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The Divisor matrix
» D= (di,j)i,jeN defined by
1, if i divides j,
djj = :
0 otherwise.
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The matrix ring A

» E :=free Q-module with basis {en}nen-

» Endq(E) = A := the space of matrices A = (a;;)i jen, With
rational entries, such that each column has only finitely
many nonzero entries.

» E* =~ QN sequences of rational numbers, f € E* is
identified with the sequence (f(en))nen- Write f(en) as f(n)
for short.

» A acts on the right of E* :

(FA)(n) =Y amaf(m), feQN AcA

meN
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Dirichlet Space and Dirichlet Ring
>
DS = {fe QN | (3C, c > 0)(Vn)(|f(n)| < Cn®)}
» f e DS if and only if the Dirichlet series >, f(n)n—*°
converges for some complex number s.
» DR := the subring of A consisting of all elements which
leave DS invariant.



Sufficient conditions for DR

Let A= (a;;)ijen € A. Suppose that there exist positive
constants C and c such that the following hold.

(i) ajj = 0 wheneveri> Cj°.
(i) Foralliandj we have |a;j| < Cj°.

Then A € DR. Moreover, these conditions define a subring of
DR.



» DR is not closed under inversion.

1 -1 -1 —1
0 1 -1 —1
B=1lo o 1 -1
112 4 8
o1 124
B =1001 12

€ DR,

¢ DR,



» DR is not closed under conjugation by A*.

111 1
0100 -
B=1o 0 1 0 ] C = diag(1,2,4,8,...),
1 2 4 8
0100
Cc'BC = 0010 ¢ DR.



» Dec DR.

» D acts on Dirichlet series as multiplication by the Riemann
zeta function
> (fD)(n) (Zd\n
Z nS Z
n=1

n=1

f: f(n)
(in some half-plane)

» The inverse of D is given by

/ w(j/i), if i divides j,
a; =

0 otherwise
where 1 is the Mébius function
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» Dec DR.

» D acts on Dirichlet series as multiplication by the Riemann
zeta function:

=\ (fD >N (2apn f(d)) 2 f
21( r?g”) 221 dlns :C(S)E ()

(in some half-plane).



» Dec DR.

» D acts on Dirichlet series as multiplication by the Riemann
zeta function:

> (fD > (2ogn f(0)) > f
E;(lmZEQ ﬂm ZG$Z;M)

(in some half-plane).
» The inverse of D is given by

) {Mg/n, if i divides j,

10 otherwise.

where p is the Mébius function.
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» Which subgroups of DR* contain D?
» Thompson (2006) showed (D) < Dih,, < DR*.
» The divisor matrix is a (locally) unipotent element of DR*.

» Is there a subgroup of DR* isomorphic to SL(2,Z) which
contains D as a standard unipotent element?
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SL(2,2)
» G:=SL(2,2) is generated by the matrices

0 —1 11
S:[1 0}, and T:[O 1].
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SL(2,2)
» G:=SL(2,2) is generated by the matrices

0 —1 11
S:[1 0}, and T:[O 1].

» S has order 4 and R := ST has order 6.
» G=(S,R| S* R8,S2%2 = R3>
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Main Theorem
There exists a representation p : SL(2,Z) — A* with the
following properties.
(a) The underlying QSL(2,Z)-module E has an ascending
filtration
O=EycEiCcEC---

of QSL(2,Z)-submodules such that for each i € N, the
quotient module E;/E;_4 is isomorphic to the standard
2-dimensional Q SL(2, Z)-module.

(b) p(T) = D.

(c) p(Y) is an integer matrix for every Y € SL(2,2).

(d) p(SL(2,2Z)) C DR.



Module-theoretic steps in proof
» Find a “Jordan canonical form” of D.



Module-theoretic steps in proof
» Find a “Jordan canonical form” of D.

» For each Jordan block construct an integral representation
of SL(2, Z) satisfying the filtration condition and so that T is
represented by a matrix similar to the Jordan block.



Module-theoretic steps in proof
» Find a “Jordan canonical form” of D.

» For each Jordan block construct an integral representation
of SL(2, Z) satisfying the filtration condition and so that T is
represented by a matrix similar to the Jordan block.

» Form the direct sum. Then we will have a module satisying

(@)-(c).



Module-theoretic steps in proof
» Find a “Jordan canonical form” of D.
» For each Jordan block construct an integral representation

of SL(2, Z) satisfying the filtration condition and so that T is
represented by a matrix similar to the Jordan block.

» Form the direct sum. Then we will have a module satisying
(a)-(c).

» Part (d) is not a module-theoretic statement, since DR is
not closed under conjugation in A*, so the main difficulty
is to end up with the right matrix representation.
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» For each Jordan block, find a matrix representation
which gives the right module and find the transition
matrices taking 74 (T) to the standard Jordan block.



Matrix part of proof

>

>

Choose the right J.C.F of D. Order is important.

Find the transition matrices from D to its J.C.F. explicitly to
show that they belong to DR.

For each Jordan block, find a matrix representation
which gives the right module and find the transition
matrices taking 74 (T) to the standard Jordan block.

These have to be chosen in such a way that, when the
Jordan blocks are assembled, the result lies in DR.
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» Form, k € N, let
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» Form, k € N, let

A(m) = {(my, mg,...,mi) € (N\{1})* | mymy - my = m}

> ak(m) = |A(m)|
> ax(1) =0, ax(m) = 0if m < 2% and a,(2¥) = 1.



» Form, k € N, let

A(m) = {(mn, ma, ..., mi) € (N\{I1)E | mym -

> (C(s) = )F = X, 2.

> ak(
> ax(1) = Oa(m) 0if m < 2K and o, (2F) = 1.

myx = m}



Some identities
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(Z k1 (d)) = ax(m) + ak—1(m).
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S DTS ai(d) = ak(m) + (= 1) ar (m).
i=1 dlm

v(m) .
_ Ju(m) ifm#A,
Z(—nkak(m)—{o o



Some identities

(Z k1 (d)) = ax(m) + ak—1(m).
dlm
g k—1
S DTS ai(d) = ak(m) + (= 1) ar (m).
i=1 dlm
g v(m) .
k _ :u’(m) it m 7& 17
;(_1) ulm) = {0 itm=1.

» Pick ¢ (~ 1.7286) with {(c¢) = 2. Then a,(m) < m° for all k
and m.



Relation to D
» The (1, m) entry of (D — )¥ is equal to ak(m)



Relation to D
» The (1, m) entry of (D — )¥ is equal to ak(m)
» More generally,

0 ifdtm,

k _
(d,m) entry of (D —1)" = {ak(m/d) — (1, m/d) entry, if d | m.
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» D is unitriangular. What is its JCF ?
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» D is unitriangular. What is its JCF ?

>

1, ifje{i2i},
0 otherwise.

J = (Jij)ijens Jij = {

» Think of J as being the direct sum of infinite Jordan bocks,
one for each odd integer.

> Let Z :=(z(i,]))ijen be the matrix described in the
following way. The odd rows have a single nonzero entry,
equal to 1 on the diagonal. Let i = 2Xd with d odd. Then

the i row of Z is equal to the d™ row of (D — /).



Lemma

The matrix Z has the following properties:

(a) ZDZ~ ' = J.

(b) z(i,j) =i, ifi is odd.

(c) Ifi = d2k, where d is odd and k > 1, then

e {aku‘/d) itd |

0 otherwise.

(d) z(im,jm) = z(i,j) whenever m is odd.
(e) Z is upper unitriangular.
(f) Z € DR.
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» We want Z~' € DR.

Theorem '
Let X be the diagonal matrix with (i, i) entry equal to (—1)*2(),
fori e N. ThenZ~ ' = XZX.

» This theorem was discovered with the aid of a computer.

» It is proved by using the identities for the ax(m).

» Consider the submatrix of entries whose row and column
indices are powers of 2. Then z(2K,2%) = a,(2%) = (;_1),
so the equations for this submatrix reduce to the
orthogonality relation for binomial coefficients:

m
6—1 m—1
£+k _

=



Matrix part of proof
>

>

» For each Jordan block, find a matrix representation
which gives the right module and find transition matrices P,
P~ so that Pr{(T)P~! is the standard Jordan block.

» These have to be chosen in such a way that when the
Jordan blocks are assembled, the result lies in DR.
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» Let J,, be the “infinite Jordan block”

1, ifj=jorj=i+1,
(Uo)ij = .
0 otherwise.



» Let J,, be the “infinite Jordan block”

1, ifj=jorj=i+1,
(Uo)ij = .
0 otherwise.

» We are reduced to constructing a representation with T
acting as J, and certain other properties.
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Theorem
There exists a representation T : SL(2,2) — A* with the
following properties.
(a) Let E; be the subspace of E spanned by {ey, ..., ez},
i € N. Then
O=EyCcEiCcEC---

is a filtration of QSL(2, Z)-modules and for each i € N the
quotient module E;/E;_+ is isomorphic to the standard
2-dimensional Q SL(2, Z)-module.

(b) 7(T) = Uso-

(c) 7(Y) is an integer matrix for every Y € SL(2,Z).

(d) There is a constant C such that for all i and j we have
7(8)ijl <29.



Remarks
» When the Jordan blocks are interleaved, the (i, /) entry of
7(Y) will be the (2/~"d,2/~1d) entries of the matrix of Y on
the direct sum, for every odd number d, so the exponential
bound (d) is the condition to end up in DR.



Remarks

» When the Jordan blocks are interleaved, the (i, ) entry of
7(Y) will be the (2/~"d,2/~1d) entries of the matrix of Y on
the direct sum, for every odd number d, so the exponential
bound (d) is the condition to end up in DR.

» This representation is unique up to QG-isomorphism.



» Define {bnp}n>0 recursively by

bo=by=1, by+ > bbj=0 foraln>2
ij>1
i+j=n



» Define {bnp}n>0 recursively by

bo=by=1, by+ > bbj=0 foraln>2
ij>1
i+j=n

» These are Catalan numbers with signs:

Om = (_1)”71:”(2(/:_—11))7 (m>2), by=by=1.



» Define {bnp}n>0 recursively by
bo=by=1, by+ > bbj=0 foraln>2

i,j=1
i+j=n

» These are Catalan numbers with signs:
1 /2(m-1
b= (-0 (2 ) 2, b=t

» g(t) € Q[[t]] defined by

1+ 9(f) Zbktk



» Define {bnp}n>0 recursively by

bo=by=1, by+ > bbj=0 foraln>2
ij>1
i+j=n

» These are Catalan numbers with signs:
1 /2(m-1
b= (-0 (2 ) 2, b=t

» g(t) € Q[[t]] defined by
1+ 9(t Z by tX.

» The recurrence relations can be expressed as:

gt +g(t) =



| ol



» Set

(g3
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» Let U denote the ring of matrices of the form
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where X(") € M»(Q) are repeated down the diagonals.
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» Let U denote the ring of matrices of the form

77777777777777777777777777777777777777777

77777777777777777777777777777777777777777

77777777777777777777777777777777777777777

where X(") € M»(Q) are repeated down the diagonals.
» S, Jand R all belong to /.
» There is a Q[[{]]-algebra isomorphism

v iU = Mp(Q[IH]]) = Mp(Q)[f]], U D X"
n=0



» We have:

=
e




Lemma

(a) &2 =—1I.

(b) RR+R+1=0.

(c) There exists a representation ry of SL(2, Z) such that
71(8) = Sand ~(T) = J.



Jordan form of J
» Find P such that PP~ = J...



Jordan form of J
» Find P such that PP~ = J...

» For n € N, set n row of P:= first row of (J — /)™
(J-N°=1)



Jordan form of J
» Find P such that PP~ = J...

» For n € N, set n row of P:= first row of (J — /)™
(J-N°=1)

P(J — 1) = (Joo — P.
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isomorphism ~.
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» To compute the powers of J — / explicitly, use the
isomorphism ~.
» Let H=~(J — ). Then

S

» Compute the powers of J — / by diagonalizing H.

» The entries of P are coefficients of the powers of ¢ in the
top rows of the H".



v

v

v

v

v

To compute the powers of J — / explicitly, use the
isomorphism ~.
Let H=~(J —I). Then

S

Compute the powers of J — / by diagonalizing H.

The entries of P are coefficients of the powers of t in the
top rows of the H".

For ¢ > 3 and s > 0, we have

([ s—1
Peast1 =1, _s_o)

o412 s—k
Pe2si2 = /;J bk<€+k_s_2>-



» P~1is found in a similar, but slightly more elaborate
procedure.



» P~1is found in a similar, but slightly more elaborate
procedure.

» The entries of P~1 = (qg;)s jen are: gj1 = ;1 and
Qi2 = djp, forie N. For m> 3 and s > 0, we have

4 /mMm—-s-2
q23+1,m:(_1)m1< s—1 >

3]s
oy m—-s—k-2
Qos+2,m = (—1) /; bk< st k_o >
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» For all i and j we have |g;j| < 2% and |p;j| < 22

» So 7:SL(2,Z) — A, Y — Pry(Y)P~" gives the desired
representation for each Jordan block of the divisor matrix.

» The proof the main theorem is complete.

» p can be extended to a representation GL(2,Z) — DR*
(but not with integral coefficients).

» There is a group B = upper triangular subgroup of SL(2, Q)
such that D € B < DR*.
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» Consider the matrix p(—S), S



1 0

» Its top row (ay, ap, .. .) lies in DS, with associated Dirichlet
series

» Consider the matrix p(—S), S = <0 _1>.

o0
o(8) := Z ann—°.
n=1



» Consider the matrix p(—S), S = <? _01>

» Its top row (ay, ap, .. .) lies in DS, with associated Dirichlet

series
D
= Z ann_s.
n=1

an=p(—-S +Z )eap( Zbk<£k522>~
—



» Consider the matrix p(—S), S = <? _01>

» Its top row (ay, ap, .. .) lies in DS, with associated Dirichlet

series
D
= Z ann_s.
n=1

an = p(—S) +Z )eap( Zbk<£k522>~
—

» 0. := abscissa of convergence of ¢(s).



The cubic equation relating ((s) and ¢(s)

Theorem
In the half-plane Re(s) > max(1,o0¢), we have

(C(8) = 1)e(8)? + ((8)e(s) — ¢(s8)(¢(s) — 1) = 0.



The cubic equation relating ((s) and ¢(s)
Theorem
In the half-plane Re(s) > max(1,o0¢), we have

(C(8) = 1)e(8)? + ((8)e(s) — ¢(s8)(¢(s) — 1) = 0.

» By Riemann’s extension of {(s) this equation defines
analytic continuations of ((s) along arcs in the plane which
avoid a certain set of points (including the zeros of {(s)).
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Orbit of ¢(s)
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meromorphic functions of the half-plane
Re(s) > max(1, o) generated by the functions ¢(s) and
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Orbit of ¢(s)
» We have 17°.p(T) = ((s) and 175.p(—S) = ¢(s).
» Let Q(¢(s), »(s)) be the subfield of the field of

meromorphic functions of the half-plane
Re(s) > max(1, o) generated by the functions ¢(s) and

o(s).-
Theorem
For any element Y € G = SL(2,2) the Dirichlet series 175.Y
converges forRe(s) > max(1,0¢) and the sum function belongs

to Q(C(s), ¢(s))-
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Redheffer’'s Matrix
» R(n) is the n x n matrix:

R(n);; = 1, ifidividesjorj=1,
710 otherwise.

» Redheffer (1977): det R(n) = >, u(m),
» The Riemann Hypothesis is equivalent to:

>~ u(m) = O(nz*+°)

m<n

for every € > 0.



Pictures of the divisor matrix
Cover of the current Notices of AMS from D. Cox’s article
“Visualizing the sieve of Eratosthones” .
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