Suzuki Groups

Graduate Algebra Seminar, University of Florida

1. Geometry of symplectic 3 -space

We describe Tits' construction [1] of the Suzuki groups.

- V be a 4 -diml. vector space, coordinates $x_{i}, i=0,1,2,3$.
- W 2-diml. subspace, $\wedge^{2} W$ is a point of $\mathbb{P}\left(\wedge^{2} V\right)$.
- If W is spanned by $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ then the "Plücker" coordinates. of W are $\left(p_{01}: p_{02}: p_{03}: p_{12}: p_{13}: p_{23}\right)$, with $p_{i j}=a_{i} b_{j}-a_{j} b_{i}$.
- These coordinates satisfy the quadratic form

$$
\begin{equation*}
p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0 \tag{1}
\end{equation*}
$$

and form the Klein Quadric \widehat{Q}
Assume that V has a nonsingular alternating bilinear form and x_{i} are symplectic coordinates so that the matrix of the form is $\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right)$.

- A 2-subspace is t.i. iff $p_{03}+p_{12}=0$.
- The t.i. 2-subspaces form the intersection $Q=\widehat{Q} \cap H$ of \widehat{Q} with the hyperplane H of the above equation.
- The equation of Q is

$$
\begin{equation*}
p_{01} p_{23}-p_{02} p_{13}-p_{03}^{2}=0 \tag{2}
\end{equation*}
$$

2. The isogeny τ

Suppose the field of V is $k=\overline{\mathbf{F}}_{2}$.

- $z=(0: 0: 1: 1: 0: 0) \in H \backslash Q$ is the radical of the (alternating) bilinear form associated with (2).
- z is the common point of intersection of every tangent hyperplane to Q in H.

Geometry of.
The isogeny τ
The groups $G(n)$

- Projection $H \rightarrow V_{1}=H / z$ gives a bijection $Q \rightarrow \mathbb{P}\left(V_{1}\right)$.
-

$\alpha:\{2$-diml tot. isotropic subspaces of $V\} \cong \mathbb{P}\left(V_{1}\right)$.

- The alternating form induced on V_{1} is nonsingular.
- $y_{0}=\bar{p}_{01}, y_{1}=\bar{p}_{02}, y_{2}=\bar{p}_{13}, y_{3}=\bar{p}_{23}$ are symplectic coords for V_{1}.
V_{1} is a lot like V !
- Identify V with V_{1} by their symplectic coordinates.
- This fixes an isomorphism $\operatorname{Sp}(V) \cong \operatorname{Sp}\left(V_{1}\right)$.
- Under this identification, the induced action on V_{1} induces an endomorphism τ of $\operatorname{Sp}(V)$.
- $x=\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$. Assume for simplicity $a_{0} \neq 0$.
- x^{\perp} is spanned by $x,\left(0: a_{0}: 0: a_{2}\right)$ and $\left(0: 0: a_{0}: a_{1}\right)$.
- The set of t.i. 2-subspaces which contain x form an isotropic line in Q, spanned by $\left(a_{0}^{2}: 0: a_{0} a_{2}: a_{0} a_{2}: a_{0} a_{3}+a_{1} a_{2}: a_{2}^{2}\right)$ and $\left(0: a_{0}^{2}: a_{0} a_{1}: a_{0} a_{1}: a_{1}^{2}:\right.$ $a_{0} a_{3}+a_{1} a_{2}$).
- This line maps to the t.i. line spanned by $\left(a_{0}^{2}: 0: a_{0} a_{3}+a_{1} a_{2}: a_{2}^{2}\right)$ and $\left(0: a_{0}^{2}: a_{1}^{2}: a_{0} a_{3}+a_{1} a_{2}\right)$.
- $\beta: \mathbb{P}(V) \rightarrow\{$ t.i. lines of $\mathbb{P}(V)\}$.
- Compute Pluc̈ker coordinates: $\alpha(\beta(x))=\left(a_{0}^{2}: a_{1}^{2}: a_{2}^{2}: a_{3}^{2}\right)$.
- Conclude that β is a bijection and τ^{2} is the Frobenius map, given by squaring all matrix entries.
- τ is an isogeny of algebraic groups.

3. The groups $G(n)$

- $G(n)=$ the subgroup of $\operatorname{Sp}(V)$ fixed by τ^{n}.
- $G(2 t) \cong \operatorname{Sp}\left(4,2^{t}\right)$.
- $G(2 m+1)=\mathrm{Sz}\left(2^{2 m+1}\right)$, Suzuki groups.

For $x=\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$, set $x^{\left(2^{i}\right)}=\left(a_{0} 2^{i}: a_{1}{ }^{2^{i}}: a_{2}{ }^{2^{i}}: a_{3}{ }^{2^{i}}\right)$. Then $G(2 m+1)$ preserves the set

$$
\mathcal{T}=\mathcal{T}(2 m+1)=\left\{x \mid x=x^{\left(2^{2 m+1}\right)}, x^{\left(2^{m+1}\right)} \in \beta(x)\right\}
$$

This is called the Tits ovoid. It consists of $(0: 0: 0: 1)$ and the points $(1: x: y: z)$ satisfying

$$
\begin{equation*}
z=x y+x^{2^{m+1}+2}+y^{2^{m+1}} \tag{3}
\end{equation*}
$$

- $|\mathcal{T}|=q^{2}+1$, where $q=2^{2 m+1}$.
- The action of $\mathrm{Sz}\left(2^{2 m+1}\right)$ on \mathcal{T} is doubly transitive.
- $\left|\operatorname{Sz}\left(2^{2 m+1}\right)\right|=q^{2}(q-1)\left(q^{2}+1\right)$.
- $\mathrm{Sz}\left(2^{2 m+1}\right)$ is a simple group, for $m \geq 1$. $(\mathrm{Sz}(2)$ is isomorphic to the Frobenius group of order 20.)

References

[1] J. Tits, Les Groupes simples de Suzuki et de Ree, Sem. Bourbaki, Exp. 210, (1961).

Geometry of.
The isogeny τ
The groups $G(n)$

Back

