
The Divisor Matrix, Dirichlet Series and
SL(2, Z)

Peter Sin and John G.Thompson

May 8th, 2008.



Overview

Basic notions and notations

Overgroups of the divisor matrix

A special representation of SL(2, Z)

Ordered factorizations

Jordan form of D

Construction of representations
The main construction

From group elements to Dirichlet series

Related topics



The Divisor matrix
I D = (di,j)i,j∈N defined by

di,j =

{
1, if i divides j ,
0 otherwise.



The matrix ring A
I E := free Q-module with basis {en}n∈N.
I EndQ(E) ∼= A := the space of matrices A = (ai,j)i,j∈N, with

rational entries, such that each column has only finitely
many nonzero entries.

I E∗ ∼= QN, sequences of rational numbers, f ∈ E∗ is
identified with the sequence (f (en))n∈N. Write f (en) as f (n)
for short.

I A acts on the right of E∗ :

(fA)(n) =
∑
m∈N

am,nf (m), f ∈ QN, A ∈ A.
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Dirichlet Space and Dirichlet Ring
I

DS := {f ∈ QN | (∃C, c > 0)(∀n)(|f (n)| ≤ Cnc)}

I f ∈ DS if and only if the Dirichlet series
∑

n f (n)n−s

converges for some complex number s.
I DR := the subring of A consisting of all elements which

leave DS invariant.
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Sufficient conditions for DR
Let A = (ai,j)i,j∈N ∈ A. Suppose that there exist positive
constants C and c such that the following hold.

(i) ai,j = 0 whenever i > Cjc .
(ii) For all i and j we have |ai,j | ≤ Cjc .

Then A ∈ DR. Moreover, these conditions define a subring of
DR.



I DR is not closed under inversion.

B =


1 −1 −1 −1 · · ·
0 1 −1 −1 · · ·
0 0 1 −1 · · ·
...

...
...

...
. . .

 ∈ DR,

B−1 =


1 1 2 4 8 · · ·
0 1 1 2 4 · · ·
0 0 1 1 2 · · ·
...

...
...

...
...

. . .

 /∈ DR,



I DR is not closed under conjugation by A×.

B =


1 1 1 1 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

 , C = diag(1, 2, 4, 8, . . .),

C−1BC =


1 2 4 8 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

 /∈ DR.



I D ∈ DR.
I D acts on Dirichlet series as multiplication by the Riemann

zeta function:
∞∑

n=1

(fD)(n)

ns =
∞∑

n=1

(
∑

d |n f (d))

ns = ζ(s)
∞∑

n=1

f (n)

ns

(in some half-plane).
I The inverse of D is given by

d ′i,j =

{
µ(j/i), if i divides j ,
0 otherwise.

where µ is the Möbius function.
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I Which subgroups of DR× contain D?
I Thompson (2006) showed 〈D〉 ≤ Dih∞ ≤ DR×.
I The divisor matrix is a (locally) unipotent element of DR×.
I Is there a subgroup of DR× isomorphic to SL(2, Z) which

contains D as a standard unipotent element?
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SL(2, Z)

I G := SL(2, Z) is generated by the matrices

S =

[
0 −1
1 0

]
, and T =

[
1 1
0 1

]
.

I S has order 4 and R := ST has order 6.
I G = 〈S, R | S4, R6, S2 = R3〉
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SL(2, Z)

I G := SL(2, Z) is generated by the matrices

S =

[
0 −1
1 0

]
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1 1
0 1

]
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Main Theorem
There exists a representation ρ : SL(2, Z) → A× with the
following properties.
(a) The underlying Q SL(2, Z)-module E has an ascending

filtration
0 = E0 ⊂ E1 ⊂ E2 ⊂ · · ·

of Q SL(2, Z)-submodules such that for each i ∈ N, the
quotient module Ei/Ei−1 is isomorphic to the standard
2-dimensional Q SL(2, Z)-module.

(b) ρ(T ) = D.
(c) ρ(Y ) is an integer matrix for every Y ∈ SL(2, Z).
(d) ρ(SL(2, Z)) ⊆ DR.
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Module-theoretic steps in proof
I Find a “Jordan canonical form” of D.
I For each Jordan block construct an integral representation

of SL(2, Z) satisfying the filtration condition and so that T is
represented by a matrix similar to the Jordan block.

I Form the direct sum. Then we will have a module satisying
(a)-(c).

I Part (d) is not a module-theoretic statement, since DR is
not closed under conjugation in A×, so the main difficulty
is to end up with the right matrix representation.
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Matrix part of proof
I Choose the right J.C.F of D. Order is important.
I Find the transition matrices from D to its J.C.F. explicitly to

show that they belong to DR.
I For each Jordan block, find a matrix representation τ1

which gives the right module and find the transition
matrices taking τ1(T ) to the standard Jordan block.

I These have to be chosen in such a way that, when the
Jordan blocks are assembled, the result lies in DR.
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I For m, k ∈ N, let

Ak (m) := {(m1, m2, . . . , mk ) ∈ (N\{1})k | m1m2 · · ·mk = m}

I αk (m) := |Ak (m)|
I αk (1) = 0, αk (m) = 0 if m < 2k and αk (2k ) = 1.
I (ζ(s)− 1)k =

∑∞
n=2

αk (n)
ns .
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Some identities
I ∑

d |m

αk−1(d)

 = αk (m) + αk−1(m).

I
k−1∑
i=1

(−1)k−1−i
∑
d |m

αi(d) = αk (m) + (−1)kα1(m).

I
v(m)∑
k=1

(−1)kαk (m) =

{
µ(m) if m 6= 1,

0 if m = 1.

I Pick c (≈ 1.7286) with ζ(c) = 2. Then αk (m) ≤ mc for all k
and m.
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Relation to D
I The (1, m) entry of (D − I)k is equal to αk (m)

I More generally,

(d , m) entry of (D − I)k =

{
0 if d - m,
αk (m/d) = (1, m/d) entry, if d | m.
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I D is unitriangular. What is its JCF ?
I

J := (Ji,j)i,j∈N, Ji,j =

{
1, if j ∈ {i , 2i},
0 otherwise.

I Think of J as being the direct sum of infinite Jordan bocks,
one for each odd integer.

I Let Z := (z(i , j))i,j∈N be the matrix described in the
following way. The odd rows have a single nonzero entry,
equal to 1 on the diagonal. Let i = 2kd with d odd. Then
the i th row of Z is equal to the d th row of (D − I)k .
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Lemma
The matrix Z has the following properties:
(a) ZDZ−1 = J.
(b) z(i , j) = δi,j , if i is odd.
(c) If i = d2k , where d is odd and k ≥ 1, then

z(i , j) =

{
αk (j/d) if d | j ,
0 otherwise.

(d) z(im, jm) = z(i , j) whenever m is odd.
(e) Z is upper unitriangular.
(f) Z ∈ DR.



I We want Z−1 ∈ DR.

Theorem
Let X be the diagonal matrix with (i , i) entry equal to (−1)v2(i),
for i ∈ N. Then Z−1 = XZX.

I This theorem was discovered with the aid of a computer.
I It is proved by using the identities for the αk (m).
I Consider the submatrix of entries whose row and column

indices are powers of 2. Then z(2k , 2`) = αk (2`) =
(

`−1
k−1

)
,

so the equations for this submatrix reduce to the
orthogonality relation for binomial coefficients:

m∑
`=k

(−1)`+k
(

`− 1
k − 1

)(
m − 1
`− 1

)
= δk ,m.
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Matrix part of proof
I Choose the right J.C.F of D. Order is important.
I Find the transition matrices from D to its J.C.F. explicitly to

show that they belong to DR.
I For each Jordan block, find a matrix representation τ1

which gives the right module and find transition matrices P,
P−1 so that Pτ1(T )P−1 is the standard Jordan block.

I These have to be chosen in such a way that when the
Jordan blocks are assembled, the result lies in DR.
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I Let J∞ be the “infinite Jordan block”

(J∞)i,j =

{
1, if j = i or j = i + 1,
0 otherwise.

I We are reduced to constructing a representation with T
acting as J∞, and certain other properties.
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Theorem
There exists a representation τ : SL(2, Z ) → A× with the
following properties.
(a) Let Ei be the subspace of E spanned by {e1, . . . , e2i},

i ∈ N. Then
0 = E0 ⊂ E1 ⊂ E2 ⊂ · · ·

is a filtration of Q SL(2, Z)-modules and for each i ∈ N the
quotient module Ei/Ei−1 is isomorphic to the standard
2-dimensional Q SL(2, Z)-module.

(b) τ(T ) = J∞.
(c) τ(Y ) is an integer matrix for every Y ∈ SL(2, Z).
(d) There is a constant C such that for all i and j we have

|τ(S)i,j | ≤ 2Cj .
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Remarks
I When the Jordan blocks are interleaved, the (i , j) entry of

τ(Y ) will be the (2i−1d , 2j−1d) entries of the matrix of Y on
the direct sum, for every odd number d , so the exponential
bound (d) is the condition to end up in DR.

I This representation is unique up to QG-isomorphism.
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I Define {bn}n≥0 recursively by

b0 = b1 = 1, bn +
∑
i,j≥1
i+j=n

bibj = 0 for all n ≥ 2.

I These are Catalan numbers with signs:

bm = (−1)m−1 1
m

(
2(m − 1)

m − 1

)
, (m ≥ 2), b1 = b0 = 1.

I g(t) ∈ Q[[t ]] defined by

1 + g(t) =
∞∑

k=0

bk tk .

I The recurrence relations can be expressed as:

g(t)2 + g(t) = t .
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I

B0 = T , B1 =

[
0 1
1 1

]
, Bi =

[
0 bi
bi 0

]
, (i ≥ 2)

I Set

J̃ =



B0 B1 B2 B3 . . .

0 B0 B1 B2 . . .

0 0 B0 B1 . . .

0 0 0 B0 . . .

...
...

...
...

. . .


,

S̃ = diag(S, S, . . .),

R̃ = −S̃J̃.
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I Let U denote the ring of matrices of the form

U =


X (0) X (1) X (2) X (3) . . .

0 X (0) X (1) X (2) . . .

0 0 X (0) X (1) . . .

0 0 0 X (0) . . .

...
...

...
...

. . .

 ,

where X (n) ∈ M2(Q) are repeated down the diagonals.
I S̃, J̃ and R̃ all belong to U .
I There is a Q[[t ]]-algebra isomorphism

γ : U → M2(Q[[t ]]) = M2(Q)[[t ]], U 7→
∞∑

n=0

X (n)tn
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I We have:

γ(S̃) =

[
0 −1
1 0

]
,

γ(J̃) =

[
1 1 + g(t)

g(t) 1 + t

]
,

γ(R̃) =

[
g(t) 1 + t
−1 −1− g(t)

]
.



Lemma

(a) S̃2 = −I.
(b) R̃2 + R̃ + I = 0.
(c) There exists a representation τ1 of SL(2, Z) such that

τ1(S) = S̃ and τ1(T ) = J̃ .



Jordan form of J̃
I Find P such that PJ̃P−1 = J∞.
I For n ∈ N, set nth row of P:= first row of (J̃ − I)n−1

((J̃ − I)0 = I.)
I

P(J̃ − I) = (J∞ − I)P.
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I To compute the powers of J̃ − I explicitly, use the
isomorphism γ.

I Let H̃ = γ(J̃ − I). Then

H̃ =

[
0 1 + g(t)

g(t) t

]
.

I Compute the powers of J̃ − I by diagonalizing H̃.
I The entries of P are coefficients of the powers of t in the

top rows of the H̃n.
I For ` ≥ 3 and s ≥ 0, we have

p`,2s+1 =

(
s − 1

`− s − 2

)
,

p`,2s+2 =

bs+1− `
2 c∑

k=0

bk

(
s − k

` + k − s − 2

)
.
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I P−1 is found in a similar, but slightly more elaborate
procedure.

I The entries of P−1 = (qi,j)ß,j∈N are: qi,1 = δi,1 and
qi,2 = δi,2, for i ∈ N. For m ≥ 3 and s ≥ 0, we have

q2s+1,m = (−1)m−1
(

m − s − 2
s − 1

)

q2s+2,m = (−1)m
bm

2 c−s∑
k=1

bk

(
m − s − k − 2

s + k − 2

)
.
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I For all i and j we have |qi,j | ≤ 23j and |pi,j | ≤ 22j .
I So τ : SL(2, Z) → A× , Y 7→ Pτ1(Y )P−1 gives the desired

representation for each Jordan block of the divisor matrix.
I The proof the main theorem is complete.
I ρ can be extended to a representation GL(2, Z) → DR×

(but not with integral coefficients).
I There is a group B ∼= upper triangular subgroup of SL(2, Q)

such that D ∈ B ≤ DR×.
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I Consider the matrix ρ(−S), S =

(
0 −1
1 0

)
.

I Its top row (a1, a2, . . .) lies in DS, with associated Dirichlet
series

ϕ(s) :=
∞∑

n=1

ann−s.

I

an = ρ(−S)1,n = α1(n)+
∑
`≥4

(−1)`α`−1(n)

b `
2 c∑

k=2

bk

(
`− k − 2

k − 2

)
.

I σc := abscissa of convergence of ϕ(s).



I Consider the matrix ρ(−S), S =

(
0 −1
1 0

)
.

I Its top row (a1, a2, . . .) lies in DS, with associated Dirichlet
series

ϕ(s) :=
∞∑

n=1

ann−s.

I

an = ρ(−S)1,n = α1(n)+
∑
`≥4

(−1)`α`−1(n)

b `
2 c∑

k=2

bk

(
`− k − 2

k − 2

)
.

I σc := abscissa of convergence of ϕ(s).



I Consider the matrix ρ(−S), S =

(
0 −1
1 0

)
.

I Its top row (a1, a2, . . .) lies in DS, with associated Dirichlet
series

ϕ(s) :=
∞∑

n=1

ann−s.

I

an = ρ(−S)1,n = α1(n)+
∑
`≥4

(−1)`α`−1(n)

b `
2 c∑

k=2

bk

(
`− k − 2

k − 2

)
.

I σc := abscissa of convergence of ϕ(s).



I Consider the matrix ρ(−S), S =

(
0 −1
1 0

)
.

I Its top row (a1, a2, . . .) lies in DS, with associated Dirichlet
series

ϕ(s) :=
∞∑

n=1

ann−s.

I

an = ρ(−S)1,n = α1(n)+
∑
`≥4

(−1)`α`−1(n)

b `
2 c∑

k=2

bk

(
`− k − 2

k − 2

)
.

I σc := abscissa of convergence of ϕ(s).



The cubic equation relating ζ(s) and ϕ(s)

Theorem
In the half-plane Re(s) > max(1, σc), we have

(ζ(s)− 1)ϕ(s)2 + ζ(s)ϕ(s)− ζ(s)(ζ(s)− 1) = 0.

I By Riemann’s extension of ζ(s) this equation defines
analytic continuations of ϕ(s) along arcs in the plane which
avoid a certain set of points (including the zeros of ζ(s)).
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Orbit of ζ(s)

I We have 1−s.ρ(T ) = ζ(s) and 1−s.ρ(−S) = ϕ(s).
I Let Q(ζ(s), ϕ(s)) be the subfield of the field of

meromorphic functions of the half-plane
Re(s) > max(1, σc) generated by the functions ζ(s) and
ϕ(s).

Theorem
For any element Y ∈ G = SL(2, Z) the Dirichlet series 1−s.Y
converges for Re(s) > max(1, σc) and the sum function belongs
to Q(ζ(s), ϕ(s)).
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Redheffer’s Matrix
I R(n) is the n × n matrix:

R(n)i,j =

{
1, if i divides j or j = 1,
0 otherwise.

I Redheffer (1977): det R(n) =
∑

m≤n µ(m),
I The Riemann Hypothesis is equivalent to:∑

m≤n

µ(m) = O(n
1
2 +ε)

for every ε > 0.
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Pictures of the divisor matrix
Cover of the current Notices of AMS from D. Cox’s article
“Visualizing the sieve of Eratosthones” .
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