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We compute the groups Ext};(L, M ) for any two simple rational modules for the
simple algebraic groups G of type C, and F, in characteristic 2 and type G, in
characteristic 3 by exploiting the special endomorphisms which exist for these
groups. © 1994 Academic Press. Inc.

0. INTRODUCTION

This paper is about three Chevalley groups—the groups of types C, and
F, over an algebraic closure of F, and the group of type G, over an
algebraic closure of F;. These are the only simple algebraic groups that
have an endomorphism whose square is the Frobenius map for some
rational structure over the prime subfield. It is well known that the
subgroups of fixed points of odd powers of these special isogenies form the
three infinite series of (mostly) simple finite groups discovered by Suzuki
(type C,) and Ree (types G, and F,).

It was shown by Steinberg [13, Section 11] that the existence of a special
isogeny 7 leads to a much stronger version of his Tensor Theorem (cf. 1.4
below), which simplifies considerably the problem of determining the
characters of the irreducible representations. There, an important role is
played by a certain ideal in the Lie algebra of the group G, the ideal
g. = Ker dr, whose representation theory as a restricted Lie algebra is the
same as that of the subgroup scheme G, = Ker 7.

For the same reasons, the presence of the normal subgroup scheme G,
gives rise to simplifications in the problem of computing extensions be-
tween simply modules. If 7 did not exist, one could try to calculate these
using the Lyndon-Hochschild-Serre spectral sequence associated to the
first Frobenius kernel G, (cf. [5], [1]). This reduces the problem to certain
questions about simple modules with restricted highest weights. For our
groups, the spectral sequence for G_ reduces the problem to the same
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1012 PETER SIN

questions about a much smaller set of simple modules, those with
r-restricted weights (c¢f. 1.4 and 1.5 below).

In this way, we obtain simple proofs of the known results for C, ([17};
see also [10] for the finite groups) and type G, ([11], where it is derived
from the result for the finite groups), as well as the calculation of
extensions for F,, which is new.

In the F, calculation, an additional benefit of using G, becomes impor-
tant. Let D < G be the subgroup generated by the long root subgroups. It
is a simply connected group of type D,. Then r maps the Frobenius kernel
D, onto G_ and the kernel of this map is of multiplicative type. This
relationship allows us at a critical stage to apply knowledge about D, in
order to obtain information about G_, hence G.

In Section 1, we establish notation and discuss some general aspects of
the methods to be used. The remaining three sections, one for each group,
may be read independently of each other.

This work has been strongly influenced by the computations of Lie
algebra cohomology in [8]. In the process of computing simple module
extensions for G, we determine the G-module structure of the extensions
of simple modules for G_. From this, one can also calculate the exten-
sions of simple modules for the Lie algebra of G.

1. PRELIMINARIES

1.1. Let G and 7 be as in the Introduction and let k be an algebraic
closure of F,, where p = 2 for types C, and F, and p = 3 for G,. For the
groups of types F, and G,, the index of connection is 1 and for type C, it
is 2. In the latter case we take G to be of simply connected type. There is
no cost in making this assumption as far as cohomology is concerned,
because the center of the simply connected group is a subgroup scheme of

multiplicative type and it follows easily that
H*(G,E) = H*(G,E), (1)

where G is the adjoint group and E is any G-module.

The k-group scheme G is obtained by base change from a split Z-group
scheme G, of the same type. Let T, C G, be a split maximal torus and
T = (T,), be the corresponding maximal torus of G. Let X(T) be the
character group of T and R C X(T') be the root system. Let g, = Lie(G,).
The Lie(G) = g = g, ®, k, and the assumption of simple connectivity
means that g, is the span of a Chevalley basis (X ,a € R;H, =
[X,,X_,)a€S} where S ={a,,...,} is a set of simple roots. We
shall use the same notation for the corresponding basis elements of g. For



EXTENSIONS OF SIMPLE MODULES 1013

each a € R there is a root homomorphism x,: G, — G with dx (1) = X,
and a coroot a”: G,, » T with da V(1) = H_. Since G is simply con-
nected, the coroots are embeddings and they span Y = Hom(G,, T).
Under the natural pairing X X X — Z the coroot a ¥ becomes identified
with the element 2a/{a,a) € ZR ®, Q. Let {w,}/_, be the set of funda-
mental dominant weights, so {w;, a;") = 8, ;. The group' G is generated
by the elements x (¢) for t € K and « € R, and T is generated by the
aV(t) for tek™ and a € 8. We set U= {(x(t)la €ER",t €k) and
denote by B the Borel subgroup UT.

1.2. The special isogeny . The set RY forms a root system with
simple roots § V. In our cases, R and R are isomorphic, and so we shall
fix an isomorphism which sends §V to S and denote by a* the image of
a . Thus, the map of R to itself sending a to a™ preserves angles and
interchanges long and short roots.

The map 7 is defined [14, p. 146, Theorem 28] by

xx(t) if aislong )
—>
*o(?) x »(t?) if « is short, (1)
and its differential dr is given by
X, o X l:f a ?s long 2)
0 if « is short.

Let G, = Ker v and g, = Ker dr = Lie(G,). Since G, is an infinitesimal
group scheme of height one, its representation theory is equivalent to that
of the restricted Lie algebra g_ [4, II, Section 7, 4.1-3], [7, 1, 8.6], which is
the ideal in g spanned by the elements X, and H_, indexed by short
roots.

1.3. Subgroups generated by long and short root subgroups. Let R,
be the subsystem of long roots and §, be the set of simple roots for R,
which are positive in R, and define R, and S, similarly. Let D = {x_(t)It
ek,a €R,) and D = {x (DIt € k,a € R,>. Then D is a simply con-
nected group of type 4, X A, when G is of type C,, type 4, when G is of
type G,, and type D, when G is of type F,. For types G, and F,, the
group D is of adjoint type, while for C, it is the quotient of D = SL., X
SL, by the “diagonal” copy of (G,); = p,, in its scheme-theoretic center
Ry X oy Let b = Lie(D). Then d7 maps b onto g, with kernel b, =
(H_la € §,). Translating to group schemes, we have a commutative
diagram (see {4, II, Section 7, 4.1-3 and the proof of III, Section 6, 8.5
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Proposition (b)])

l——>G—*G ———*G—-——*l

T | M

1—»T——*D,~—-+G———>1

with exact rows. Since 7, is of multiplicative type, it follows easily from the
Lyndon-Hochschild—-Serre spectral sequence for the bottom row of (1)
that if £ is any D-module with D acting through 7, then we have an
isomorphism of D-modules

H(G,,E)=H(D,,E), 20, (2)

This will allow us to apply results about D -cohomology to G,-cohomol-
ogy. Also, from the spectral sequence of the top row of 1.3(1) it will be
possible to derive results about G -cohomology from results about G_.

1.4. Simple modules. We now describe the simple modules. The map 7
stabilizes T, and hence acts on X(T), by twisting representations. The
simple G-modules are in bijection with the dominant weights A € X, =
X (T), and are denoted by L(A). Let X, ={X € X, |{A,a" ) p,a €S)
be the set of restricted weights and define the set of 7-restricted weights
X, € X, as the subset of those elements which are orthogonal to all the
long simple roots. Then r(X,) C X, and every A € X, has a unique
expression as A’ + 7A! for A%, Al € X, so every A € X, has a r-adic
expression

r
A=Y R Nex.. (1)
i=0

Then Steinberg’s Tensor Product Theorem states that there is an isomor-
phism of G-modules

LAy =Ly & L(A) " & L(A) ) ®

. ® L(Ar)(’r")’ (2)
where the superscript 7' indicates twisting by the endomorphism 7.

Let us make the notational convention that when a d_ominant weight is
written 7-adically as in (1), or partially so as A = A" + 74, 0r A = A" + 7'
+ r2X", it shall be understood that the A’ lie in X, and A, X', etc. belong
to X..

Extensions of Simple G-Modules

1.5. We are interested in computing the groups Ext{(L(A), L()) for
A,u € X . The Hochschild-Serre spectral sequence for the pair (G,G.)
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takes the form
Exti;{ L(R), Ext} (L(A"), L(1")" " ® L(E)) = Ext'/(L(A), L(1)).
(D)
Here, the superscript (+7') indicates untwisting; if G, acts trivially on a
G-module G, given by a representation m, then V" " is the module

defined by the right vertical arrow in the commutative diagram

G —— GL(V)

A

G/G, — G
The S-term sequence is
0 - Exth( L(X), Homg (L(A"), L(x"))" " ® L(7))

- Extg(L(A), L(n))

- Hom(;(L(X),Ext'(;f(L()\”), L(u")) " ® L(ﬁ))

- Ext( L(X), Hom (L(x"), L(s"))" " ® L(7))

— ExtZ(L(A), L(n))- (2)
1.6. In applying 1.5(2), we shall be interested in determining the

structure of the G-module ExtL (L(A"), L(u®)" .

In the case A° = 0, we shall follow the method of [8). This relies on the
isomorphism (cf. [7, 11.12.2(3)])

H'(G, H'(1)" " = ind§[H'(B,,0)" "]  forhex,. (1)
To compute the right hand side, we use the isomorphisms
H'(B,A) = [H'(U, k) ®k,]" (2)
and {8, Proposition 2.1]

HI(UT’k) = (ur/[u‘\”ur])*! (3)

where u_ = Lie U, = (X, la € R ). By considering commutators, one sees

481/170/3-22
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that for our systems R, the right side of the last equation is isomorphic to
(%] k  [8, Proposition 2.2). Putting this all together, we obtain

ae S, T«

T

5

H'(B,,A) = [®, s kous (4)

Having thus found H'(G., H(u")" " one may try to use the obvious
short exact sequence to try to describe H'(G_, L(u")" D (cf. 3.2, 4.5, 4.6).

1.7. Let g be the half-sum of the positive short roots. Then the
composite p o 7 is the half-sum of the positive long roots. Therefore as a
module for D, acting through 1, we see that L((p — 1)p) is isomorphic to
the first Steinberg module. Hence by 1.3(2) and the injectivity of this
module for D, we have

Extg; (L(A"), L(u”)) =0  ifeither X orp’is (p — 1)p. (1)

Similarly, through 1.3(2), we can apply Andersen’s result [7, II, 12.9] in
the G, and F, cases to obtain

Extg; (L(A"), L(A")) =0 for ail A’ € X,. (2)

1.8. Next, we state explicitly an obvious formula, in the form in which
it will be used repeatedly in computing the third term of 1.5(2). Let
A v? e X, and A,z € X,. Then

Hom(L(A") ® L(7A), L(»") ® L(u") ® L(7&))

= [HomGT(L()\”), L(v")y ® L(p )(TH') ® Hom(L(X), L(TL))]G-

(1)

This will be applied in the simple case where G acts trivially on the first
factor in the right side of (1). We may also replace L(7A) and L(7r) by
any modules on which G, acts trivially.

1.9. Extensions of simple G -modules. The restrictions of G, of the
modules L{(A), A € X, form a complete set of nonisomorphic simple
G,-modules {7, 11, 3.15]. Let A = A’ + 7A' and p = x” + 7' € X,. The
top group extension in 1.3(1) gives rise to a spectral sequence whose
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5-term sequence is

0 - Ext};'(L(/\'), Hom,; (L(A°), L(u"))" " ® L(,ﬁ))

— Ext; (L(A), L(p))

- (€3]
5 HomQ(L(A‘),Ext‘(;y(L(/\"),L(p.“))“ ‘@L(,u))

(r)

- 'Exth(L(/\‘), Hom, (L(X"), L(x"))" " ® L(n'))

~ ExtZ (L(A), L(p)). (1)

(Here we have made use of the isomorphism G,/G_= G_, so that for
instance

Hom(;,/(;,(L(TAl)’ L(T#‘)) = [HomG,(L(A‘): L(/-‘l))]m

as G-modules.)

2. C, 1IN CHARACTERISTIC 2

2.1. In this section, G is simply connected of type C, and k is of
characteristic 2. Let a, be the short fundamental root and «, be the long
one. Then 7: w, = w, = 2w, and X, = {0, v, = p}. Therefore, by 1.7(1),
the only Exty; (L(A%), L(u")) that can be nonzero is H'(G,, k)

Lemma. HYG,, k) = L(w,).

Proof. From its definition, we see that g, is five-dimensional and has a
one-dimensional center ¢ Hal), equal to the commutator ideal, with abelian
quotient spanned by the images of the X, for short roots . The quotient
is isomorphic to L(w,) as a G-module, since w, is the highest short root.
It follows from the long exact sequence for G,-cohomology resulting from
the short exact sequence

0=k —g,—L(w,) =0 (1

that L(w,) embeds into H'(G,, k). On the other hand, there is always an
embedding H'(G,, k) = H'(g,, k) of restricted cohomology into ordinary
cohomology of Lie algebras [7, 1, 9.19}, and H'(g,, k) = (a,/l4q., a.D*, so
both of the embeddings above are isomorphisms.
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Remark. We have G, /T, = ([{w,)), |- From this it follows that

H*(G,.k) = H*(G,/T..k) = S(L(w,)). (2)

where the last isomorphism is given by [7, 1, Proposition 4.27(a)).

Extensions

2.2. We can now compute the groups Ext(L{A), L(w)) using 1.5(1)
and 1.5(2). Let A = A" + 74 and u = 1’ + 7. There are three cases.

(a) If A" # 4", then one of them is § so 1.5(1) vyields
Ext,(L(A), L(u)) = 0 for i > 0.

(b) If A" = 4 =5, then 1.5(1) again degenerates, giving isomor-
phisms

Extg(L(A), L(n)) = Exti,(L(2), L(R)), iz 1 (1)
(c) If A = 4 = 0, then 1.5(2) and Lemma 2.1 give an exact sequence
0 Ext,(L(R), L(F)) — Exth(L(A), (1))
— Hom(L(R), L(w,) ® L(7)) = Ext*(L(X), L(H)). (2)
Let A=A+ 70 and g = u' + 74"

(i) If A' = pu' then either both are 0, in which case L(w,) ® L(g) is
irreducible and not isomorphic to L(A), making the third term in the
sequence zero, or else A' = u! = 45, in which case the third term is again
zero because

Hom(;(L(X), L(w) ® L(ﬁ)) ¢ Hom; (L(w,), L(w,)
®L(w,)) ® Hom( L(7A"), L(7")) =0, (3)
since w, is not a weight of L(w,) ® L(w,). Therefore, if A' = ', we have
Extg(L(A), L(r)) = Extg(L(A), L(R)). (4)

(ii) Suppose A' # u'. Then by (a) applied to (A, ) in place of (A, ),
the first and fourth terms of the 5-term sequence are zero and we obtain

Extg(L(A), L(p)) = Homg(L(w, + 7X'), L(w, + 74")

- {k if X = “u, (5)

0 otherwise.

We summarize these results (cf. [17], {10]).
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TABLE 1
(A, 1) 0 | W, w + w,
0 LQ2w)) 0 k 0
W, 0 LQw,) 0 0
w, k 0
w, + w, 0 0 0 0

ProposITION.  Let A = ;7' and p = EL;7'u’. Then Exti(L()),
L(u) =0 unless A —p = +7°w, with s> 1 and X '=pu'"'=0, in
which case the space of extensions is one-dimensional.

2.3. The extensions of simple G,-modules can be computed from
1.9(1), using 2.1 and 2.2(3) (cf. [8, Section 5)).

ProposiTiON.  The G-modules Exty(L(A), L(n)) for A, pn € X, are
given in Table I.

2.4. Let G = G/Z(G) be the adjoint group. Its simple modules are
the L(A) with A € Z,R = rX,. The extensions between these G-modules
are the same as when they are viewed as G-modules, by 1.1(1). However, it
is not as simple to pass from G, to C—T or from G, to 61 (cf. [2, 6.4]. We
have exact sequences

1 > G,/2(G) » G, > Z(G/G,) - 1,
1-Z(G) » G, > G/Z(G) - 1, (1)

where Z(G/G.) = Z(G) = T.. The unipotent subgroup G_/Z(G) acts
trivially on the simple a-modules, so these are the trivial module and the
other one-dimensional Z(G /G, )-module @,. The restriction of L{w,) to
G. is isomorphic to a direct sum of 4 copies of @,. Also, from (1), 1.3(1),
and

1-G,/Z(G) » G, » Z(G/G,) — 1 (2)

it is not difficult to see that the simple G,-modules are &, L(w,), the
one-dimensional Z(G/G,)-module 2w, with LQw,) = &*2w,, and
L(w,) ® Zw,. For any G,-module E, the Hochschild-Serre S-term se-
quences for (1) yield

G [H‘(GT/Z(G),E)(’_')]TT = [H'(GT,E)""’]T*. (3)



1020 PETER SIN

TABLE 11
(A, Tu) 0 w5 2w, 2w, + w;
0 0 k LQw,) ® LQ2w) 0
w, k 0 0 LQw)® LQ2w)
2w, LQ2w|) ® LQw)) 0 0 k
20, + 0, 0 LQw) ® L2w)) k 0

Now we can deduce the Ef-extensions from 2.1, and then, by the appropri-
ate version of 1.9(1), we also obtain the G,-extensions.

ProposITION. (a) Let A, u' € X,. Then as G-modules,

L ® L AL £ !
EXI%T(L(T)\I),L(T;,L])) = (w2) (a)z) l:f l /J'l
0 if A =pu'.

(b) The G-modules Extg(L(7A), L(rp)) for A = A' + 7A% and p =
p' + ru? € X, are given in Table II.

3. G, IN CHARACTERISTIC 3

3.1. Let &, and «, be the short and long fundamental roots, respec-
tively. Then 7: w, = w, = 3w, and X, = {0, w,,20, = 2p}. Since w, is
the largest short root and g, is simple we have L{w,) = g, and since w,
is the largest root, it follows that g/g, = L(w,). The module L(2p) is a
27-dimensional, simple, injective module for G, (see 1.7).

3.2. G-module structure of G -extensions. By 1.7(1) and (2), the only
nonzero group Extg (L(A%), L(u") is H'(G,, L(w))).

Lemma. HYG,, L(w)) = L(w,)

Proof. From their dimensions, we see that L(w,) = H%w,), so
1.6(1) gives an isomorphism of G-modules HYG,, L))" ) =
indS[H'Y(B,, w,)" °]. Now S, = {a,, a, + ,}, so by 1.6(4),

T,

HI(BT’wI) = [ka|+wleka2+a|+m1] . (1)

We have a, + w, = 3w, —w, = {w, —w,) and a, + o, + w, =w, =

Tw,. Since w, — w, is not dominant, we obtain ind4[H'Y(B,, w )" ] =
H%w)).
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33

Lemma. (a) Hom; (LQ2w)), L(w)) @ LQw,)) = k.

(b) Hom; (LQw,), L(w,) ® L(w))) = k.
(c) Hom; (Lw)), {w,) ® L(w))) = k.

Proof. Since L(2w,) = L(2p) is an injective (hence also projective)
G.-module, the dimensions of the spaces in (a) and (b) are simply the
multiplicities of L(2w,) as a G_-composition factor of the tensor products
and this can be found by routine weight calculations. The same kind of
calculation also shows that the multiplicity of L(w,) as a G, -composition
factor of L(w,) ® L(w,) is 2, so this is an upper bound for the dimension
of Hom; (L(w,), L{w) ® L(w)). Therefore G acts trivially on this space
so it equals Hom ;(L(w)), L(w,) ® L(w,)). We claim that this space is
one-dimensional. It can be seen by weight calculations that S*(L{w,)) has
no G-composition factors L(w,) and that the G-composition factors of
A L(w,)) are L(w,) (twice) and L(w,). Since Hom;(L(w,), L(w,;) ®
L(w))) = 0, the claim follows from the self-duality of A 2(L(w)).

Extensions
3.4. We can now apply 1.5(2). Let A + A + A and p =" + 5. If
A® = uO then the third term of 1.5(2) is zero, giving

Extg(L(A), L(p)) = Exty(L(A), L(R)). (1)

Thus we are reduced to the case A” # u”. Then the first and fourth terms
of 1.5(2) are zero and we have

Exti( L(A), L(u)) = Homg(L(R), Extl (L(X°), L(s"))" " @ L(E))-
(2)

If either A” and 4" is 2w,, then the right hand side of (2) is zero. It
remains to consider the case where {A°, u°} = {0, w,}. By the self-duality of
L(w,) and the Tensor Product Theorem, we may assume A’ = w, and
u® = 0. Then, by Lemma 3.2, the isomorphism (2) becomes

Ext(L(A), L(k)) = Homg(L(R), L(w)) ® L(D).  (3)
Write A = A + 74" and & = u' + 7i’. We now consider the various

possibilities for A" and u'. If A' = u! = 0, or if {A', u'} = {0, 2w}, then the
right hand side of (3) is zero, by 1.8(1). For all other combinations of A'
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TABLE 111

A,uw) 0,0 0D 02 Q0 (L (1,2 2,0 (2,1 2,2)

1 0 LQw)) 0 {0 k 0 0 0 0

O, LQwp) 0 b k k k 0 0 0
(0,2) 0 ( 0 0 k k 0 ( 0
(1,0 0 k 0 0 LQw,) 0 0 0 0
(.n k k k LQw,) 0 0 0 0 0
(1,2) 0 k k 0 0 0 0 0 0
(2,0) 0 4] 0 0 0 0 0 LQ2w,) 0
2. n 0 0 0 0 0 0 LQ2w,) 0 0

(2,2) 0 0 i} 0 0 0 0 0 0

and g, it follows from Lemma 3.3 and 1.8(1) that the right hand side of
(3) is equal to k if X = u” and is zero otherwise.
We summarize these results {cf. [11]).

ProposITION.  Let A = L7 and p = Y;7/u’. Then Exti(L(}),
L(w) =0 unless A —u = +7°w, £ 7°*'v for some s = 0, where v €
0,0,,20, — w,} and X**' # 0 if v = 0. In this case the space of extensions
is one-dimensional.

3.5. We can compute the extensions of simple G,-modules by using 3.2
and Lemma 3.3 in 1.9(1) (cf. [8, Section 5)).

ProrosiTioN.  The G-modules Ext};l(L(/\), L(u)) for A, u € X, are
given in Table 111, in which aw, + bw, € X is denoted by (a, b).

4. F, CHARACTERISTIC 2

4.1. We may take R to be the set {te, te; + ¢, 3(+e, +e, ey +
el <i,j<4,i+j}, where the e; form an orthonormal base for Q*.
Then a set of simple roots is § = {a, = (1, - 1,0,0), a, = (0,1, —1,0),
a,; =1(0,0,1,0), a,=3~1,—-1,-1,1), and the corresponding fun-
damental dominant weights are o, =(1,0,0,1), o, =(1,1,0,2),
w; = 3(1,1,1,3), and @, = (0,0,0, 1). The linear map a,” — a5_; is an
isomorphism of root systems from R with R which we shall use to
identify the two. Therefore the map a — o™ of 1.2 interchanges a, with
a, and o, with a;.

We have sets of positive simple roots

Sy ={By=(0,1,-1,0), B, = (1, -1,0,0),
By =(-1,0,0,1), 8, = (0,1,1,0)} (1)
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and
So={B =1(0,0,1,0), B, = 3(—1, -1, —1,1),
By = (1,0,0,0), B, = (0,1,0,0)} (2)

for the subsystems R, and R of long and short roots, with the notation
chosen so that B = B,. With this notation, we have 71 w; = @, = 2w,
and w; = w, = 2w;. Thus,

X, = {0, 0y, w3, 03 + 0y = p}. (3)

The module L(w,) is g, since the latter is simple and o, is the largest
short root. Since w, is the largest root, the Weyl module V(w,) is g and
a/a, = L(w,). The module L(w; + w,) = L(p) is a 2'>-dimensional injec-
tive module for G, (See 1.7). The Weyl modules for w, and p are easily
seen to be simple by considering dimensions. For w,, the Jantzen sum
formula (7, II, 8.19] shows that the radical of V(w;) is isomorphic to
k ® L(w,), and the simple module L(w,) is 246-dimensional. The (formal)
characters of all these modules were first given in [16]. Therefore, using
the Tensor Product Theorem and Weyl’s character formula, one knows in
principle the composition multiplicities of simple modules in Weyl mod-
ules and tensor product of simple modules or Weyl modules. We shall
freely use such information for G and related groups. It can either be
found in or derived from the tables in [3].

4.2. Good filtrations. In this paragraph, G will denote any reductive
group over an algebraically closed field k. An ascending filtration of a
G-module is said to be good if the subquotients are isomorphic to induced
modules H°(A) for various A € X . There is also the dual notion of a
Weyl filtration. The important facts for our purpose about a finite-dimen-
sional G-module M with a good filtration are the following:

(1) The multiplicity of H"(A) as a subquotient is
dim, Hom (V(A), M).
(2) If H"(A) and H(w) are both good filtration factors and A # u,

then M has a good filtration in which the factor H%(u) appears above the
factor H"(A).

(3) If the module M’ also has a good filtration, then so does M ® M’.

A proof of (1) can be found in [7, 11, 4.18], and (2) follows from a standard
property of Weyl modules [7, 11, 2.14]. The deeper fact (3) is proved in
[6, 7.3.1] with a few exceptions and in general in [9]. Given a module with a
good filtration, the multiplicities of the subquotients can be determined
from the weight multiplicities in the module. Thus, for modules of the
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form M = H"(A) ® H (), it is routine to calculate dim, Hom ,(V(v), M)
forany v € X ,.

Representations of D

4.3. We shall need a number of facts concerning modules for the
subgroup D = (x (t)it € k, a € R|), is simply connected group of type
D,. Let @;, 1 <i < 4 be the fundamental weights for the simple roots S,
in R|. To distinguish between D-modules and G-modules, we shall denote
simple modules and Weyl modules for D by L(&), V(&), etc. The group D
has a “triality” automorphism which fixes x;(¢) and cycles x4(t), x4(1),
and xg4(¢). The simple modules {{w,) are permuted accordingly. For
i = 1, 3,4, these simple modules are 8-dimensional, and if D is identified
with Spin(8, k), then these are the natural orthogonal module and the two
half-spin modules. They are equal to the Weyl modules of the same
highest weights. The adjoint module d = V(®,) is 28-dimensional and the
center of d forms the radical, isomorphic to k & k.

We shall be particularly interested in describing the D-module structure
of some G-modules. We shall only consider the action of D through
D 5D cG, as in 1.3(2), never through restriction. If A is a weight
of a G-module, then it corresponds to the weight X of the associated
D-module given by

(A, BYY =<{A, B, 1<i<4. (1)

Of course, the simple modules with highest weights in X are all simple as
D-modules; we have already seen in 1.7 that L(g) = St,, and from the
highest weights we see also that L(w,) = L(&,) and L(w,) = [(&, + &,
+ @)

In the following lemma and thereafter, we use the standard notation
[M: L] to mean the multiplicity of the simple module L as a composition
factor of the module M, which will always have finite dimension.

Lemma. (a) I7~(c64) ® V(@,) has a filtration with factors (in descending
order) k, V(@,), V2&,).

(b) V(wl) ® V(@) has a filtration with factors (in descending order)
(@), V(e + @)

(c) V(w1 + @) ® V(w4) has a ﬁltratzon with factors (in descending
order) V(@,),V2&,) ® V(20,), V(& + @5 + @,).

) (M@, + 26,): LQ2a&,)] = 1.
(e) (W@, + 2@,): L@, + @, + @) = 1.
) VR, (@, + &3 + 0] = 1.
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(g)_I}(a'), + @y +_@,) has composition factors L@, + @, +
@,), 3 L(a,), L2a,), L2®,), LQ2w,), (k. (Multiplicities are given in
parentheses.)

(h) V(2&,) has composition factors LQ2&,), L(@,), k.

() rad V(&, + @,) = L(a,).
Proof. In view of the discussion in the previous two paragraphs, the
verifications of (a)-(h) are routine since we have described all of the
simple modules involved, up to twisting by various endomorphisms. Then

(i) can be obtained using (b), the self-duality of V(@) ® V(@,), and the
Jantzen sum formula for V(w, + @)

4.4. The calculation to prove (i) above gives the character of L(a, +
@3), which was essentially the only simple module in the lemma whose
character was not yet described. It has dimension 48. With this informa-
tion, we can apply 4.3(1) to obtain further information about the way D
acts on G-modules in the next lemma, whose proof is straightforward.

LEMMa. (a)
L(w) =k®koLl(2d,)eL(2a,) ® L(2a,)

as D-modules.

(b)) L(w,) is a self-dual D-module with composition_ factors
L&, + @,), L&, + o,)), LA, + &,)), QILQ2a,), Q)LQ2a5;),
QLQ2é,), (DLQ2&,), (k.

G-Module Structure of G.-Extensions

45, Our aim is to determine the structure of the G-modules
Ext};T(L(A"), L(u®)) for A%, u® € X_, which appear in 1.5(2). By 1.7(1) and
(2) we are reduced to studying the three modules H!NG,, L(w,)),
HY(G,, L(w,)), and Extg; (L(w,), L(w,)).

Lemma. () HYG,, Llw,)" " = L(w,).
() H'(G,, H%w )" " = H%w,).

Proof. Since L(w,) = H%w,), we have

HY(G., L(w4))(fl) = indg[(H](BTaw:t))(T»I)] (1)



1026 PETER SIN

by 1.6(1) and
4 "
H'(B., w,) = @ L (2)

by 1.6(4). Of the weights B, + w,, only B; + w, = ®, = Tw, is dominant.
Therefore,

H'(G,, L(0))™ " = HO(w,) = L(w,), (3)
proving (a). The calculation for (b) is very similar.
4.6.
Lemma. HY G, L(wy) = k © LQw,).

Proof. Since H%w,)/L(w;) = k ® L(w,), we can use Lemma 4.5 in
the long exact sequence of G,-cohomology to obtain the exact sequence

0k = HYG,, L(w;))" " > H%w,) = L(w,). (1)

From the descriptions of ¥(w,) and V(w,) in 4.1, it follows easily that
ExtL(H%w),), k) = 0, so the above exact sequence shows

k®LQ2w,) CHYG,, L{w;)) Sk @ Hw)", (2)
and so it remains to decide between the two possibilities. Suppose for a

contradiction that HYG,, L(w;)) = k ® H(w,)'”. Then, since as a
D-module (with D acting via 7),

H'(G,, L(wy)) = H'(D, L(&, + @5 + @,)), (3)

by 1.3(2), this module has a filtration with bottom factor_L(2w4) = f.(2d;2)
and top factor L(w ) =k ® k ® LQw,) ® L2&,) ® L(2®,). Since one
can see from the Weyl modules that Ext}(L(@,), L(®,)) = 0, it follows
that

P - - _ =D
Hom ,(£(&,), H'(Dy, L@, + @, + &,)) ) # 0, (4)
where the superscript — 1 indicates untwisting by Frobenius. Then, from

the Hochschild-Serre 5-term sequence for the pair (D, D)), we deduce
that

Extp(L(2@,), L(®, + &3 + @,)) # 0, (5)
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and further, by a standard property of Weyl modules [7, 11.2.14], that
Hom ,(L(2&,), H(&, + &; + &,)/L(®, + &3 + @,)) # 0. (6)

Then, because of the triality automorphism of D, we can replace L(2w,)
in the above by L(2@;) and L(2&,), so there is an embedding

L&) e L(2a,) @ L(2a,) > H
=H &, + @y +a,)/L(&, + @, + &,).
(7)

Consider the module V = [(&,) ® L(&,) ® L(@,). Since Llw,) =
H%w,) = V(w,) for i = 1,3,4, it follows that V' has both good and Weyl
filtrations (See 4.2). From the Weyl filtrations, we obtain (using Lemma
4.3(a)-(c), (h)) a filtration of V with factors (in descending order)

k,V(d,) ® V(d,), V(2d,) @ V(2d;) @ V(26,), V(d, + b3 + &,).

From the good filtrations, we know that V' has a homomorphic image
isomorphic to H%&, + &, + @,). Now, since the highest weight &, + @,
+ @, of V occurs with multiplicity one, the homomorphism onto H%®,
+ @5+ o,)is unique up to scalar and, dually, V' has only one submodule
isomorphic to V(w, + @, + &,). Moreover, the uniqueness of the weight
implies that the natural map into H“(wl + @; + @,) factors through
V/rad Vo, + @, + @,), and hence that there is a surjection ¢: V' =
V/V(d, + &3 + @,) = H. We now consider the filtration on ¥ induced
by the one on ¥ with factors given above. We see that ¥ has a submodule

=V(2a,) ® VQ2&,;) ® V(26,) and that the quotient ¥/, has no
composmon factors L(Zw,-) for i = 1, 3, or 4. Therefore, the embedding
(7) has its image in ¢(V)). From the structure of ¥, it follows that
rad 17 C Ker ¢. Then, by considering composition factors, this leads us to
conclude that the multiplicity of L(wz) in H = $(V) is at most 2. But this
contradicts the fact that [H&, + @, + @,): L(@,)] = 3 (Lemma 4.3(g)).
The lemma is proved.

47. We turn to Ext};,(L(wA), L(w,)). From this point on we shall
require many facts about multiplicities of simple modules in composition
series and multiplicities of Weyl modules in Weyl filtrations, all of which
can be derived by routine calculations which we omit. The composition
factors of tensor products of r-restricted simple modules can be found in
Table 2 of [12].

For X € X_, we denote the injective hull of the simple G_-module L(X)
by Q(X).
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LeMMA.  We have the following G_-isomorphisms.
(a) L(p) ® L{w,) = Qw;) & L(p) ® L(p).
() soc (Llw,y) ® Llw,)) = k & L(w,).

() socg; (Llwy) ® Llwy) = L(p) @ Lw,).

Proof. The multiplicities of k in the socles are obvious. Since L{(p) is
injective (and projective), so is L(5) ® L(w,), and the multiplicity if Q(X)
as a direct summand is equal to the G,-composition multiplicity [ L{w,) ®
L{X): L(p)).; . This gives (a) and also gives the multiplicities of (L(g) in
(b) and (c). For the other parts, we use the G,-multiplicities [ (w,) ®
L(w,): Lwy)]; =4 and [L(w,) ® (w,): L(w,)]; = 2. Since these num-
bers are smaller than the dimension of the smallest nontrivial G-module, it
follows that Homg(L(w,), L{w,) ® L{w,) = Hom(L(w,), L(w,) ®
L{w,)) and Homg(L(w,), L(w,) ® L(w,) = Hom(L(w,), L{w,) ®
L(w,)). To see that Hom(L(w,), L{w,) ® L(w,)) is one-dimensional,
one computes the multiplicity of H%w,) in a good filtration of its tensor
square (See 4.2). The fact that Hom (L(w;), L{w,) ® L(w,)) =0 is
proved in [12, proof of (5) in “Completion of the Proof”], but we will
sketch the argument here. By 1.5(2) and Lemma 4.5(a), this fact is
equivalent to the vanishing Exty(L(w,), L{w, + w,)). This can be seen
from the Jantzen sum formula [7, 11, 8.19] for V(w,) (cf. [12, Lemma 3.8)).
The first layer in the Jantzen filtration has composition factors L(w, +
w,),(2)L(w,), and possibly k. The layers of the Jantzen filtration are
self-dual, so if the Ext group above were not trivial, this layer would have
to be semisimple, leading to the conclusion that dim, Ext{(L(w,),
L(w))) = 2. However, from 1.5(2) and 1.7(2) we have Ext{;(L(w,),
L(w))) = Ext,{L(w;), L{w,)), which, by the structure of I (w,), is one-di-
mensional.

This proves (b) and shows that L(w,) is not in the socle in (c).
Therefore, in a complementary direct summand to L(g) in L(w;) ® L(w,),
the only possible simple submodules are isomorphic to L(w,), and by
self-duality the same is true of simple quotients. Since [L(w;) ® L{w,):
L{w3)l; = 2, the fact that L{w,) and L(p) are not the only composition
factors of L{w,;) ® L(w,) implies that L(w,) occurs with multiplicity one
in soc L(w;) ® L{w,), proving {(c).

4.8. Next we consider the possible composition factors of
Extg; (L(w,), L(w,)). Lemma 4.7 (a) has the consequence

Ext, (L(wy), L(w;))

= Homg (L(w,).[L(5) ® L(w,)] /soc[L(5) ® L(w,)]). (1)



EXTENSIONS OF SIMPLE MODULES 1029

First, this shows that every composition factor of Ext}; (L(w,), L{w;)) is a
G -trivial composition factor of Hom(L(w,), L(5) ® Lw)) =L({p)e
L(w,) ® L{w,). Second, we note that, for any X' € X_ and any G-module
M, the evaluation map

Hom (L(X), M) ® L(X) > M (2)

is injective. Indeed, it follows from 1.8 (with »° =0, " = X, and L(vx)
replaced by Hom (L(X), M)) that a simple submodule of the tensor
product must be of the form L(rv) ® L(X), where L(7v) is a simple
submodule of Hom (L(X), M), and so in particular it cannot lie in the
kernel of the evaluation map. Applying this to (1), we see that for each
composition factor L(7v) of Ext, (L(w,), L{w,)), we must have a compo-
sition factor L(7v) ® L(w,) of L(p) ® L(w,). With these two criteria in
mind, inspection of the composition factors of L(p) ® L(w,) ® L(w,) and
L(p) ® L(w,) reveals that the only possible composition factors of
Extg; (L(w,), L(w;)) are

k,L(w,), L(2w,),and L(w,). (3)
(For the moment, we say nothing about multiplicities.)
4.9.
LemMa.  Extg (L(w,), L(w;) = k.

Proof. Let E = Exty; (L(w,), L(w5)). From the structure of V(w,) and
1.5(2) we obtain

k = Ext;(L(w;), L(w,)) = Homg(k, E), (1

showing that k appears in soc E with multiplicity 1.

We claim next that L(w,) does not appear in soc E. By 1.5(2), this is
equivalent to showing that Ext'(L(w, + w,), L{w;)) = 0. By considering
composition factors, we see that 2w, is a maximal weight of rad V(w, +
wy). Also, since Viw, + w,) € V(w,) ® Mw,) and Llw, + w,) =
L(w,) ® L{w,) it follow that rad V(w, + w,) C rad V(w,) ® V(w,) =
L{w,) ® L(w,). Since the unique line of weight 2w, in L(w,) ® L(w,)
generates a submodule isomorphic to V(2w,), we may conclude that
rad V(w, + w,) has a submodule isomorphic to V(2w,). Then, since
(Mo, + 0,): Llwy)] =1 = [VQw,): L(w,)], the claim is proved.

The next step is to show Hom (L(2w,), E) = 0, which by 1.5(2) is
equivalent to

Ext!(L(3w,), L{w;)) = 0. (2)
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It is easily checked that ¥ (3w,) has composition factors L(3w,), L(w,),
Q)L(w, + wy), LQw,), L(w;), 3)L(w,), L(w,), and (2}k. Therefore, w,
is maximal among the weights of rad V(3w,), so the one-dimensional w,
weight space generates a nonzero homomorphic image V of V(w,). In
order to prove (2), it is enough to prove [V: L(w,)] # 0. Now V(3w,) C
V(Q2w,) ® Mw,) and {V(2w,) ® V(w,): L(w,)] = 1. Since V(2w,) has a
composition factor L(w,), and [ L(w,) ® L{w,): L{w,)] = 1, it follows that
I{w;) ® L(w,) contains a nonzero homomorphic image of V. Lemma
4.7(c) and the fact that [V(w,): L(p)] = 0 now imply that this homomor-
phic image has a submodule isomorphic to L{w;). This proves (2).

We have proved so far that, of the four possible composition factors
4.8(3) of E, the simple modules L(w,) and L(2w,) do not appear in the
socle and k appears once. Since neither L(w,) nor L(2w,) extends the
trivial module, it follows that if either of them were a composition factor
of E, then E would necessarily have a composition factor L(w,) as well,
in the first or second socle. Thus, the lemma will be proved once we show
that E has no submodule E, with & C E, and E,/k = L(w,).

Suppose that E| exists. We shall derive a contradiction from considering
the D-module structure of E. From Lemma 4.4(b) and what we know
about extensions from the structures of V((I),), l<i=< 4, we see that as a
D-module, L(w,) ™" has a submodule isomorphic to L(®,), and hence so
does E¢ ", since Ext)(L(@,), k) = 0. Therefore, by the Hochschild—-Serre
5-term sequence for (D, D,), we have

Exth(L(&, + 2@,), L(@,+ @5 + @,)) = Hom ,(L(@,), E© V) # 0.
(3)

We shall now calculate Exth(L(@, + 2&,), L(&, + &, + @,)) in a dif-
ferent way, showing that it is zero, which will contradict (3). By considering
the composition factors of V(cbz) ® 17(26),) and its submodule V(d),
2@,), we see that the weight 2@, appears with multiplicity one in the
radicals of both and is maximal there. Therefore rad V(@, + 2&,) con-
tains a nonzero homomorphic image V of V(2@,). Now V(2a_)|) has a
composition factor l:(wz) and the subquotient L(&,) ® L(w,) of
rad[V(wz) ® V(2w|)] certainly has a weight 2w,, so this weight space
generates a homomorphic image V of V inside L(wz) ® L(wj) It is clear
that V is equal to the image of the composition

¢: V(28,) C V() ® V() > L(,) ® L(a,). (4)

Since rad 17(632) = k @ k, the only possible composition factors of Ker ¢
are k and L(®,), none of which is L(&, + @4 + @&,). Therefore, by
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Lemma 4.3(e) and (f),
1= V(@ +20,): L(a, + @5+ a,)| 2 [Vi (@) + &y + @)
> [V L(@, + @5 + a,)] = [V(28,): L@, + @, + @,)] = 1. (5)

which shows that [W(@, + 26 ,)/rad> V(&, + 2&,): L@, + @, + @,)] =
0, contradicting (3), and completing the proof of the lemma.

Extensions

4.10. With the results of the last section, we can now apply 1.5(2).
Write A = A" + 7A, u = u' + 70,
If AY = 4 then, by 1.5(2) and 1.7(2), we obtain

I

Exti(L(A). L(n)) = Exth(L(X), L(7)). (1)

Thus, we are reduced to the case A" # u”. Then the first and fourth
terms of 1.5(2) vanish, leaving

Extl;( L(A), L(1)) = Homg(L(), Bxtl, (L(A), L(u)" " @ L(T)).
(2)

It is immediate from this that if one of A" or u' is p, then
Ext;(L(A), L(p)) = 0.
Three cases remain:
(1) {)\O, /..L()} = {0, (1)4}
Gi) (A%, n% = {0, w,)
(i) {A%, 1"} = {w;, w,).
(iii) By Lemma 4.9 and (2) we have

k ifa=g
Exth(L(A), L(p)) = | A=K 3)
0 otherwise.

in

Let A=A+ X and & = u' + o',
(i) Then, by Lemma 4.5(a),

Hom(L(}), L(w,) ® L(&)), (4)

I

Extg(L(A), L(n))

and by 1.8(1) and Lemma 4.7, this space is zero unless A" = u’, in which
case its dimension is given according to the Table IV.

481/170:3-23
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TABLE IV
(Al uhH 0 w, wy w3 + 0,
0 0 1 0 0
w, I 1 0 0
w; 0 0 1 1
wy + w, 0 0 l 2

(ii) Substituting the result of Lemma 4.6 into (2) yields
Ext,;(L(A), L(n)) = Hom(;(L(X), L(kr)®L(w)® L(I-_L))- (5)

We consider the space Hom(L(A), L(w,) ® L(w)). If A! # u', then
even the space of G_-maps is zero. If A' = y', then the space is isomorphic
to Hom (L(X'), L(w,) ® L(")), by 1.8(1), and we are in the same situa-
tion as in (4), but with A and & replaced by X" and ", and the dimension
is given in Table 1V. For the dimension in (5) we must add 1 to the
diagonal entries to account for the extra summand L(x).

Thus, we have shown that if A = A + 7A' + 7242 + 34" and p = u° +
'+ 7 4+ P, with {AY u% = {0, w,}, then ExtL(L(A),
L(w)) = 0 unless A' = u' and X" = i and, in this case, the dimension is
given in Table V.

We have proved the following result.

Proposition.  Let A = L,7'A and p = E;7/u’. Then Exti(L(A), L(n))
= 0 unless
A — w= T'"(Am _ Mm) + Tm+]()\m+l _ #m+]) + Tm+2(/\m+2 _ Mm+2)’
where m > 0, A # u™ and X", U™ # wy + w,. If these conditions hold
then the dimension of Ext!.(L(A), L(n)) is given as follows.

(D) If A" — u™ = tw,, then the dimension is zero unless X"*? =
w" 2 in which case it is given in Table IV, on replacing (A", u') by
(/\m+1 “m+l)'

TABLE V
(A%, ) 0 Wy w3 wy + w,
0 1 1 0 0
w, 1 2 0 0

=
+ ,E
g
&
— 3
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(ii) If A" — u™ = tw,, then the dimension is zero unless A" *! =
w™*! in which case it is given in Table V, on replacing (A%, u?) by
(Am+2 m+2)

7"“ .

Giii) If A" — p” = +(w; — w,), then the dimension is one if A —

m. m

A" = u — "™ and zero otherwise.

4.11. We can combine our results on G,-extensions (4.5(a), 4.6, 4.9)
with results in 1.9(1) to compute the G-extensions (cf. [8, Section 3]).

TABLE VI
(0,0) 0,9 ©,3) ©,5) A,0 (4,4) (4,3) (4,5
0,0 0 LCw,) k@ LQw,) 0 0 k 0 0
0.4  LQwy 0 k 0 k k 0 0
0,3) k& LQw,) k 0 0 0 0 k k
©.5) 0 0 0 0 0 0 k k @k
4,0) 0 k 0 0 0 LQwy) k@ LQw,) 0
(4,4) k k 0 0 L2wy) 0 k 0
4,3) 0 0 k k ke LQw,) Kk 0 0
“,p) 0 0 k kek 0 0 0 0
(3,0) k@ LQw,) 0 0 0 k 0 0 0
(3.4 0 ko LQw,) 0 0 0 k 0 0
(3,3) 0 0 ko LCw,) 0 0 0 k 0
(3,5) 0 0 0 k@ LQw,) 0 0 0 k
(5,0 0 0 0 0 0 0 0 0
(5,4 0 0 0 0 0 0 0 0
(5.3) 0 0 0 0 0 0 0 0
(5.5 0 0 0 0 0 0 0 0
(3,0) (3,4 (3,3) (3,5 (5,0) (5.4) (6,3) (5.6)
0,0) k ® LQ2w,) 0 0 0 0 0 0 0
(0,4 0 k@& LQ2w,) 0 0 0 0 0 0
©,3) 0 0 k@ LQw,y) 0 0 0 0 0
(0, 5) 0 0 0 k@ L2aw,) 0 0 0 0
4,0) k 0 0 0 0 0 0 0
4,4 0 k 0 0 0 0 0 0
“,3) 0 0 k 0 0 0 0 0
4,5) 0 0 0 k 0 0 0 0
(3,0 0 LQw,) &k ®LQw) 0 0 0 0 0
(3.4 LQuw,) 0 k 0 0 0 0 0
(3,3) ke LQw,) k 0 0 0 0 0 0
(3,6 0 0 0 0 0 0 0 0
(5.0) 0 0 0 0 0 LQw,) k& LQw,) O
(5.4 0 0 0 0 LQ2w,) 0 k 0
(5.3 0 0 0 0 ko LQw) Kk 0 0
6. 5) 0 0 0 0 0 0 0 0
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ProrposiTioN.  The G-modules Ext};l(L()t), L(p)) for A, pn € X, are

given in Table V1, in which, for example, the symbol (3,p) stands for
Lwy + 7p).
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