4.3.10. We shall use the symbol "0" to denote both the scalar zero and the zero $n \times n$ matrix. Suppose $M \in M_{n \times n}(C)$ is nilpotent. Then for some positive integer k we have $M^k = 0$. Then

$$0 = \det(0) = \det(M^k) = \det(M)^k,$$
(1)

where the last equality is by the multiplicative property of determinants. The above equation shows that the k-th power of the scalar det(M) is 0, which forces det(M) = 0.

5.1.17.

(a) We have $T(T(A)) = (A^t)^t = A$. Thus if λ is an eigenvalue and A is an eigenvector for λ , we have

$$A = T(T(A)) = T(\lambda A) = \lambda(T(A) = \lambda^2 A.$$
 (2)

Since A is a nonzero vector, it follows that $\lambda^2 = 1$, so $\lambda = \pm 1$. (b) For $\lambda = 1$, the eigenvectors are the matrices such that $A^t = A$, namely the symmetric matrices. For $\lambda = -1$, the eigenvectors are the matrices such that $A^t = -A$, namely the skew-symmetric matrices.

(c) In $M_{2\times 2}(R)$, a basis for the space of symmetric matrices is

$$\beta_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
(3)

and the space of skew-symmetric matrices has basis

$$\beta_{-1} = \left\{ \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \right\} \tag{4}$$

Then $\beta = \beta_1 \cup \beta_{-1}$ is the required basis in which $[T]^{\beta}_{\beta}$ is diagonal.

(d) Let $E_{ij} \in M_{n \times n}(R)$ denote matrix with a single nonzero entry 1 in row i, column j. The E_{ij} are the elements of the standard basis of $M_{n \times n}(R)$.

For i < j, let $S_{ij} = E_{ij} + E_{ji}$. Consider the set

$$\beta_1 = \{ E_{ii} : i = 1 \dots n \} \cup \{ S_{ij} : 1 \le i < j \le n \}.$$
(5)

This set has n(n+1)/2 elements. It is clear that the elements are symmetric. For i < j, let $R_{ij} = E_{ij} - E_{ji}$. Consider also the set

$$\beta_{-1} = \{ R_{ij} : 1 \le i < j \le n \}.$$
(6)

This set has n(n-1)/2 elements. It is clear that the elements are skew-symmetric.

We claim that the union β of the two sets above is a basis of $M_{n \times n}(R)$. Then it will clear that $[T]_{\beta}^{\beta}$ is diagonal. To prove our claim, we note that β has $\frac{n(n+1)}{2} + \frac{n(n-1)}{2} = n^2$ elements, so it suffices to show that β generates $M_{n \times n}(R)$. From the equations

$$S_{ij} + R_{ij} = 2E_{ij}, \qquad S_{ij} - R_{ij} = 2E_{ji},$$
(7)

and the fact that each E_{ii} belongs to β_1 , it follows that all the standard basis elements E_{ij} are in span of β , so our claim is proved.