The Divisor Matrix, Dirichlet Series and SL(2,Z)

Peter Sin and John G.Thompson

May 8th, 2008.

Overview

Basic notions and notations
Overgroups of the divisor matrix
A special representation of $\operatorname{SL}(2, \mathbf{Z})$
Ordered factorizations
Jordan form of D
Construction of representations
The main construction
From group elements to Dirichlet series
Related topics

The Divisor matrix

- $D=\left(d_{i, j}\right)_{i, j \in \mathbf{N}}$ defined by

$$
d_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \\ 0 & \text { otherwise }\end{cases}
$$

The matrix ring \mathcal{A}

- $E:=$ free \mathbf{Q}-module with basis $\left\{e_{n}\right\}_{n \in \mathbf{N}}$.
- $\operatorname{End}_{\mathrm{a}}(E) \cong \mathcal{A}:=$ the space of matrices $A=\left(a_{i, j}\right)_{i, j \in \mathbb{N}}$, with rational entries, such that each column has only finitely many nonzero entries.
- $E^{*} \cong Q^{N}$, sequences of rational numbers, $f \in E^{*}$ is identified with the sequence $\left(f\left(e_{n}\right)\right)_{n \in \mathbb{N}}$. Write $f\left(e_{n}\right)$ as $f(n)$ for short.
- \mathcal{A} acts on the right of E^{*}

$$
(f A)(n)=\sum_{m \in \mathbf{N}} a_{m, n} f(m), \quad f \in \mathbf{Q}^{\mathbf{N}}, A \in \mathcal{A} .
$$

The matrix ring \mathcal{A}

- $E:=$ free \mathbf{Q}-module with basis $\left\{e_{n}\right\}_{n \in \mathbf{N}}$.
- $\operatorname{End}_{\mathbf{Q}}(E) \cong \mathcal{A}:=$ the space of matrices $A=\left(a_{i, j}\right)_{i, j \in \mathbf{N}}$, with rational entries, such that each column has only finitely many nonzero entries.

$-\mathcal{A}$ acts on the right of E^{*}

The matrix ring \mathcal{A}

- $E:=$ free \mathbf{Q}-module with basis $\left\{e_{n}\right\}_{n \in \mathbf{N}}$.
- $\operatorname{End}_{\mathbf{Q}}(E) \cong \mathcal{A}:=$ the space of matrices $A=\left(a_{i, j}\right)_{i, j \in \mathbf{N}}$, with rational entries, such that each column has only finitely many nonzero entries.
- $E^{*} \cong \mathbf{Q}^{\mathbf{N}}$, sequences of rational numbers, $f \in E^{*}$ is identified with the sequence $\left(f\left(e_{n}\right)\right)_{n \in \mathbf{N}}$. Write $f\left(e_{n}\right)$ as $f(n)$ for short.
- \mathcal{A} acts on the right of E^{*}

The matrix ring \mathcal{A}

- $E:=$ free \mathbf{Q}-module with basis $\left\{e_{n}\right\}_{n \in \mathbf{N}}$.
- $\operatorname{End}_{\mathbf{Q}}(E) \cong \mathcal{A}:=$ the space of matrices $A=\left(a_{i, j}\right)_{i, j \in \mathbf{N}}$, with rational entries, such that each column has only finitely many nonzero entries.
- $E^{*} \cong \mathbf{Q}^{\mathbf{N}}$, sequences of rational numbers, $f \in E^{*}$ is identified with the sequence $\left(f\left(e_{n}\right)\right)_{n \in \mathbf{N}}$. Write $f\left(e_{n}\right)$ as $f(n)$ for short.
- \mathcal{A} acts on the right of E^{*} :

$$
(f A)(n)=\sum_{m \in \mathbf{N}} a_{m, n} f(m), \quad f \in \mathbf{Q}^{\mathbf{N}}, A \in \mathcal{A}
$$

Dirichlet Space and Dirichlet Ring

- $f \in \mathcal{D S}$ if and only if the Dirichlet series $\sum_{n} f(n) n^{-s}$ converges for some complex number s.
- DR $:=$ the subring of \mathcal{A} consisting of all elements which leave $\mathcal{D S}$ invariant.

Dirichlet Space and Dirichlet Ring

$$
\mathcal{D S}:=\left\{f \in \mathbf{Q}^{\mathbf{N}} \mid(\exists C, c>0)(\forall n)\left(|f(n)| \leq C n^{c}\right)\right\}
$$

$\Rightarrow f \in \mathcal{D S}$ if and only if the Dirichlet series $\sum_{n} f(n) n^{-s}$ converges for some complex number s.

- $\mathcal{D R}:=$ the subring of \mathcal{A} consisting of all elements which leave $\mathcal{D S}$ invariant.

Dirichlet Space and Dirichlet Ring

$$
\mathcal{D S}:=\left\{f \in \mathbf{Q}^{\mathbf{N}} \mid(\exists C, c>0)(\forall n)\left(|f(n)| \leq C n^{c}\right)\right\}
$$

- $f \in \mathcal{D S}$ if and only if the Dirichlet series $\sum_{n} f(n) n^{-s}$ converges for some complex number s.
- $\mathcal{D R}:=$ the subring of \mathcal{A} consisting of all elements which leave $\mathcal{D S}$ invariant.

Dirichlet Space and Dirichlet Ring

$$
\mathcal{D S}:=\left\{f \in \mathbf{Q}^{\mathbf{N}} \mid(\exists C, c>0)(\forall n)\left(|f(n)| \leq C n^{c}\right)\right\}
$$

- $f \in \mathcal{D S}$ if and only if the Dirichlet series $\sum_{n} f(n) n^{-s}$ converges for some complex number s.
- $\mathcal{D} \mathcal{R}:=$ the subring of \mathcal{A} consisting of all elements which leave $\mathcal{D S}$ invariant.

Sufficient conditions for $\mathcal{D R}$

Let $A=\left(a_{i, j}\right)_{i, j \in \mathbf{N}} \in \mathcal{A}$. Suppose that there exist positive constants C and c such that the following hold.
(i) $a_{i, j}=0$ whenever $i>C j^{c}$.
(ii) For all i and j we have $\left|a_{i, j}\right| \leq C j$.

Then $A \in \mathcal{D R}$. Moreover, these conditions define a subring of $\mathcal{D R}$.

- $\mathcal{D R}$ is not closed under inversion.

$$
B=\left[\begin{array}{ccccc}
1 & -1 & -1 & -1 & \cdots \\
0 & 1 & -1 & -1 & \cdots \\
0 & 0 & 1 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \in \mathcal{D} \mathcal{R}
$$

$$
B^{-1}=\left[\begin{array}{cccccc}
1 & 1 & 2 & 4 & 8 & \cdots \\
0 & 1 & 1 & 2 & 4 & \cdots \\
0 & 0 & 1 & 1 & 2 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \notin \mathcal{D} \mathcal{R}
$$

- $D R$ is not closed under conjugation by \mathcal{A}^{\times}.

$$
\begin{gathered}
B=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & \cdots \\
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right], \quad C=\operatorname{diag}(1,2,4,8, \ldots), \\
C^{-1} B C=\left[\begin{array}{cccccc}
1 & 2 & 4 & 8 & \cdots \\
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \notin \mathcal{D R} .
\end{gathered}
$$

- $D \in \mathcal{D R}$.
- D acts on Dirichlet series as multiplication by the Riemann zeta function:

$$
\sum_{n=1}^{\infty} \frac{(\overline{f D})(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{\left(\sum d \mid n^{f(d))}\right.}{n^{s}}=\zeta(s) \sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

(in some half-plane).

- The inverse of D is given by

$$
d_{i, j}^{\prime}=\left\{\begin{array}{l}
\mu(j / i), \quad \text { if } i \text { divides } j, \\
0 \quad \text { otherwise }
\end{array}\right.
$$

where μ is the Möbius function.

- $D \in \mathcal{D} \mathcal{R}$.
- D acts on Dirichlet series as multiplication by the Riemann zeta function:

$$
\sum_{n=1}^{\infty} \frac{(f D)(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{\left(\sum_{d \mid n} f(d)\right)}{n^{s}}=\zeta(s) \sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

(in some half-plane).

- The inverse of D is given by

where μ is the Möbius function.
- $D \in \mathcal{D R}$.
- D acts on Dirichlet series as multiplication by the Riemann zeta function:

$$
\sum_{n=1}^{\infty} \frac{(f D)(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{\left(\sum_{d \mid n} f(d)\right)}{n^{s}}=\zeta(s) \sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

(in some half-plane).

- The inverse of D is given by

$$
d_{i, j}^{\prime}=\left\{\begin{array}{l}
\mu(j / i), \quad \text { if } i \text { divides } j \\
0 \quad \text { otherwise }
\end{array}\right.
$$

where μ is the Möbius function.

Overview

Basic notions and notations
Overgroups of the divisor matrix
A special representation of $\operatorname{SL}(2, Z)$
Ordered factorizations
Jordan form of D
Construction of representations The main construction

From group elements to Dirichlet series
Related topics

- Which subgroups of $\mathcal{D} \mathcal{R}^{\times}$contain D ?
- Thompson (2006) showed $\langle D\rangle \leq$ Dih $_{\infty} \leq \mathcal{D} \mathcal{R}^{\times}$
- The divisor matrix is a (locally) unipotent element of $\mathcal{D R}^{\times}$
- Is there a subaroup of $\mathcal{D} \mathcal{R}^{\times}$isomorphic to $\operatorname{SL}(2, Z)$ which contains D as a standard unipotent element?
- Which subgroups of $\mathcal{D} \mathcal{R}^{\times}$contain D ?
- Thompson (2006) showed $\langle D\rangle \leq \operatorname{Dih}_{\infty} \leq \mathcal{D} \mathcal{R}^{\times}$.
- The divisor matrix is a (locally) unipotent element of DR
- Is there a subgroup of $\mathcal{D} \mathcal{R}^{\times}$isomorphic to $\operatorname{SL}(2, \mathbf{Z})$ which contains D as a standard unipotent element?
- Which subgroups of $\mathcal{D} \mathcal{R}^{\times}$contain D ?
- Thompson (2006) showed $\langle D\rangle \leq \operatorname{Dih}_{\infty} \leq \mathcal{D} \mathcal{R}^{\times}$.
- The divisor matrix is a (locally) unipotent element of $\mathcal{D R}{ }^{\times}$.
- Is there a subgroup of $\mathcal{D} \mathcal{R}^{\times}$isomorphic to $\operatorname{SL}(2, Z)$ which contains D as a standard unipotent element?
- Which subgroups of $\mathcal{D} \mathcal{R}^{\times}$contain D ?
- Thompson (2006) showed $\langle D\rangle \leq \operatorname{Dih}_{\infty} \leq \mathcal{D} \mathcal{R}^{\times}$.
- The divisor matrix is a (locally) unipotent element of $\mathcal{D} \mathcal{R}^{\times}$.
- Is there a subgroup of $\mathcal{D} \mathcal{R}^{\times}$isomorphic to $\operatorname{SL}(2, \mathbf{Z})$ which contains D as a standard unipotent element?

Overview

Basic notions and notations
Overgroups of the divisor matrix
A special representation of $\operatorname{SL}(2, Z)$
Ordered factorizations
Jordan form of D
Construction of representations The main construction

From group elements to Dirichlet series
Related topics

SL(2, Z)

- $G:=\operatorname{SL}(2, \mathbf{Z})$ is generated by the matrices

$$
S=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \text { and } \quad T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

- S has order 4 and $R:=S T$ has order 6 .
- $G=\left\langle S, R \mid S^{4}, R^{6}, S^{2}=R^{3}\right\rangle$

SL(2, Z)

- $G:=\operatorname{SL}(2, \mathbf{Z})$ is generated by the matrices

$$
S=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \text { and } \quad T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

- S has order 4 and $R:=S T$ has order 6 .
- $G=\left\langle S, R \mid S^{4}, R^{6}, S^{2}=R^{3}\right\rangle$

SL(2, Z)

- $G:=\operatorname{SL}(2, \mathbf{Z})$ is generated by the matrices

$$
S=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \text { and } \quad T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

- S has order 4 and $R:=S T$ has order 6 .
- $G=\left\langle S, R \mid S^{4}, R^{6}, S^{2}=R^{3}\right\rangle$

Main Theorem
There exists a representation $\rho: \operatorname{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The underlying Q SL(2, Z)-module E has an ascending filtration $0=E_{0} \subset E_{1} \subset E_{2} \subset$
of Q SL $(2, Z)$-submodules such that for each $i \in \mathbb{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\rho(T)=D$.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, Z)$.
(d) $\rho(\mathrm{SL}(2, \mathbf{Z})) \subseteq \mathcal{D} \mathcal{R}$.

Main Theorem

There exists a representation $\rho: \operatorname{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The underlying \mathbf{Q} SL(2, Z)-module E has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

of $\mathbf{Q} \operatorname{SL}(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \mathrm{SL}(2, \mathbf{Z})$.
(d) $\rho(\mathrm{SL}(2, \mathbf{Z})) \subseteq \mathcal{D} \mathcal{R}$.

Main Theorem

There exists a representation $\rho: \operatorname{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The underlying \mathbf{Q} SL(2, Z)-module E has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

of $\mathbf{Q} \operatorname{SL}(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\rho(T)=D$.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \mathrm{SL}(2, Z)$.
(d) $\rho(\mathrm{SL}(2, \mathbf{Z})) \subseteq \mathcal{D} \mathcal{R}$.

Main Theorem

There exists a representation $\rho: \operatorname{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The underlying $\mathbf{Q} \operatorname{SL}(2, \mathbf{Z})$-module E has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

of $\mathbf{Q} \operatorname{SL}(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\rho(T)=D$.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \mathrm{SL}(2, \mathbf{Z})$.

Main Theorem

There exists a representation $\rho: \operatorname{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) The underlying $\mathbf{Q} \operatorname{SL}(2, \mathbf{Z})$-module E has an ascending filtration

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

of $\mathbf{Q} \operatorname{SL}(2, \mathbf{Z})$-submodules such that for each $i \in \mathbf{N}$, the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\rho(T)=D$.
(c) $\rho(Y)$ is an integer matrix for every $Y \in \mathrm{SL}(2, \mathbf{Z})$.
(d) $\rho(\mathrm{SL}(2, \mathbf{Z})) \subseteq \mathcal{D} \mathcal{R}$.

Module-theoretic steps in proof

- Find a "Jordan canonical form" of D.
- For each Jordan block construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ satisfying the filtration condition and so that T is represented by a matrix similar to the Jordan block.
- Form the direct sum. Then we will have a module satisying (a)-(c).
- Part (d) is not a module-theoretic statement, since $\mathcal{D R}$ is not closed under conjugation in \mathcal{A}^{\times}, so the main difficulty is to end up with the right matrix representation.

Module-theoretic steps in proof

- Find a "Jordan canonical form" of D.
- For each Jordan block construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ satisfying the filtration condition and so that T is represented by a matrix similar to the Jordan block.
- Form the direct sum. Then we will have a module satisying (a)-(c).
- Part (d) is not a module-theoretic statement, since DR is not closed under conjugation in \mathcal{A}^{\times}, so the main difficulty is to end up with the right matrix representation.

Module-theoretic steps in proof

- Find a "Jordan canonical form" of D.
- For each Jordan block construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ satisfying the filtration condition and so that T is represented by a matrix similar to the Jordan block.
- Form the direct sum. Then we will have a module satisying (a)-(c).
- Part (d) is not a module-theoretic statement, since $\mathcal{D R}$ is not closed under conjugation in \mathcal{A}^{\times}, so the main difficulty is to end up with the right matrix representation.

Module-theoretic steps in proof

- Find a "Jordan canonical form" of D.
- For each Jordan block construct an integral representation of $\operatorname{SL}(2, \mathbf{Z})$ satisfying the filtration condition and so that T is represented by a matrix similar to the Jordan block.
- Form the direct sum. Then we will have a module satisying (a)-(c).
- Part (d) is not a module-theoretic statement, since $\mathcal{D R}$ is not closed under conjugation in \mathcal{A}^{\times}, so the main difficulty is to end up with the right matrix representation.

Matrix part of proof

- Choose the right J.C.F of D. Order is important.
- Find the transition matrices from D to its J.C.F. explicitly to show that they belong to $\mathcal{D R}$.
- For each Jordan block, find a matrix representation τ_{1} which gives the right module and find the transition matrices taking $\tau_{1}(T)$ to the standard Jordan block.
- These have to be chosen in such a way that, when the Jordan blocks are assembled, the result lies in $\mathcal{D R}$.

Matrix part of proof

- Choose the right J.C.F of D. Order is important.
- Find the transition matrices from D to its J.C.F. explicitly to show that they belong to $\mathcal{D R}$.
> - For each Jordan block, find a matrix representation τ_{1} which gives the right module and find the transition matrices taking $\tau_{1}(T)$ to the standard Jordan block.
> - These have to be chosen in such a way that, when the Jordan blocks are assembled, the result lies in $\mathcal{D R}$.

Matrix part of proof

- Choose the right J.C.F of D. Order is important.
- Find the transition matrices from D to its J.C.F. explicitly to show that they belong to $\mathcal{D R}$.
- For each Jordan block, find a matrix representation τ_{1} which gives the right module and find the transition matrices taking $\tau_{1}(T)$ to the standard Jordan block.
- These have to be chosen in such a way that, when the Jordan blocks are assembled, the result lies in $\mathcal{D} \mathcal{R}$.

Matrix part of proof

- Choose the right J.C.F of D. Order is important.
- Find the transition matrices from D to its J.C.F. explicitly to show that they belong to $\mathcal{D R}$.
- For each Jordan block, find a matrix representation τ_{1} which gives the right module and find the transition matrices taking $\tau_{1}(T)$ to the standard Jordan block.
- These have to be chosen in such a way that, when the Jordan blocks are assembled, the result lies in $\mathcal{D R}$.

Overview

Basic notions and notations
Overgroups of the divisor matrix
A special representation of $\operatorname{SL}(2, Z)$
Ordered factorizations
Jordan form of D
Construction of representations
The main construction
From group elements to Dirichlet series
Related topics

- For $m, k \in \mathbf{N}$, let

$$
A_{k}(m):=\left\{\left(m_{1}, m_{2}, \ldots, m_{k}\right) \in(\mathbf{N} \backslash\{1\})^{k} \mid m_{1} m_{2} \cdots m_{k}=m\right\}
$$

- For $m, k \in \mathbf{N}$, let

$$
A_{k}(m):=\left\{\left(m_{1}, m_{2}, \ldots, m_{k}\right) \in(\mathbf{N} \backslash\{1\})^{k} \mid m_{1} m_{2} \cdots m_{k}=m\right\}
$$

- $\alpha_{k}(m):=\left|A_{k}(m)\right|$

- For $m, k \in \mathbf{N}$, let

$$
A_{k}(m):=\left\{\left(m_{1}, m_{2}, \ldots, m_{k}\right) \in(\mathbf{N} \backslash\{1\})^{k} \mid m_{1} m_{2} \cdots m_{k}=m\right\}
$$

- $\alpha_{k}(m):=\left|A_{k}(m)\right|$
- $\alpha_{k}(1)=0, \alpha_{k}(m)=0$ if $m<2^{k}$ and $\alpha_{k}\left(2^{k}\right)=1$.
- For $m, k \in \mathbf{N}$, let

$$
A_{k}(m):=\left\{\left(m_{1}, m_{2}, \ldots, m_{k}\right) \in(\mathbf{N} \backslash\{1\})^{k} \mid m_{1} m_{2} \cdots m_{k}=m\right\}
$$

- $\alpha_{k}(m):=\left|A_{k}(m)\right|$
- $\alpha_{k}(1)=0, \alpha_{k}(m)=0$ if $m<2^{k}$ and $\alpha_{k}\left(2^{k}\right)=1$.
- $(\zeta(s)-1)^{k}=\sum_{n=2}^{\infty} \frac{\alpha_{k}(n)}{n^{s}}$.

Some identities

$$
\left(\sum_{d \mid m} \alpha_{k-1}(d)\right)=\alpha_{k}(m)+\alpha_{k-1}(m)
$$

- Pick $c(\approx 1.7286)$ with $\zeta(c)=2$. Then $\alpha_{k}(m) \leq m^{c}$ for all k and m.

Some identities

$$
\begin{gathered}
\left(\sum_{d \mid m} \alpha_{k-1}(d)\right)=\alpha_{k}(m)+\alpha_{k-1}(m) \\
\sum_{i=1}^{k-1}(-1)^{k-1-i} \sum_{d \mid m} \alpha_{i}(d)=\alpha_{k}(m)+(-1)^{k} \alpha_{1}(m)
\end{gathered}
$$

\rightarrow Pick $c(\approx 1.7286)$ with $\zeta(c)=2$. Then $\alpha_{k}(m) \leq m^{c}$ for all k and m.

Some identities

$$
\begin{gathered}
\left(\sum_{d \mid m} \alpha_{k-1}(d)\right)=\alpha_{k}(m)+\alpha_{k-1}(m) . \\
\sum_{i=1}^{k-1}(-1)^{k-1-i} \sum_{d \mid m} \alpha_{i}(d)=\alpha_{k}(m)+(-1)^{k} \alpha_{1}(m) . \\
\sum_{k=1}^{v(m)}(-1)^{k} \alpha_{k}(m)= \begin{cases}\mu(m) & \text { if } m \neq 1, \\
0 & \text { if } m=1 .\end{cases}
\end{gathered}
$$

\rightarrow Pick $c(\approx 1.7286)$ with $\zeta(c)=2$. Then $\alpha_{k}(m) \leq m^{c}$ for all k and m.

Some identities

$$
\begin{gathered}
\left(\sum_{d \mid m} \alpha_{k-1}(d)\right)=\alpha_{k}(m)+\alpha_{k-1}(m) \\
\sum_{i=1}^{k-1}(-1)^{k-1-i} \sum_{d \mid m} \alpha_{i}(d)=\alpha_{k}(m)+(-1)^{k} \alpha_{1}(m) . \\
\sum_{k=1}^{v(m)}(-1)^{k} \alpha_{k}(m)= \begin{cases}\mu(m) & \text { if } m \neq 1, \\
0 & \text { if } m=1 .\end{cases}
\end{gathered}
$$

- Pick $c(\approx 1.7286)$ with $\zeta(c)=2$. Then $\alpha_{k}(m) \leq m^{c}$ for all k and m.

Relation to D

- The $(1, m)$ entry of $(D-l)^{k}$ is equal to $\alpha_{k}(m)$
- More generally,

Relation to D

- The $(1, m)$ entry of $(D-l)^{k}$ is equal to $\alpha_{k}(m)$
- More generally,

$$
(d, m) \text { entry of }(D-l)^{k}= \begin{cases}0 & \text { if } d \nmid m, \\ \alpha_{k}(m / d)=(1, m / d) \text { entry, if } d \mid m\end{cases}
$$

Overview

Basic notions and notations
Overgroups of the divisor matrix
A special representation of $\operatorname{SL}(2, Z)$
Ordered factorizations
Jordan form of D
Construction of representations
The main construction
From group elements to Dirichlet series
Related topics

- D is unitriangular. What is its JCF ?

$$
J:=\left(J_{i, j}\right)_{i, j \in \mathbf{N}}, \quad J_{i, j}= \begin{cases}1, & \text { if } j \in\{i, 2 i\} \\ 0 & \text { otherwise } .\end{cases}
$$

- Think of J as being the direct sum of infinite Jordan bocks, one for each odd integer.
- Let $Z:=(z(i, j))_{i, j \in N}$ be the matrix described in the following way. The odd rows have a single nonzero entry, equal to 1 on the diagonal. Let $i=2^{k} d$ with d odd. Then the $i^{\text {th }}$ row of Z is equal to the $d^{\text {th }}$ row of $(D-I)^{k}$.
- D is unitriangular. What is its JCF ?

$$
J:=\left(J_{i, j}\right)_{i, j \in \mathbf{N}}, \quad J_{i, j}=\left\{\begin{array}{lc}
1, & \text { if } j \in\{i, 2 i\} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Think of J as being the direct sum of infinite Jordan bocks, one for each odd integer.
- Let $Z:=(z(i, j))_{i, i \in \mathbf{N}}$ be the matrix described in the following way. The odd rows have a single nonzero entry, equal to 1 on the diagonal. Let $i=2^{k} d$ with d odd. Then the $i^{\text {th }}$ row of Z is equal to the $d^{\text {th }}$ row of $(D-I)^{k}$.
- D is unitriangular. What is its JCF ?

$$
J:=\left(J_{i, j}\right)_{i, j \in \mathbf{N}}, \quad J_{i, j}=\left\{\begin{array}{lc}
1, & \text { if } j \in\{i, 2 i\} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Think of J as being the direct sum of infinite Jordan bocks, one for each odd integer.

- D is unitriangular. What is its JCF ?

$$
J:=\left(J_{i, j}\right)_{i, j \in \mathbf{N}}, \quad J_{i, j}=\left\{\begin{array}{lc}
1, & \text { if } j \in\{i, 2 i\} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Think of J as being the direct sum of infinite Jordan bocks, one for each odd integer.
- Let $Z:=(z(i, j))_{i, j \in \mathbf{N}}$ be the matrix described in the following way. The odd rows have a single nonzero entry, equal to 1 on the diagonal. Let $i=2^{k} d$ with d odd. Then the $i^{\text {th }}$ row of Z is equal to the $d^{\text {th }}$ row of $(D-l)^{k}$.

Lemma
The matrix Z has the following properties:
(a) $Z D Z^{-1}=J$.
(b) $z(i, j)=\delta_{i, j}$, if i is odd.
(c) If $i=d 2^{k}$, where d is odd and $k \geq 1$, then

$$
z(i, j)=\left\{\begin{array}{l}
\alpha_{k}(j / d) \text { if } d \mid j, \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

(d) $z(i m, j m)=z(i, j)$ whenever m is odd.
(e) Z is upper unitriangular.
(f) $Z \in \mathcal{D R}$.

- We want $Z^{-1} \in \mathcal{D} \mathcal{R}$.

Theorem

Let X be the diagonal matrix with (i, i) entry equal to $(-1)^{v_{2}(i)}$, for $i \in \mathbf{N}$. Then $Z^{-1}=X Z X$.

- This theorem was discovered with the aid of a computer.
- It is proved by using the identities for the $\alpha_{k}(m)$.
- Consider the submatrix of entries whose row and column indices are powers of 2 . Then $z\left(2^{k}, 2^{\ell}\right)=\alpha_{k}\left(2^{\ell}\right)=\binom{\ell-1}{k-1}$, so the equations for this submatrix reduce to the orthogonality relation for binomial coefficients:

$$
\sum_{\ell=k}^{m}(-1)^{\ell+k}\binom{\ell-1}{k-1}\binom{m-1}{\ell-1}=\delta_{k, m} .
$$

- We want $Z^{-1} \in \mathcal{D} \mathcal{R}$.

Theorem
Let X be the diagonal matrix with (i, i) entry equal to $(-1)^{v_{2}(i)}$, for $i \in \mathbf{N}$. Then $Z^{-1}=X Z X$.

- This theorem was discovered with the aid of a computer.
- It is proved by using the identities for the $\alpha_{k}(m)$.
- Consider the submatrix of entries whose row and column indices are powers of 2. Then $z\left(2^{k}, 2^{\ell}\right)=\alpha_{k}\left(2^{\ell}\right)=\binom{\ell-1}{k-1}$,
so the equations for this submatrix reduce to the orthogonality relation for binomial coefficients:

- We want $Z^{-1} \in \mathcal{D} \mathcal{R}$.

Theorem
Let X be the diagonal matrix with (i, i) entry equal to $(-1)^{v_{2}(i)}$, for $i \in \mathbf{N}$. Then $Z^{-1}=X Z X$.

- This theorem was discovered with the aid of a computer.
- It is proved by using the identities for the $\alpha_{k}(m)$.
- Consider the submatrix of entries whose row and column indices are powers of 2 . Then $z\left(2^{k}, 2^{\ell}\right)=\alpha_{k}\left(2^{\ell}\right)=\binom{\ell-1}{k-1}$,
so the equations for this submatrix reduce to the
orthogonality relation for binomial coefficients:

- We want $Z^{-1} \in \mathcal{D} \mathcal{R}$.

Theorem
Let X be the diagonal matrix with (i, i) entry equal to $(-1)^{v_{2}(i)}$, for $i \in \mathbf{N}$. Then $Z^{-1}=X Z X$.

- This theorem was discovered with the aid of a computer.
- It is proved by using the identities for the $\alpha_{k}(m)$.
indices are powers of 2 . Then $z\left(2^{k}, 2^{\ell}\right)=\alpha_{k}\left(2^{\ell}\right)=\binom{\ell-1}{k-1}$,
so the equations for this submatrix reduce to the
orthogonality relation for binomial coefficients:

- We want $Z^{-1} \in \mathcal{D} \mathcal{R}$.

Theorem

Let X be the diagonal matrix with (i, i) entry equal to $(-1)^{v_{2}(i)}$, for $i \in \mathbf{N}$. Then $Z^{-1}=X Z X$.

- This theorem was discovered with the aid of a computer.
- It is proved by using the identities for the $\alpha_{k}(m)$.
- Consider the submatrix of entries whose row and column indices are powers of 2 . Then $z\left(2^{k}, 2^{\ell}\right)=\alpha_{k}\left(2^{\ell}\right)=\binom{\ell-1}{k-1}$, so the equations for this submatrix reduce to the orthogonality relation for binomial coefficients:

$$
\sum_{\ell=k}^{m}(-1)^{\ell+k}\binom{\ell-1}{k-1}\binom{m-1}{\ell-1}=\delta_{k, m}
$$

Matrix part of proof

- Choose the right J.C.F of D. Order is important.
- Find the transition matrices from D to its J.C.F. explicitly to show that they belong to $\mathcal{D R}$.
- For each Jordan block, find a matrix representation τ_{1} which gives the right module and find transition matrices P, P^{-1} so that $P \tau_{1}(T) P^{-1}$ is the standard Jordan block.
- These have to be chosen in such a way that when the Jordan blocks are assembled, the result lies in $\mathcal{D R}$.

Overview

Basic notions and notations

Overgroups of the divisor matrix
A special representation of $\operatorname{SL}(2, Z)$
Ordered factorizations
Jordan form of D
Construction of representations
The main construction
From group elements to Dirichlet series
Related topics

- Let J_{∞} be the "infinite Jordan block"

$$
\left(J_{\infty}\right)_{i, j}= \begin{cases}1, & \text { if } j=i \text { or } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

- We are reduced to constructing a representation with T acting as J_{∞}, and certain other properties.
- Let J_{∞} be the "infinite Jordan block"

$$
\left(J_{\infty}\right)_{i, j}= \begin{cases}1, & \text { if } j=i \text { or } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

- We are reduced to constructing a representation with T acting as J_{∞}, and certain other properties.

Theorem
There exists a representation $\tau: \operatorname{SL}(2, Z) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) Let E_{i} be the subspace of E spanned by $\left\{e_{1}, \ldots, e_{2 i}\right\}$, $i \in \mathbf{N}$. Then

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset
$$

is a filtration of $\mathbf{Q} \operatorname{SL}(2, \mathbf{Z})$-modules and for each $i \in \mathbf{N}$ the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\tau(T)=J_{\infty}$.
(c) $\tau(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, Z)$.
(d) There is a constant C such that for all i and j we have $\left|\tau(S)_{i, j}\right| \leq 2^{C j}$

Theorem

There exists a representation $\tau: \operatorname{SL}(2, Z) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) Let E_{i} be the subspace of E spanned by $\left\{e_{1}, \ldots, e_{2 i}\right\}$, $i \in \mathbf{N}$. Then

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

is a filtration of $\mathbf{Q S L}(2, \mathbf{Z})$-modules and for each $i \in \mathbf{N}$ the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(c) $\tau(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, \mathbf{Z})$.
(d) There is a constant C such that for all i and j we have $\left|\tau(S)_{i, j}\right| \leq 2^{C j}$

Theorem

There exists a representation $\tau: \operatorname{SL}(2, Z) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) Let E_{i} be the subspace of E spanned by $\left\{e_{1}, \ldots, e_{2 i}\right\}$, $i \in \mathbf{N}$. Then

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

is a filtration of $\mathbf{Q S L}(2, \mathbf{Z})$-modules and for each $i \in \mathbf{N}$ the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2,Z)-module.
(b) $\tau(T)=J_{\infty}$.
(c) $\tau(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, Z)$.
(d) There is a constant C such that for all i and j we have $\left|\tau(S)_{i, j}\right| \leq 2^{C j}$

Theorem

There exists a representation $\tau: \operatorname{SL}(2, Z) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) Let E_{i} be the subspace of E spanned by $\left\{e_{1}, \ldots, e_{2 i}\right\}$, $i \in \mathbf{N}$. Then

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

is a filtration of $\mathbf{Q} \operatorname{SL}(2, \mathbf{Z})$-modules and for each $i \in \mathbf{N}$ the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2,Z)-module.
(b) $\tau(T)=J_{\infty}$.
(c) $\tau(Y)$ is an integer matrix for every $Y \in \operatorname{SL}(2, \mathbf{Z})$.
(d) There is a constant C such that for all i and j we have $\left|\tau(S)_{i, j}\right| \leq 2^{C j}$

Theorem

There exists a representation $\tau: \operatorname{SL}(2, Z) \rightarrow \mathcal{A}^{\times}$with the following properties.
(a) Let E_{i} be the subspace of E spanned by $\left\{e_{1}, \ldots, e_{2 i}\right\}$, $i \in \mathbf{N}$. Then

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots
$$

is a filtration of \mathbf{Q} SL(2, Z)-modules and for each $i \in \mathbf{N}$ the quotient module E_{i} / E_{i-1} is isomorphic to the standard 2-dimensional Q SL(2, Z)-module.
(b) $\tau(T)=J_{\infty}$.
(c) $\tau(Y)$ is an integer matrix for every $Y \in \mathrm{SL}(2, \mathbf{Z})$.
(d) There is a constant C such that for all i and j we have $\left|\tau(S)_{i, j}\right| \leq 2^{C j}$.

Remarks

- When the Jordan blocks are interleaved, the (i, j) entry of $\tau(Y)$ will be the $\left(2^{i-1} d, 2^{j-1} d\right)$ entries of the matrix of Y on the direct sum, for every odd number d, so the exponential bound (d) is the condition to end up in $\mathcal{D R}$.
- This representation is unique up to QG-isomorphism.

Remarks

- When the Jordan blocks are interleaved, the (i, j) entry of $\tau(Y)$ will be the $\left(2^{i-1} d, 2^{j-1} d\right)$ entries of the matrix of Y on the direct sum, for every odd number d, so the exponential bound (d) is the condition to end up in $\mathcal{D R}$.
- This representation is unique up to $\mathbf{Q G}$-isomorphism.
- Define $\left\{b_{n}\right\}_{n \geq 0}$ recursively by

$$
b_{0}=b_{1}=1, \quad b_{n}+\sum_{\substack{i, j \geq 1 \\ i+j=n}} b_{i} b_{j}=0 \quad \text { for all } n \geq 2
$$

- These are Catalan numbers with signs:

- $g(t) \in \mathbf{Q}[[t]]$ defined by

- The recurrence relations can be expressed as:

$$
g(t)^{2}+g(t)=t
$$

- Define $\left\{b_{n}\right\}_{n \geq 0}$ recursively by

$$
b_{0}=b_{1}=1, \quad b_{n}+\sum_{\substack{i, j \geq 1 \\ i+j=n}} b_{i} b_{j}=0 \quad \text { for all } n \geq 2
$$

- These are Catalan numbers with signs:

$$
b_{m}=(-1)^{m-1} \frac{1}{m}\binom{2(m-1)}{m-1}, \quad(m \geq 2), \quad b_{1}=b_{0}=1
$$

$\Rightarrow g(t) \in \mathbb{Q}[[t]]$ defined by

- The recurrence relations can be expressed as:

- Define $\left\{b_{n}\right\}_{n \geq 0}$ recursively by

$$
b_{0}=b_{1}=1, \quad b_{n}+\sum_{\substack{i, j \geq 1 \\ i+j=n}} b_{i} b_{j}=0 \quad \text { for all } n \geq 2
$$

- These are Catalan numbers with signs:

$$
b_{m}=(-1)^{m-1} \frac{1}{m}\binom{2(m-1)}{m-1}, \quad(m \geq 2), \quad b_{1}=b_{0}=1
$$

- $g(t) \in \mathbf{Q}[[t]]$ defined by

$$
1+g(t)=\sum_{k=0}^{\infty} b_{k} t^{k}
$$

- The recurrence relations can be expressed as:
- Define $\left\{b_{n}\right\}_{n \geq 0}$ recursively by

$$
b_{0}=b_{1}=1, \quad b_{n}+\sum_{\substack{i, j \geq 1 \\ i+j=n}} b_{i} b_{j}=0 \quad \text { for all } n \geq 2
$$

- These are Catalan numbers with signs:

$$
b_{m}=(-1)^{m-1} \frac{1}{m}\binom{2(m-1)}{m-1}, \quad(m \geq 2), \quad b_{1}=b_{0}=1
$$

- $g(t) \in \mathbf{Q}[[t]]$ defined by

$$
1+g(t)=\sum_{k=0}^{\infty} b_{k} t^{k}
$$

- The recurrence relations can be expressed as:

$$
g(t)^{2}+g(t)=t
$$

$$
B_{0}=T, \quad B_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \quad B_{i}=\left[\begin{array}{cc}
0 & b_{i} \\
b_{i} & 0
\end{array}\right], \quad(i \geq 2)
$$

$$
B_{0}=T, \quad B_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \quad B_{i}=\left[\begin{array}{cc}
0 & b_{i} \\
b_{i} & 0
\end{array}\right], \quad(i \geq 2)
$$

- Set

$$
\begin{gathered}
\tilde{J}=\left[\begin{array}{c:c:c:c:c}
B_{0} & B_{1} & B_{2} & B_{3} & \ldots \\
\hdashline 0 & B_{0} & B_{1} & B_{2} & \cdots \\
\hdashline 0 & 0 & B_{0} & B_{1} & \cdots \\
\hdashline 0 & 0 & 0 & B_{0} & \cdots \\
\hdashline \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right], \\
\tilde{S}=\operatorname{diag}(S, S, \ldots), \\
\tilde{R}=-\tilde{S} \tilde{J} .
\end{gathered}
$$

- Let \mathcal{U} denote the ring of matrices of the form

$$
U=\left[\begin{array}{c:c:c:c}
X^{(0)} & X^{(1)} & X^{(2)} & X^{(3)} \\
\hdashline 0 & X^{(0)} & X^{(1)} & X^{(2)} \\
\hdashline 0 & 0 & X^{(0)} & X^{(1)} \\
\hdashline 0 & 0 & 0 & X^{(0)} \\
\hdashline \vdots & \vdots & \vdots & \vdots \\
\hdashline & \ddots
\end{array}\right],
$$

where $X^{(n)} \in M_{2}(\mathbf{Q})$ are repeated down the diagonals.

- \tilde{S}, \tilde{J} and \tilde{R} all belong to \mathcal{U}.
- There is a $\mathbf{Q}[[t]]$-algebra isomorphism

- Let \mathcal{U} denote the ring of matrices of the form

$$
\boldsymbol{U}=\left[\begin{array}{c:c:c:c}
X^{(0)} & X^{(1)} & X^{(2)} & X^{(3)} \\
\hdashline 0 & X^{(0)} & X^{(1)} & X^{(2)} \\
\hdashline 0 & 0 & X^{(0)} & X^{(1)} \\
\hdashline 0 & 0 & 0 & X^{(0)} \\
\hdashline \vdots & \vdots & \vdots & \vdots \\
\hdashline & \ddots
\end{array}\right],
$$

where $X^{(n)} \in M_{2}(\mathbf{Q})$ are repeated down the diagonals.

- \tilde{S}, \tilde{J} and \tilde{R} all belong to \mathcal{U}.
- There is a Q[[t]]-algebra isomorphism
- Let \mathcal{U} denote the ring of matrices of the form

$$
U=\left[\begin{array}{c:c:c:c}
X^{(0)} & X^{(1)} & X^{(2)} & X^{(3)} \\
\hdashline 0 & X^{(0)} & X^{(1)} & X^{(2)} \\
\hdashline 0 & 0 & X^{(0)} & X^{(1)} \\
\hdashline 0 & 0 & 0 & X^{(0)} \\
\hdashline \vdots & \vdots & \vdots & \vdots \\
\hdashline & \ddots
\end{array}\right],
$$

where $X^{(n)} \in M_{2}(\mathbf{Q})$ are repeated down the diagonals.

- \tilde{S}, \tilde{J} and \tilde{R} all belong to \mathcal{U}.
- There is a $\mathbf{Q}[[t]]$-algebra isomorphism

$$
\gamma: \mathcal{U} \rightarrow M_{2}(\mathbf{Q}[[t]])=M_{2}(\mathbf{Q})[[t]], \quad U \mapsto \sum_{n=0}^{\infty} X^{(n)} t^{n}
$$

- We have:

$$
\begin{aligned}
\gamma(\tilde{S}) & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \\
\gamma(\tilde{J}) & =\left[\begin{array}{cc}
1 & 1+g(t) \\
g(t) & 1+t
\end{array}\right], \\
\gamma(\tilde{R}) & =\left[\begin{array}{cc}
g(t) & 1+t \\
-1 & -1-g(t)
\end{array}\right] .
\end{aligned}
$$

Lemma

(a) $\tilde{S}^{2}=-1$.
(b) $\tilde{R}^{2}+\tilde{R}+I=0$.
(c) There exists a representation τ_{1} of $\operatorname{SL}(2, \mathbf{Z})$ such that $\tau_{1}(S)=\tilde{S}$ and $\tau_{1}(T)=\tilde{J}$.

Jordan form of \tilde{J}

- Find P such that $P \tilde{\jmath} P^{-1}=J_{\infty}$.
- For $n \in \mathbb{N}$, set $n^{\text {th }}$ row of $P:=$ first row of $(\tilde{J}-l)^{n-1}$ $\left((\tilde{J}-l)^{0}=l\right.$.)

$$
P(\tilde{J}-I)=\left(J_{\infty}-I\right) P .
$$

Jordan form of $\tilde{\jmath}$

- Find P such that $P \tilde{J} P^{-1}=J_{\infty}$.
- For $n \in \mathbf{N}$, set $n^{\text {th }}$ row of $P:=$ first row of $(\tilde{J}-l)^{n-1}$ $\left((\tilde{J}-l)^{0}=l\right.$. $)$

Jordan form of $\tilde{\jmath}$

- Find P such that $P \tilde{J} P^{-1}=J_{\infty}$.
- For $n \in \mathbf{N}$, set $n^{\text {th }}$ row of $P:=$ first row of $(\tilde{J}-l)^{n-1}$ $\left((\tilde{J}-I)^{0}=l\right.$.)

$$
P(\tilde{J}-I)=\left(J_{\infty}-I\right) P .
$$

- To compute the powers of $\tilde{J}-I$ explicitly, use the isomorphism γ.
- Let $\tilde{H}=\gamma(\tilde{J}-I)$. Then

$$
\tilde{H}=\left[\begin{array}{cc}
0 & 1+g(t) \\
g(t) & t
\end{array}\right]
$$

- Compute the powers of $\tilde{J}-I$ by diagonalizing \tilde{H}.
- The entries of P are coefficients of the powers of t in the top rows of the \tilde{H}^{n}.
- For $\ell \geq 3$ and $s \geq 0$, we have

- To compute the powers of $\tilde{J}-I$ explicitly, use the isomorphism γ.
- Let $\tilde{H}=\gamma(\tilde{\jmath}-l)$. Then

$$
\tilde{H}=\left[\begin{array}{cc}
0 & 1+g(t) \\
g(t) & t
\end{array}\right] .
$$

- Compute the powers of $\tilde{J}-/$ by diagonalizing \tilde{H}.
- The entries of P are coefficients of the powers of t in the top rows of the \tilde{H}^{n}.
- For $\ell \geq 3$ and $s \geq 0$, we have

- To compute the powers of $\tilde{J}-I$ explicitly, use the isomorphism γ.
- Let $\tilde{H}=\gamma(\tilde{J}-l)$. Then

$$
\tilde{H}=\left[\begin{array}{cc}
0 & 1+g(t) \\
g(t) & t
\end{array}\right] .
$$

- Compute the powers of $\tilde{J}-I$ by diagonalizing \tilde{H}.
- The entries of P are coefficients of the powers of t in the top rows of the \tilde{H}^{n}.
- For $\ell \geq 3$ and $s \geq 0$, we have

- To compute the powers of $\tilde{J}-I$ explicitly, use the isomorphism γ.
- Let $\tilde{H}=\gamma(\tilde{J}-l)$. Then

$$
\tilde{H}=\left[\begin{array}{cc}
0 & 1+g(t) \\
g(t) & t
\end{array}\right] .
$$

- Compute the powers of $\tilde{J}-I$ by diagonalizing \tilde{H}.
- The entries of P are coefficients of the powers of t in the top rows of the \tilde{H}^{n}.
- For $\ell \geq 3$ and $s \geq 0$, we have

- To compute the powers of $\tilde{J}-/$ explicitly, use the isomorphism γ.
- Let $\tilde{H}=\gamma(\tilde{J}-l)$. Then

$$
\tilde{H}=\left[\begin{array}{cc}
0 & 1+g(t) \\
g(t) & t
\end{array}\right]
$$

- Compute the powers of $\tilde{J}-I$ by diagonalizing \tilde{H}.
- The entries of P are coefficients of the powers of t in the top rows of the \tilde{H}^{n}.
- For $\ell \geq 3$ and $s \geq 0$, we have

$$
\begin{aligned}
& p_{\ell, 2 s+1}=\binom{s-1}{\ell-s-2}, \\
& p_{\ell, 2 s+2}=\sum_{k=0}^{\left\lfloor s+1-\frac{\ell}{2}\right\rfloor} b_{k}\binom{s-k}{\ell+k-s-2} .
\end{aligned}
$$

- P^{-1} is found in a similar, but slightly more elaborate procedure.
The entries of $P^{-1}=\left(q_{i, j}\right)_{B, j \in \mathrm{~N}}$ are: $q_{i, 1}=\delta_{i, 1}$ and $q_{i, 2}=\delta_{i, 2}$, for $i \in \mathbf{N}$. For $m \geq 3$ and $s \geq 0$, we have

- P^{-1} is found in a similar, but slightly more elaborate procedure.
- The entries of $P^{-1}=\left(q_{i, j}\right)_{B, j \in \mathbf{N}}$ are: $q_{i, 1}=\delta_{i, 1}$ and $q_{i, 2}=\delta_{i, 2}$, for $i \in \mathbf{N}$. For $m \geq 3$ and $s \geq 0$, we have

$$
\begin{aligned}
& q_{2 s+1, m}=(-1)^{m-1}\binom{m-s-2}{s-1} \\
& q_{2 s+2, m}=(-1)^{m} \sum_{k=1}^{\left\lfloor\frac{m}{2}\right\rfloor-s} b_{k}\binom{m-s-k-2}{s+k-2} .
\end{aligned}
$$

- For all i and j we have $\left|q_{i, j}\right| \leq 2^{3 j}$ and $\left|p_{i, j}\right| \leq 2^{2 j}$.
- So $\tau: \operatorname{SL}(2, Z) \rightarrow \mathcal{A}^{\times}, Y \mapsto P_{\tau_{1}}(Y) P^{-1}$ gives the desired representation for each Jordan block of the divisor matrix.
- The proof the main theorem is complete.
- ρ can be extended to a representation $\mathrm{GL}(2, \mathbf{Z}) \rightarrow \mathcal{D} \mathcal{R}$ (but not with integral coefficients).
- There is a aroup $B \cong$ upper triangular subgroup of $\operatorname{SL}(2, Q)$ such that $D \in B \leq \mathcal{D} \mathcal{R}^{\times}$
- For all i and j we have $\left|q_{i, j}\right| \leq 2^{3 j}$ and $\left|p_{i, j}\right| \leq 2^{2 j}$.
- So $\tau: \mathrm{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}, Y \mapsto P \tau_{1}(Y) P^{-1}$ gives the desired representation for each Jordan block of the divisor matrix.
- The proof the main theorem is complete.
- ρ can be extended to a representation $\mathrm{GL}(2, \mathbf{Z}) \rightarrow \mathcal{D} \mathcal{R}$ (but not with integral coefficients).
- There is a group $B \cong$ upper triangular subgroup of $\operatorname{SL}(2, Q)$ such that $D \in B \leq \mathcal{D R}$
- For all i and j we have $\left|q_{i, j}\right| \leq 2^{3 j}$ and $\left|p_{i, j}\right| \leq 2^{2 j}$.
- So $\tau: \mathrm{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}, Y \mapsto P \tau_{1}(Y) P^{-1}$ gives the desired representation for each Jordan block of the divisor matrix.
- The proof the main theorem is complete.
- ρ can be extended to a representation $\mathrm{GL}(2, \mathbf{Z}) \rightarrow \mathcal{D} \mathcal{R}$ (but not with integral coefficients).
- There is a aroup $B \cong$ upper trianaular subgroup of $\operatorname{SL}(2, Q)$ such that $D \in B \leq \mathcal{D R}$
- For all i and j we have $\left|q_{i, j}\right| \leq 2^{3 j}$ and $\left|p_{i, j}\right| \leq 2^{2 j}$.
- So $\tau: \mathrm{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}, Y \mapsto P \tau_{1}(Y) P^{-1}$ gives the desired representation for each Jordan block of the divisor matrix.
- The proof the main theorem is complete.
- ρ can be extended to a representation $\mathrm{GL}(2, \mathbf{Z}) \rightarrow \mathcal{D} \mathcal{R}^{\times}$ (but not with integral coefficients).
- There is a group $B \cong$ upper triangular subgroup of $\operatorname{SL}(2, Q)$ such that $D \in B \leq \mathcal{D} \mathcal{R}$
- For all i and j we have $\left|q_{i, j}\right| \leq 2^{3 j}$ and $\left|p_{i, j}\right| \leq 2^{2 j}$.
- So $\tau: \mathrm{SL}(2, \mathbf{Z}) \rightarrow \mathcal{A}^{\times}, Y \mapsto P_{\tau_{1}}(Y) P^{-1}$ gives the desired representation for each Jordan block of the divisor matrix.
- The proof the main theorem is complete.
- ρ can be extended to a representation $\mathrm{GL}(2, \mathbf{Z}) \rightarrow \mathcal{D} \mathcal{R}^{\times}$ (but not with integral coefficients).
- There is a group $B \cong$ upper triangular subgroup of $\operatorname{SL}(2, \mathbf{Q})$ such that $D \in B \leq \mathcal{D} \mathcal{R}^{\times}$.

Overview

Basic notions and notationsOvergroups of the divisor matrixA special representation of $\operatorname{SL}(2, \mathbf{Z})$
Ordered factorizations
Jordan form of DConstruction of representationsThe main construction

From group elements to Dirichlet series
Related topics

- Consider the matrix $\rho(-S), S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
- Its top row (a_{1}, a_{2}, \ldots) lies in $\mathcal{D S}$, with associated Dirichlet series

- $\sigma_{c}:=$ abscissa of convergence of $\varphi(s)$.
- Consider the matrix $\rho(-S), S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
- Its top row $\left(a_{1}, a_{2}, \ldots\right)$ lies in $\mathcal{D S}$, with associated Dirichlet series

$$
\varphi(s):=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

- $\sigma_{c}:=$ abscissa of convergence of $\varphi(s)$.
- Consider the matrix $\rho(-S), S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
- Its top row $\left(a_{1}, a_{2}, \ldots\right)$ lies in $\mathcal{D S}$, with associated Dirichlet series

$$
\varphi(s):=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

$$
a_{n}=\rho(-S)_{1, n}=\alpha_{1}(n)+\sum_{\ell \geq 4}(-1)^{\ell} \alpha_{\ell-1}(n) \sum_{k=2}^{\left\lfloor\frac{\ell}{2}\right\rfloor} b_{k}\binom{\ell-k-2}{k-2} .
$$

- $\sigma_{c}:=$ abscissa of convergence of $\varphi(s)$.
- Consider the matrix $\rho(-S), S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
- Its top row $\left(a_{1}, a_{2}, \ldots\right)$ lies in $\mathcal{D S}$, with associated Dirichlet series

$$
\varphi(s):=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

$$
a_{n}=\rho(-S)_{1, n}=\alpha_{1}(n)+\sum_{\ell \geq 4}(-1)^{\ell} \alpha_{\ell-1}(n) \sum_{k=2}^{\left\lfloor\frac{\ell}{2}\right\rfloor} b_{k}\binom{\ell-k-2}{k-2} .
$$

- $\sigma_{c}:=$ abscissa of convergence of $\varphi(s)$.

The cubic equation relating $\zeta(s)$ and $\varphi(s)$
Theorem
In the half-plane $\operatorname{Re}(s)>\max \left(1, \sigma_{c}\right)$, we have

$$
(\zeta(s)-1) \varphi(s)^{2}+\zeta(s) \varphi(s)-\zeta(s)(\zeta(s)-1)=0 .
$$

- By Riemann's extension of $\zeta(s)$ this equation defines analytic continuations of $\varphi(s)$ along arcs in the plane which avoid a certain set of points (including the zeros of $\zeta(s)$).

The cubic equation relating $\zeta(s)$ and $\varphi(s)$
Theorem
In the half-plane $\operatorname{Re}(s)>\max \left(1, \sigma_{c}\right)$, we have

$$
(\zeta(s)-1) \varphi(s)^{2}+\zeta(s) \varphi(s)-\zeta(s)(\zeta(s)-1)=0 .
$$

- By Riemann's extension of $\zeta(s)$ this equation defines analytic continuations of $\varphi(s)$ along arcs in the plane which avoid a certain set of points (including the zeros of $\zeta(s)$).

Orbit of $\zeta(s)$

- We have $1^{-s} . \rho(T)=\zeta(s)$ and $1^{-s} . \rho(-S)=\varphi(s)$.
- Let $\mathbf{Q}(\zeta(s), \varphi(s))$ be the subfield of the field of
meromorphic functions of the half-plane
$\operatorname{Re}(s)>\max \left(1, \sigma_{c}\right)$ generated by the functions $\zeta(s)$ and $\varphi(s)$.

Orbit of $\zeta(s)$

- We have $1^{-s} . \rho(T)=\zeta(s)$ and $1^{-s} . \rho(-S)=\varphi(s)$.
- Let $\mathbf{Q}(\zeta(s), \varphi(s))$ be the subfield of the field of meromorphic functions of the half-plane $\operatorname{Re}(s)>\max \left(1, \sigma_{c}\right)$ generated by the functions $\zeta(s)$ and $\varphi(s)$.
Theorem
For any element $Y \in G=\operatorname{SL}(2, Z)$ the Dirichlet series $1^{-s} . Y$ converges for $\operatorname{Re}(s)>\max \left(1, \sigma_{c}\right)$ and the sum function belongs to $\mathbf{Q}(\zeta(s), \varphi(s))$.

Orbit of $\zeta(s)$

- We have $1^{-s} . \rho(T)=\zeta(s)$ and $1^{-s} . \rho(-S)=\varphi(s)$.
- Let $\mathbf{Q}(\zeta(s), \varphi(s))$ be the subfield of the field of meromorphic functions of the half-plane $\operatorname{Re}(s)>\max \left(1, \sigma_{c}\right)$ generated by the functions $\zeta(s)$ and $\varphi(s)$.
Theorem
For any element $Y \in G=\operatorname{SL}(2, Z)$ the Dirichlet series $1^{-s} . Y$ converges for $\operatorname{Re}(s)>\max \left(1, \sigma_{c}\right)$ and the sum function belongs to $\mathbf{Q}(\zeta(s), \varphi(s))$.

Overview

Basic notions and notations
Overgroups of the divisor matrix
A special representation of $\operatorname{SL}(2, Z)$
Ordered factorizations
Jordan form of D
Construction of representations
The main construction
From group elements to Dirichlet series
Related topics

Redheffer's Matrix

- $R(n)$ is the $n \times n$ matrix:

$$
R(n)_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \text { or } j=1 \\ 0 & \text { otherwise }\end{cases}
$$

- Redheffer (1977): det $R(n)=\sum_{m \leq n} \mu(m)$,
- The Riemann Hypothesis is equivalent to:

for every $\epsilon>0$.

Redheffer's Matrix

- $R(n)$ is the $n \times n$ matrix:

$$
R(n)_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \text { or } j=1 \\ 0 & \text { otherwise }\end{cases}
$$

- Redheffer (1977): $\operatorname{det} R(n)=\sum_{m \leq n} \mu(m)$,
- The Riemann Hypothesis is equivalent to:

for every $\epsilon>0$.

Redheffer's Matrix

- $R(n)$ is the $n \times n$ matrix:

$$
R(n)_{i, j}= \begin{cases}1, & \text { if } i \text { divides } j \text { or } j=1 \\ 0 & \text { otherwise }\end{cases}
$$

- Redheffer (1977): $\operatorname{det} R(n)=\sum_{m \leq n} \mu(m)$,
- The Riemann Hypothesis is equivalent to:

$$
\sum_{m \leq n} \mu(m)=O\left(n^{\frac{1}{2}+\epsilon}\right)
$$

for every $\epsilon>0$.

Pictures of the divisor matrix
Cover of the current Notices of AMS from D. Cox's article "Visualizing the sieve of Eratosthones".
P. Sin, J. G. Thompson, The Divisor Matrix, Dirichlet Series and SL(2, Z), Preprint (2007), arXiv:math/0712.0837.

圊 P. Sin, J. G. Thompson, The Divisor Matrix, Dirichlet Series and SL(2, Z) II, Preprint (2008), arXiv:math/0803.1121.

围 J. G. Thompson, Unipotent elements, standard involutions, and the divisor matrix, Preprint (2006).

