvc(/(V, ®WX® Vo), V^ ® V*x) = 0;
(e) Hom^((V0* ® Vo*) <S» (V, ® Wx), V{*0,1}) = 0.

Proof, (a) Applying duality, r- and Galois conjugation, and the filtration
QaSczJ{Vo®Wo)czVo®Wo, we have

HomFG(E ®WX,V^® Vx)

HomFC((V0 ® Wo) ® V*x, Eft

HomfC(V0 ® Vf, £?*) + dimF HomFG(E ® V*, £f*)

dimF HomFC((V0* ® Vo*) ® Vf, £?«).
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Now E*v has head Vo® V* and radical Vo, SO the first of the three terms on the
right of the inequality is clearly zero, and the third term is zero by Lemma 4.6.
The fact that the second term is zero follows because

HomFC(£ <8> Vf, Vo*) s Honvc(£, Vx ® V*o) = 0
and

Honvc(£ <g> VI Vo ® Vf) = HomFG(E, Vo 0 (Vo ® Wi)) = 0.
Part (b) is straightforward. For (c) and (d) we note that 7(V, ® W, ® V*) =
7(V, <8> WO <8> Vo* and J(VX <8> W, (8) Vo) = 7(V, <8> Wi) 0 Vo. The results then follow
from the structure of VX®WX) using the structure of Vo<8> Vo in (c) and that of
Vo* <8> Vo ® V* in (d) (Lemma 4.6). To prove (e) we have

HomFG(V0* <8> Vo* <8> Vx <8> Wlf Vo* <8» Vf)

a HomFC(V0* ® V, ® Wi, V? 0 (Wo ® Vf)) = 0

since by Lemma 3.2(b), VQ <8) Vj 0 Wi has a simple head isomorphic to VQ <S> VX.
All parts of the lemma are proved.

We now consider (15). By Lemma 3.2, we have

JP(V0® Wi) =/(V0(g) W*,) =7(VO<2) Wo) <8> W,.

Since 7(K0<S> Wo) has a submodule isomorphic to VQ <S> VQ with quotient E, the
triviality of the group in (15) follows from (a) and (b) of the lemma.

Next we turn to (7). It is clear from Lemma 4.6 that the group of extensions is
not trivial, so it remains to bound the dimension. By Lemma 3.2(b) we have

P( Vo* <S> VO = (Vo* 0 Wo) <g> (Vj <g> Wi).

Using the filtration of VQ <8> Wo with factors (in descending order) VQ, EX,
Vo <8> Vo, we see that the result follows from Part (c) and the r-twisted versions of
(a) and (b) of the lemma.

Finally, we must prove the triviality of the group in (12). By Lemma 3.2(a), we
have

P(V{o,i}) © WN = (Vo 0 W) (8) (V! <g> WO-

By considering the filtration 0 cz 5 c 7(V0 ® Wo) c Vo <S> Wo, we see that it will
suffice to show that

(1) HomFG(/(Vo 0 {Vx 0 WO), Vfo.i}) = 0,

(2) HomFG{E <g> (Vi ® Wa), V*{OtX)) = 0 and

(3) HomFC((V0* ® Vo*) 0 (V, (8) Wx), V*o>1)) = 0.

The first and third of these are Parts (d) and (e) of the lemma. To prove (2), we
note, as in the proof of Lemma 5.15, that since ExtJrC(V*, VQ <8> VO = F, £ is a
homomorphic image of VQ ® VQ <8> Vo 0 Vf. We have

Homw((V0* ® Vo* ® Vo* <8> Vf) ® (Vi ® Wx), V*o>1})

= H o m ^ V ! ® V^ ® Wi, Vo (8> Wx) © HomFG(Vx <8> V^ ® WN, Vo <8> WO = 0,

by Lemma 3.2(b). This proves (2) and completes the proof of the proposition.

The calculation of extensions for SU3(4) was first made in a recent paper [5] by
other methods.
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