Write your proofs using complete English sentences as well as mathematical formulae.
Work which the grader cannot follow may receive a grade of zero.
In this exam F denotes a field and \mathbb{R} denotes the field of real numbers.

Name:

1. (8 points) In $M_{2 \times 2}(\mathbb{R})$, consider the set

$$
X=\left\{\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
2 & 0 \\
4 & -2
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)\right\}
$$

of four matrices. Find a subset of X which is a basis for the span of X.
\qquad
2. Let the linear map $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be given by $T(f(x))=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$.
(a) (4 points) By computing with the matrix of T or otherwise, prove that T is invertible.
(b) (4 points) Compute $T^{-1}\left(x^{2}-x+2\right)$.
3. (8 points) Determine whether the matrix

$$
A=\left(\begin{array}{cccc}
-1 & -2 & 2 & 2 \\
0 & 1 & -2 & -2 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \in M_{4 \times 4}(\mathbb{R})
$$

is diagonalizable or not. If so, find a basis of \mathbb{R}^{4} consisting of eigenvectors of A.
4. Give a proof or a counterexample for each of the following statements.
(a) (2 points) The determinant is a linear map from $M_{n \times n}(F)$ to F.
(b) (2 points) The union of two subspaces of a vector space is a subspace.
(c) (2 points) The sum of two surjective linear maps is surjective.
(d) (2 points) If $T: V \rightarrow W$ and $U: W \rightarrow Z$ are linear maps such that T is injective and U is surjective, then $U T$ is either injective or surjective.
5. (8 points) Use the Gram-Schmidt procedure to find an orthonomal basis of the subspace of \mathbb{R}^{4} spanned by $(1,-1,0,0),(0,0,1,-1),(0,1,-1,0)$.

