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ABSTRACT

The group of extensions between any two irreducible 2-modular representations of the groups Sp4 (2
B)

and Suz (2m) is determined.

1. Introduction

In this note we shall determine the group of extensions between any two
irreducible 2-modular representations of the groups Sp4 (2

n) and Suz (2m). Our proof
is inspired by the inductive argument of Alperin [1], where the problem is solved for
SL2 (2

n). Another important source is the work [4] of Chastkofsky and Feit, valuable
not only for some results on projective characters but also for the idea that these two
families should be treated simultaneously. It is interesting to observe that with the
notation of [4], the statement and the inductive step of [1] carry over to the present
case without change.

We shall adopt the notation of [4]; thus, for each natural number m, we define

G=G . = (Sp4(2"l/2), if mis even,
m" lSuz(2m), i fwisodd.

Let Kbe an algebraic closure of F2. We denote by Gro the algebraic group Sp4(A)
and by a its standard Frobenius map (squaring matrix entries). There is an
endomorphism T of G^, arising from a symmetry of the Dynkin diagram, such that
T2 = a. Then Gm is the subgroup of Gro consisting of all elements fixed by rm. Thus
T and a are automorphisms of Gm.

Let V be the natural 4-dimensional module for GM.
If M is any ATG-module and 6 is an automorphism of G, let M° denote the module

obtained by letting g e G act on M° as g° acts on M.
Let N:= Nm := Z/wZ. For each subset / of N, let |/| be the cardinality of /.
For /eiV we define Vt = V*, and for / £ N we define V, = (x)l6/ Vt, with V0 taken

to be the trivial module K. Then, as is well known, the 2m modules V, form a complete
set of nonisomorphic simple A^G-modules. The module VN is the Steinberg module.
All of these modules are self-dual since Vo= V is, by definition, and we shall never
make any distinction between V, and VJ.

We may now state the Theorem.

THEOREM. Suppose m ^ 3. Then for I,J ^ N we have Ext^G(^, Vj) = 0 unless
I u J = (/ n J) U {r}, where neither r nor r—\ belongs to I C\ J, in which case
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(For m = 2, Gm = Sp4 (2) £ 56 fl«rf f/ie answer is well known, but different from the
case m ~& 3.)

For G = Suz(2m) and |/| = | / | = 1, the result is due to R. P. Martineau [6].

REMARK. The simple (rational) G^-modules are indexed by finite subsets of
natural numbers in the obvious way, so that if m is greater than the largest number
s in such a set /, then the restriction of VT to Gm is the simple /sTG^-module Vr The
G^-extensions are then given by the same statement as for the finite groups, except
that / and J are finite subsets of natural numbers and we require that the index r be
different from 0 (that is, for r — 0 the G^-extensions are trivial.) This can be seen as
follows. It is known [2, Proposition 2.7] that the restriction of a nonsplit extension of
two simple (rational) G^-modules to Sp4 (2

n) does not split as long as n is so large that
the highest weights of the two modules are 2n-restricted. On the other hand, it will be
clear (see the remark after Corollary 6) that each of the nonsplit extensions in the
statement of the Theorem is the restriction of a G^-extension between the simple
Gw-modules with the 'same' indices, as long as r # 0. It remains to show the triviality
of ExtoQo(F/u{0}, Vj) for 0^7. For 1=0, we note that Vo is a Weyl module, so
ExtJ. (V0,K) = 0. Then, in general, we can see that all composition factors of
Vj (8) Vt have the form Vs with 0$S. The result now follows from the long exact
sequence, using the case 1=0, Lemma 3 below and the result quoted above about
restricting extensions to the finite groups.

2. Preparatory results

We shall denote by P7 the projective cover of Vv In order to apply Alperin's
inductive argument, we need to study the projective module PN\{t)- The first lemma is
a statement of the relevant parts of [4, Lemma 5.1].

LEMMA 1. (a) Vi ® VN s PNX{i}

(h) V (5)K

Proof. See [4, Lemma 5.1]; clearly {/, i+1} is not circular if m > 3.

To continue our study of PN\{i) = ^ ® ^ = ( ^ ® ^ 0 ® ^ \ w w e n e x t determine
the structure of Vi <g> V{. Our aim is to exploit filtrations of PN\{i} induced by filtrations
of Vt®Vt.

We shall often use two natural exact sequences for vector spaces over perfect fields
of characteristic two (see [7] or [8]) which in our special situation are

>0 (2.1a)

and

0 - Vi+2 -> &W - A T O -* 0. (2.1 b)

(The surjective map in 2.1a sends bilinear forms to quadratic forms by 'restriction to
the diagonal', and the surjection in 2.1b is the map sending a quadratic form to its
associated (symplectic) bilinear form.)
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LEMMA 2. (a) Vt ® Vt is uniserial, with composition factors (in descending order)

K, Vi+i, K, K+2> K, Vi+1, K.
(b) A2(^) is uniserial with series K, Vi+VK.
(c) SPiVi) is uniserial with series K, Vi+l,K, Vi+2.

Proof. The composition factors of Vt® Vi are given by a Brauer character
calculation [4, Theorem 3.4]. The exact sequences (2.1) then yield immediately the
composition factors of A2(JQ and 5^(^). It is easy to see that V{® Vt has a unique
maximal submodule with quotient isomorphic to K, so the same is true of A2(J^).
Since V{ is self-dual, so is A.2(Vf), and part (b) follows. Moreover, G does not lie in an
orthogonal group of degree 4, so S2(^)G = 0. This proves (c). Part (a) now follows
from the self-duality of Vt ® Vf.

We shall now consider some special cases of the Theorem.

LEMMA 3. / / | /A / | > 1 then Ext^(VIt V,) = 0.

Proof. Since Ex t^ c (^ , Vd) ^ E x t ^ c ( ^ u 7 , VlnJ), we may assume / 2 X Suppose
E is a nonsplit extension of V{ by Vj. We shall show that for r e N\I, the tensor product
E® Vr is a nonsplit extension (of VIU{r} by VJU{r]). Then since (/ U {r})\(J U {r}) = I\J,
we may repeat the argument, leading eventually to a contradiction because Kv is
projective.

It is easy to see from the composition factors of Vi ® Vi that the composition
factors VT of (Vr ® Vr) ® V3 satisfy |T\ ^ | / | + 1. In particular, V, is not one of them.
Thus,

HomKG (E ® Vr, Vj ® Vr) s HomKG (E, (VT ® Vr) ® F,) = 0,

so the lemma is proved.

The next result is well known (see, for example, [3] and [5]).

LEMMA 4. fP(G, V^^K.

At this point it will be very convenient to introduce the notation U(Ly,L2, ...,Lt)
to mean a uniserial module with composition factors (in descending order) isomorphic
to LVL2, ...,Lt. We do not know at this point that such a module is unique up to
isomorphism, so we shall usually say only lM is a UiL^ ...,Lt)\ but we shall permit
'Af = U(Llt...,LtY in the event that Mis the unique uniserial module with this series
up to isomorphism. For example, Lemma 2 states that Vt® Vt is a U(K, Vi+1,K, V{+2,
K, Vi+1, K). Furthermore, we have Ext^c(^, \ty = 0 if i #y, by Lemma 3, and it is clear
that /^(G, K) = 0. Thus, by Lemma 4 and the long exact sequence of group
cohomology, we see that A2(J^) s U(K, Vi+l,K), S 2 ^ ) s U(K, Vi+1,K, V(+2) and
J(Vt®*d/J*(Vt®l0 2iU(Vt+1,K,Vt+2,K). (As usual, we let fM denote the /th
radical of the module M, and soc* (M) its tth socle.)

The next lemma describes some more tensor products. Part (a) is not needed for
the proof of the Theorem, but is included for completeness.

LEMMA 5. (a) A2(*Q ® Vt s Vt 0 Vt 0 V{i i+1).

(b) A\V{)® Vi+1 is a U(Vi+1,K, Vi+2,K, Vi+3,K, Vi+2,K, VM).
(c) A2(^) ® Vj is a U(Vj, VJ[J{i+1], Vj) if neither i nor i+ 1 belongs to J.

Proof, (a) From the structure of Vt ® Vx given in Lemma 2, we have

(A2(^)® Vt, Vt) = dimKHomKG(A2(^), Vt® V{) = 2.
BLM 24
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Since A2(V^)® Vi is self-dual, with composition factors Vt, Vt and V{ii+1}, part (a) is
proved.

(b) The sequences (2.1) show that A\]Q®Vi+1 is both a quotient and a
submodule of Vt ® Vt ® Vi+1, which in turn is a tensor factor of Vi ® VN ^ -P^}.
Therefore, the head and socle of A2(J^) ® Vi+1 are simple, and isomorphic to Vi+l by
Lemma 2(b). The uniseriality now follows from the uniseriality of Vi+1 ® Vi+l.

(c) Again, the module A2(fQ ® K, is both a submodule and a quotient of PN\{t),
so has simple socle and head, which in this case are isomorphic to Vd, by Lemma 2(b),
which also gives the middle composition factor.

We single out an important consequence of Lemma 4(c).

COROLLARY 6. If I=J\J {r+\} where neither r nor r+l belongs to J, then

REMARK. Since Gx acts on the modules V3 and A2(Vr), Corollary 6 is valid with
G replaced by Gw.

We are now in a position to prove our main technical result.

LEMMA 7.

ExtKCi „ „ . „ . , , , - , ^ otherwise.

Proof. (I am indebted to Stephen Siegel for pointing out an oversight in an
earlier version of this proof.) By Lemma 1, we have

Now the head of Vt ® Vt is isomorphic to K, by Lemma 2, and the head of
(K® K) ® ^N\{i) = ĴV\W is °f course simple and isomorphic to F^N{<). it follows that

so the lemma is equivalent to the statement that HomKG (/(Vi (g) V^) ® \̂{i}> Kr) is zero
unless 7 = A^\{/, i+ 1}, in which case it is one-dimensional.

By Lemma 2, 7 ( ^ ® ^ is a t / (^ + 1 ,^ , ^+ 2 ,^5 ^ + 1 , ^ ) .
First, consider the submodule / * ( ^ ® ^) = A2(PQ. We have

which, being a quotient of the projective indecomposable module (V{® Vt)® VN\{i),
has a simple head. This implies that

The lemma will therefore be proved if we can show that
® ^N\U} n a s a simple head isomorphic to VN^{tit+1]. By the remark following Lemma
4, we have

J(Vt® VM^K® Vt) « U(Vi+1,K, VM,K).
From the uniqueness and Lemma 5(b), we see that this module is a quotient
of A 2 (^ )® Vi+l, which in turn is a quotient of Vt® Vf® Vi+l, by (2.1). Thus,
(J(K® ty/J^W® K))® VNX{i) is a quotient of (Vt® Vt® Vi+1)® VNX{i) = ^M + 1 }® VN.
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If m > 3, Lemma l(b) states that V{ii+1]® VN s PN\{ii t+1), which of course has
simple head VN^ii+1), so we are done in this case.

If m = 3, Lemma l(b) states that V{ii+1} ® VN ̂  Pf+2 ®VN® VN. Since Vt is not a
composition factor of J(V( ® K ) / ^ ( ^ ® K)> it is e a s v t 0 s e e (f°r example, by iterating
Lemma 2 at the level of composition factors) that {J(Vt® V^f-PiK® ^ ) ) ® ̂ v\m
does not have VN as a composition factor, so must be a quotient of P(+2, which again
is the desired conclusion. The lemma is now proved.

LEMMA 8. Let J ^ N, and suppose i$J.
(a) Ifi+ 1 iJ then soc 2 (^® Vt® V,) is a U(VJ{){i+1), VJ.
(b) Ifi+\eJ then soc2(J^® V,® V,) is a U(VJX{i+1), V,).

Proof. Since, by Lemma 7, the module

soc2(PNm) ^ soc2

is uniserial, and since soc(Vt ® V( ® V3) ® F^ u { ( } ) s F, ® VNVJ u{(}) = K^,^ is simple,
it follows that soc2(J^ ® Vt® Vj) must also be uniserial. It remains to determine the
simple module in the second layer. Since A2( V^) is a submodule of Vt ® V{, we have
a submodule A2(^) ® V3 of Vt ® ^ ® F,, so we need only identify a simple module
in the second socle layer of A2(^) ® K,.

(a) If /+ 1 $J, then the answer is provided by Lemma 5(c).
(b) If /+ 1 G / , then soc2(A2(^) ® Vi+1) = U(K, Vi+1) by Lemma 5(b) and Lemma

4, and since soc(A2(^)® Vi+1) ® K/\«+i} = K ls simple, it follows that the simple
module in the second socle layer of A2(^) ® Vj is VJX{i) as claimed.

3. Proof of the Theorem

The argument we shall use is identical to the one used by Alperin for SL2 (2
n).

First we note that the hypotheses and conclusions of the Theorem depend only on
/ U / and / n / . Moreover,

Fxt1 (V PMc^Ext1 (V V }

Hence, replacing / and / with I \J J and I 0 J, we may assume without loss of
generality that / contains J. If / = N, then VN is projective, so the cohomology group
in question vanishes, so the Theorem is true in this case. Hence, we may also assume
that / is a proper subset of N. By Lemma 3, we may also assume that |/| ^ |7| + 1 .

Suppose / and / satisfy the conditions of the Theorem. This means that
I = J (j {r} for some element reN such that neither r nor r — 1 lies in / .
So Corollary 6 shows E x t ^ K , , V,) # 0.

If |/ | = m— 1, then / = A \̂{/} for some ieN, so the Theorem is true in this case by
Lemma 7. We may therefore assume from now on that |/| < m— 1.

To complete the proof of the Theorem, it is sufficient to show that there is some
se./V\/such that

dxmKEx\}KG(yn Vj) ^ dimKExt]<G(K/ u W, VJ[}{S])

and such that / and / satisfy the conditions of the Theorem if and only if / u {s} and
/ U {s} do. Indeed, once we show all this, the Theorem will follow from an immediate
downward induction, together with the nonvanishing we have already proved.

6-2
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Suppose that dimKExt|fG(K/5 F,) = d, so that there exists a module X which has
a unique maximal submodule Y such that X/Y = Vr and Y is isomorphic to a direct
sum of d copies of V3. For seN\I, define JT = X® Vs, Y' = 7 ® Ks, /' = / U {s} and
J' = J \J {s}. Then A"/!" = Ĵ - and T is isomorphic to a direct sum of d copies of Vr.
If, for some choice of s, T is the unique maximal submodule of X', we shall have
dimKExt^G(^, Vj) ^ d, as desired. Now the statement that Y has this property
is equivalent to the statement that dimK HomKG (X', Vj) = 1 if / = J, and is zero
otherwise. Since X has Loewy length at most 2, we have

HomKG(jr, V,.) £ HomKG(A-(g) Kf, Vs® V,)
£ HomKG (Z, (^ (
= HomKG (X, soc2 ((Vs

We shall consider the cases I = J and |/| = |7| +1 in turn, and show that we can
find a suitable J in each case.

First, if / = / then / and J do not satisfy the conditions of the Theorem, and
neither do /' and / ' , for any choice ofseN\I, since /' = / ' . Also, Lemma 8 shows that
dimKHomKG(X, soc2(Vs ® Vs ® Vj)) = 1, which is what we wanted since / = /. Thus
any seN\I will do in this case.

Finally, suppose |/| = |/ | +1, so that 1= J [j {k} for some keN\J. Since / ^ /, we
must try to find 5 e N\I such that HomKG (X, soc2 (Vs ® Vs ® Vj)) = 0 and such that /'
and / ' satisfy the conditions of the Theorem if and only if/and /do . By Lemma 8,
there will be a nonzero homomorphism from X to soc2(J^ ® Vs ® Vj) if and only if
/ = J U {s+ 1}, that is s+ 1 = A: (we must be in case (a) because of the assumption that
/ S= /). Thus, fulfilling the requirement of no homomorphisms is equivalent to
choosing s ^k—\.

If / and J do not satisfy the conditions of the Theorem, then k— 1 &J. Thus, any
choice of seN\I will automatically be different from k—\. Since /' = / ' U {k} and
k — 1 e J, we see also that /' and J' do not satisfy the conditions of the Theorem, and
we are done.

If / and / do satisfy the conditions of the Theorem, then k—\$J. Since |/| <
m— 1, we may choose seN\I different from A:—1. For such a choice of s, the
requirement of no homomorphisms is satisfied. Moreover, k— 1 $f so that /' and / '
also satisfy the conditions of the Theorem. This completes the proof of the Theorem.
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