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Abstract. The elementary divisors of the incidence matrices between points and

linear subspaces of fixed dimension in Pn(Fp) are computed.

Introduction

Let V be an (n + 1)-dimensional vector space over Fp. Let Lr denote the set of
r-dimensional subspaces of V . Then L1 is the set of points of the projective space
P(V ) and Ln the set of hyperplanes. The group G = GL(V ) acts transitively on
each of the sets Lr. Between any two of these sets we have an incidence relation
given by inclusion of subspaces. This information can be encoded in an incidence
matrix, a 0 − 1 matrix which can be read in any commutative ring. Thus, it is
natural to ask for the elementary divisors of this matrix as an integer matrix. In
this paper we shall be concerned with the cases in which one of the sets is L1. The
incidence relation can be interpreted as the map

ZLr −→ ZL1 (1)

between the associated ZG-permutation modules which sends an r-subspace to
the (formal) sum of the 1-subspaces it contains. This homomorphism has a finite
cokernel and finding the elementary divisors of the incidence matrix is equivalent
to finding a cyclic decomposition of the cokernel. The problem falls naturally into
the two separate parts of describing the p-torsion and the p′-torsion.

The p′-torsion can be obtained as a corollary of James’ theory [6] of cross-
characteristic modular representations of GL(n, q), where q is a power of p. It

is a cyclic group of order pr−1
p−1 , the number of 1-subspaces in an r-subspace. To

see this consider the map ǫ : ZL1 −→ Z sending each 1-subspace to 1. The image

of the incidence map (1) is mapped by ǫ onto pr−1
p−1 Z. The result will therefore

follow if we show that the intersection of the image of (1) with Ker ǫ has index a
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power of p in Ker ǫ. Since Ker ǫ is a pure subgroup of ZL1 , this is equivalent to the
statement that for each prime l 6= p, the reduction mod l of Ker ǫ is in the image of
the reduction mod l of the map (1). It is this last fact which has been proved in [6,
Theorem 13.3 and 11.1, Submodule Theorem]. The same argument works with p
replaced by q, showing that the cokernel of the map from r-spaces to 1-spaces of a
finite vector space over Fq is the product of a cyclic group of order (qr − 1)/(q − 1)
with a p-group.

In this paper we concentrate on the p-torsion.

Let di be the coefficient of ti(p−1) in the expansion of (
∑p−1

j=0 tj)n+1. Explicitly,

di =

⌊
i(p−1)

p
⌋

∑

j=0

(−1)j

(

n + 1

j

)(

n + i(p − 1) − jp

n

)

, (2)

where the upper limit of the sum is the integer part of i(p−1)
p

. We can now state

our main result.

Theorem 1. The p-elementary divisors of the incidence matrix between L1 and
Lr are pr−i with multiplicity di for 1 ≤ i ≤ r − 1.

The case r = n of point-hyperplane incidence was first computed by Black and
List [1]. I thank R. Liebler for this reference and for useful discussions.

Our approach is to study the ZG-module structure of the cokernels of the inci-
dence maps. In §1, we recall some well known facts about eigenvalues of incidence
matrices. In §2, we localize at p and examine closely the permutation modules
and incidence maps over Zp and Fp. The principal objects of study are certain
Zp-forms Mr in QpG-modules isomorphic to the nontrivial component of QL1

p . The

submodule structure of the mod p reductions Mr of these lattices is the essential
ingredient in the proof Theorem 1, which is given in §3.

§1. Incidence maps

Here we collect together some standard facts about incidence matrices in a form
convenient for our use later. Let ηr,s : ZLr −→ ZLs be the map sending an r-
subspace to the (formal) sum of all s-subspaces incident with it. This is obviously
a homomorphism of ZG-modules. Then with respect to the bases Lr and Ls the
matrices of ηr,s and ηs,r are transposes of each other.

Let x ∈ L1. Then in the equation

ηr,1η1,r(x) =
∑

x′

axx′x′ (3)

the coefficients are
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ax,x′ = |{h ∈ Lr | x, x′ ⊆ h}| =

{

[

n−1
r−2

]

p
if x 6= x′

[ n

r−1

]

p
if x = x′.

(4)

In (4) we are using the p-binomial coefficients

[ m

s

]

p
=

s
∏

i=1

pm−i+1 − 1

pi − 1
(5)

This is the number of s-dimensional subspaces in an m-dimensional vector space
over Fp.

Thus, the matrix A = (ax,x′) can be written as

A = pr−1
[

n−1

r−1

]

p
I +

[

n−1

r−2

]

p
J, (6)

where I is the identity and J is the matrix with all entries 1. It follows that the

eigenvalues of ηr,1η1,r are pr−1
[

n−1

r−1

]

p
, with multiplicity |L1| − 1 and

[ n

r−1

]

p

[ r

1

]

p
,

with multiplicity one, with 11 as eigenvector.
In the case r = n the above considerations yield the order of the cokernel of ηn,1.

If we fix bases of ZL1 and ZLn then ηn,1 is represented by a square matrix. The
absolute value of the determinant of such a matrix does not depend on the bases
chosen and is equal to the order of the cokernel. From the preceding paragraph we
obtain

| det(ηn,1)| =
pn − 1

p − 1
.p

(n−1)(|L1|−1)
2 . (7)

We consider the exponent of p in (7). Since di = dn−i+1 and
∑n

i=i di = |L1| − 1,
we obtain

νp(det(ηn,1)) =
(n − 1)(|L1| − 1)

2
=

n
∑

i=1

(n − i)di (8)

We should point out that for other values of r the order of the cokernel of ηr,1

will not be equal to the square root of the determinant of the adjacency map ηr,1η1,r

and requires a different method to compute it. (See Lemma 7 below.)
The following simple observation will be used frequently. Let r ≥ s ≥ t. Then it

is easy to check that we have a commutative diagram:

ZLr

»

r−t

s−t

–

p

ηr,t

//

ηr,s
""EE

EE
EE

EE
ZLt

ZLs

ηs,t

<<zzzzzzzz

(9)
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§2. Related p-adic and p-modular representations

2.1. The modules Yr.
Let Zp denote the ring of p-adic integers and Qp the field of p-adic numbers. For a

Zp-module A we shall use the notations QpA = Qp⊗Zp
A and A = Fp⊗Zp

A = A/pA.

Let ZLr
p denote the ZpG-permutation module with basis Lr and let

Yr = {y =
∑

z∈Lr

bzz ∈ ZLr

p |
∑

z

bz = 0} (10)

Since p does not divide |Lr| , we have

ZLr

p = Zp1r ⊕ Yr, and FLr

p = Fp1r ⊕ Y r. (11)

We shall continue to use ηr,s for the incidence map over Zp and we will use ηr,s

for the maps over Fp. Since ηr,s(Yr) ⊆ Ys and, consequently, ηr,s(Y r) ⊆ Y s, we
will use the same notations for these restricted maps.

Let Si be the degree i(p−1) component of the graded G-algebra S∗(V )/(V p), the
quotient of the symmetric algebra on V by the ideal generated by p-th powers. We
observe that the dimension of Si is equal to the number di in Theorem 1 (and hence
equal also to the dimension of Sn−i+1). The following result, which is central to
our method, is a reformulation of the well known structure of generalized projective
Reed-Muller codes.

Theorem 2 (cf. [2, Theorem A ]). The FpG-module Y 1 is uniserial with a
composition series

0 = Wn+1 ⊂ Wn ⊂ · · · ⊂ W1 = Y 1 (12)

such that for each i = 1, . . . , n the simple factor Wi/Wi+1 is isomorphic to Si.

Theorem 2 also gives the structure of Y n by geometric duality; G has an outer
automorphism (inverse-transpose) of order two which interchanges the stablizers
of points with the stabilizers of hyperplanes, and interchanges Si with Sn−i+1.
Therefore, it follows from Theorem 2 that the module Y n is uniserial, with the
same composition factors as Y 1, but in the opposite order. Thus we have

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = Y n, with Ui/Ui−1
∼= Si

∼= Wi/Wi+1. (13)

We need in addition the following fact.

Lemma 1. For each r, Y r has a unique maximal submodule, with simple quotient
isomorphic to Sr.

Proof. Let L be a simple module. By Frobenius reciprocity,

HomFpG(FLr

p , L) ∼= HomFpGr
(Fp, L) (14)
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where Gr is the stabilizer of an r-space. Thus if L is a simple quotient of FLr
p ,

it contains a nonzero vector fixed by Gr. The general theory of modular repre-
sentations of finite groups of Lie type [3, 7, 9] then says that such a vector exists
only in the trivial module and in the simple module of highest weight (p − 1)ωr,
where ωr is the r-th fundamental weight (the highest weight of ∧r(V )). Moreover,
the fixed vector is the highest weight vector so is unique up to scalars. A routine
computation of weights in Sr shows that its highest weight is indeed (p − 1)ωr, so
L ∼= Sr, proving the lemma.

Lemma 2.

(a) HomZpG(Y1, Yr) ∼= Zp, for all r.
(b) QpY1 is simple and each QpYr has a unique simple summand isomorphic to

QpY1.
(c) QpYn

∼= QpY1 and Ker ηr,1 = Ker ηr,n. The latter module is a pure submod-
ule of Yr.

Proof. Since the stabilizer of a 1-dimensional subspace of V has two orbits on Lr,
we have

rankZp
HomZpG(ZL1

p , ZLr

p ) = 2, (15)

and (a) now follows from (11). Part (b) follows immediately from (a), as does
the first part of (c), since dimQp

QpYn = dimQp
QpY1. Kernels of homomorphisms

between Zp-lattices are always pure. Therefore, to show Ker ηr,1 = Ker ηr,n it is
enough to show the equality of Qp Ker ηr,1 and Qp Ker ηr,n. But the latter are the
kernels of the maps over Qp , and their equality follows from (b) and the first part
of (c).

2.2. The modules Mr.
Let Mr = Yr/ Ker ηr,1, (1 ≤ r ≤ n). We have M1 = Y1 and Mn = Yn. Since

Ker ηr,1 is pure, Mr is a Zp-form in the QpG-module QpYr/Qp Ker ηr,1
∼= QpY1 so,

by a general principle [4, I, Theorem 17.7] all the mod p reductions M r have the
same composition factors Si, 1 ≤ i ≤ n as Y 1 and Y n.

The commutativity of the diagram (9) implies that for r ≥ s, ηr,s(Ker ηr,1) ⊆
Ker ηs,1. Thus we have induced ZpG-module homomorphisms µr,s : Mr −→ Ms and

µr,s : M r −→ Ms and commutative diagrams

Mr

»

r−t

s−t

–

p

µr,t

//

µr,s
!!C

CC
CC

CC
C

Mt

Ms

µs,t

=={{{{{{{{

Mr

»

r−t

s−t

–

p

µr,t

//

µr,s !!B
BB

BB
BB

B
M t

M s

µs,t

==||||||||

. (16)

The next result gives the submodule structure of the Mr.
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Lemma 3. Assume 2 ≤ r ≤ n − 1

(a) Mr has a unique maximal submodule with simple quotient Sr.
(b) The maximal submodule of M r is the direct sum of two uniserial modules

J+
r = Ker µr,n, which maps isomorphically under µr,1 to Wr+1, and J−

r =
Ker µr,1, which maps isomorphically under µr,n to Ur−1.

Proof. The property of M r in (a) is inherited from Y r. To prove (b), we observe
that by (a), the image of the nonzero homomorphism µr,1 in Y 1 must be the module

Wr. It follows that the kernel J−
r must have composition factors Sr−1, . . . , S1.

Likewise, µr,n has image Ur and kernel J+
r , with composition factors Sr+1, . . . ,

Sn. Since the kernels have no composition factors in common, it follows that each
map is injective when restricted to the kernel of the other. Thus, J−

r is isomorphic
to a submodule of Ur, which from inspection of composition factors must be Ur−1.
Similiarly J+

r
∼= Wr+1 and the lemma is proved.

It may help to visualize these modules as shown in the picture (for n = 5) below.

M1:

S1

S2

S3

S4

S5

M2:

S2

S1 S3

S4

S5

M3:

S3

S2 S4

S1 S5

M4:

S4

S3 S5

S2

S1

M5:

S5

S4

S3

S2

S1

For notational convenience, we make the conventions that J−
n = Un−1, J+

n = 0,
J−

1 = 0 and J+
1 = W2.

Lemma 4. For 1 ≤ s < r ≤ n, we have Ker µr,s = J−
r .

Proof. By the commutativity of the maps in (16) it suffices to show J−
r ⊆ Ker µr,r−1.

The image of Mr in M r−1 has a unique maximal submodule with top composition
factor Sr, so by Lemma 3 must be J+

r−1. Since the latter has no composition factors
in common with J−

r , by Lemma 3, the result follows.

§3 Proof of Theorem 1

The proof of Theorem 1 will proceed as follows. We shall construct a basis of
Mr containing a subset {xij} (1 ≤ i ≤ r − 1, 1 ≤ j ≤ di) of

∑r−1
i=1 di elements such

that for each i, the di elements xij are mapped under µr,1 into pr−iY1. This will
establish that µr,1 can be represented by a matrix which is the product AD of two
square matrices, the matrix D being diagonal with elementary divisors as stated in
Theorem 1.

Finally, we shall show det A is a unit, so Theorem 1 will be proved.
Let 2 ≤ r ≤ n. In the isomorphism J−

r
∼= Ur−1, let Kr,i be the submodule of J−

r

mapping to Ui, (1 ≤ i ≤ r − 1). We have Kr,r−1 = J−
r and Kr,i/Kr,i−1

∼= Si.

Lemma 5. There exists submodules Fr,i (1 ≤ i ≤ r − 1) in Mr with the properties

(1) Fr,i maps onto Kr,i under the reduction map Mr −→ Mr;
(2) Fr,i has a unique maximal submodule with quotient Si

(3) Fr,i ⊆ Fr,j whenever i < j.
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Proof. We start by making the conventions that Kr,r = M r, and Fr,r = Mr. Then
(1) and (3) hold trivially for i = r. We will construct modules Fr,i for 1 ≤ i ≤ r−1
which satisfy (1) and (3) by iteration. Suppose Fr,i+1 has already been constructed
satisfying (1) and (3). Let Pi be the projective cover of Si in the category of
ZpG-modules. Consider the following diagram.

Pi

����
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�� ""EE
EE

EE
EE

E

Kr,i

∩

��

// Si
// 0

Fr,i+1
// Kr,i+1

// 0

(17)

By the projectivity of Pi the homomorphism Pi −→ Si may be lifted to a homomor-
phism Pi −→ Kr,i, which must be surjective, by the uniseriality of Kr,i. Then the
composite Pi −→ Kr,i ⊂ Kr,i+1 can be lifted to a homomorphism Pi −→ Fr,i+1, as
shown. Let Fr,i be the image of Pi in Fr,i+1. Then (1) and (3) hold by construction.
Finally, we note that for 1 ≤ i ≤ r − 1, Fr,i is a quotient of Pi and hence (2) holds
since Pi has this property [4, I, Theorem 13.5]. The lemma is proved.

We can certainly find di elements xij of Kr,i with the property that their images
in Si form a basis. By Lemma 5, we pick preimages xij ∈ Fr,i of these elements.

We do this for all i with 1 ≤ i ≤ r − 1, obtaining a set Xr of
∑r−1

i=1 di elements
whose images xij form a basis of J−

r . Therefore, by Nakayama’s Lemma, the set
Xr can be extended to a basis of Mr. Since xij ∈ Fr,i, the next result shows that
this basis will have the property mentioned above.

Lemma 6. µr,1(Fr,i) ⊂ pr−iY1 for 1 ≤ i ≤ r − 1.

Proof. We shall descend inductively starting at i = r − 1. We have a commutative
diagram

Fr,r−1

��

⊂ // Mr

��

µr,1
// Y1

��
Kr,r−1

⊂ // Mr

µr,1
// Y 1

(18)

Since Kr,r−1 = J−
r = ker µr,1, the commutativity of the diagram shows that

µr,1(Fr,r−1) ⊆ pY1, So the result holds for i = r − 1. Assume the lemma holds
for Fr,i. Then we have the following maps.

Fr,i−1 ⊂ Fr,i

µr,1
// pr−iY1

// pr−iY1/pr−i+1Y1
∼= Y 1 (19)

By property (2) of Lemma 5, the image of Fr,i in Y 1 has a unique simple quotient,
isomorphic to Si. The image must therefore be zero or Wi. Likewise, the image of
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Fr,i−1 must be zero or Wi−1, but the latter is impossible since Wi−1 * Wi. Thus,
µr,1(Fr,i−1) ⊆ pr−i+1Y1, completing the induction.

Lemma 6 shows that µr,1 is represented using the above basis of Mr by a product
AD of square matrices, where D is a diagonal matrix with the elementary divisors
specified in Theorem 1. Thus νp(det(D)) =

∑r−1
i=1 (r − i)di.

Therefore the following computation will conclude the proof of Theorem 1.

Lemma 7. νp(det(µr,1)) =
∑r−1

i=1 (r − i)di.

Proof. By Lemma 4, for all s = 2, . . . ,n we have J−
s = Ker µs,s−1 so, since the

image of Xs in Ms lies in J−
s , we have µs,s−1(Xs) ⊆ pMs−1. Since Xs forms part

of a basis of Ms it follows that νp(det(µs,s−1)) ≥ |Xs| =
∑s−1

i=1 di.
Next, it will be helpful to consider the following commutative diagram of homo-

morphisms.

Yn
// Yn−1

��

// · · · // Ys

��

ηs,s−1
// Ys−1

��

// · · · // Y1

Yn

��

// Mn−1

��

// · · · // Ms

��

µs,s−1
// Ms−1

��

// · · · // Y1

��
Y n

// Mn−1
// · · · // M s

µs,s−1
// M s−1

// · · · // Y 1

(20)

By (9), the composite of the maps in the top row of (20) differs from ηn,1 by a unit
in Zp.

Therefore, using (8),

n
∑

i=2

(n−i)di = νp(det(ηn,1)) =

n
∑

s=2

νp(det(µs,s−1)) ≥

n
∑

s=2

s−1
∑

i=1

di =

n
∑

i=2

(n−i)di, (21)

so we must have equality throughout. Hence, νp(det(µs,s−1)) =
∑s−1

i=1 di and, using
(16) we have

νp(det(µr,1)) =

r
∑

s=2

νp(det(µs,s−1)) =

r
∑

s=2

s−1
∑

i=1

di =

r−1
∑

i=1

(r − i)di. (22)

The proof is finished.

Concluding Remarks.
1. If we replace the Fp-vector space V by one over a finite extension Fq, then, as
we have already pointed out in the introduction, the problem of determining the
elementary divisors of the incidence matrices for r-spaces versus 1-spaces is reduced
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to finding those which are powers of p. It is known [8, §1] that every conceivable
power of p occurs as an elementary divisor. Also, Theorem 2, which is crucial in
our proof of Theorem 1 has been generalized to all q in [2].
2. It is natural to consider the same problems for incidences of r-subspaces with s-
subspaces. In this direction, little is known about the p-torsion, but when l 6= p, the
ranks of all such incidence maps over a field of characteristic l have been computed
in [5], using [6].
3. Although Theorem 1 has been stated as a numerical result, a closer look at
the proof reveals very detailed information about the ZpG-module structure of the
cokernel of ηr,1. Indeed, the method used here was partly inspired by the technique
of Weyl module filtrations [6, II.4.19] in the representation theory of reductive
groups, to which it bears some resemblance.

References

1. S. C. Black, R. J. List, On certain abelian groups associated with finite projective geometries,

Geometriae Dedicata 33 (1989), 13-19.
2. M. Bardoe, P. Sin, The permutation module for GL(n + 1, Fq) acting on Pn(Fq) and Fq

n+1,

To appear, J. London. Math. Soc. (1999).

3. C. W. Curtis, Modular representations of finite groups with split BN-pairs, Seminar on
Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, 1969, pp. 57-

95.

4. W. Feit, The Representation Theory of Finite Groups, North Holland, Amsterdam, 1982.
5. A. Frumkin, A. Yakir, Rank of inclusion matrices and modular representation theory, Israel

J. Math. 71 (1990), 309-320.
6. G. D. James, Representations of General Linear Groups, London. Math. Soc. Lecture Notes

Vol. 94, Cambridge University Press, Cambridge, 1984.

7. J. C. Jantzen, Representations of Algebraic Groups, Academic Press, London, 1987.
8. R. Liebler, Incidence Matrix Diagonal Forms and Integral Hecke Algebras, Progress in Alge-

braic Combinatorics, Advanced Studies in Pure Mathematics 24, 1996, pp. 265-283.

9. R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56.

Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

e-mail: sin@math.ufl.edu

9


