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The paper studies the permutation representations of a finite general linear group, first on finite
projective space and then on the set of vectors of its standard module. In both cases the submodule lattices
of the permutation modules are determined. In the case of projective space, the result leads to the solution
of certain incidence problems in finite projective geometry, generalizing the rank formula of Hamada. In
the other case, the results yield as a corollary the submodule structure of certain symmetric powers of the
standard module for the finite general linear group, from which one obtains the submodule structure of all
symmetric powers of the standard module of the ambient algebraic group.

0. Introduction and statements of results

0.1. The permutation module on projecti�e space

Let P¯0n(&
q
), n-dimensional projective space over the field of q¯ pt elements. A

certain class of problems in finite geometry concerns the determination of the

&
p
-ranks of the incidence relations between the set P of points and various other sets of

geometric objects. The most significant result in this direction has been the formula

of Hamada [10] for the rank of the incidence between P and the set of r-dimensional

linear subspaces of P. This formula is valid for all possible choices of the parameters

n, p, t and r. Hamada’s work was motivated by questions in coding theory; the

incidence matrices are generator matrices of codes closely related to the Reed–Muller

codes (see [1, 18]).

Problems of the type mentioned above can also be phrased as questions in group

representation theory. The set P admits a natural action of the group G¯
GL(n­1, q), making the vector space &P

p
with basis P into a permutation module. If Q

is another set of subsets of P, permuted by G and with &Q

p
as its permutation module,

then the incidence relation between P and Q defines an &
p
G-module map

&Q

p
MN&P

p
, βPN 3

p`β

p (1)

and the rank in question is the dimension of the image of this map, which is often

called the code of the incidence relation. For technical reasons, it is more convenient

to work over an algebraic closure k of &
q
and to consider the map

kQ MNkP. (2)

Of course, the rank will be unaffected.
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Informally, we may think of the image of the incidence map as the submodule of

kP generated by the objects in Q. Thus incidence problems lead us to the study of the

kG-submodule lattice of kP. In searching for a uniform method for treating all such

incidence problems, one approach is to try to describe this lattice in enough detail so

that the submodule generated by a given element can be identified and its dimension

read off. It is known that, in general, it is very difficult to determine the structures of

modules for finite groups. However, the problem under consideration has two

favorable special features which turn out to be decisive. First, the module kP is

multiplicity free, that is, no two composition factors in a Jordan–Ho$ lder series are

isomorphic. This rather obvious fact (Lemma 2.1) has the heuristically important

consequence that the submodule lattice is finite. Second, we may adopt the dual

viewpoint and regard kP as the space of functions on P, which is the set of &
q
-rational

points of 0n(k). The homogeneous coordinate ring k[X
!
,… ,X

n
] has a natural action

of the algebraic group GL(n­1,k) and restriction of functions defines a map of G-

algebras from k[X
!
,… ,X

n
]&×q onto kP. This point of view enables us to carry out many

explicit computations in kP, and at the same time provides a useful point of contact

with the representation theory of reductive groups.

The first principal result of this paper will be a full description of the kG-submodule

lattice of kP.

In kP, viewed now as functions, we have a kG-decomposition

kP ¯k1GY
P
, (3)

where k1 is the space of constant functions and Y
P

is the kernel of the map kP MNk,

fPNrPr−"3
p`P

f(p), which splits the inclusion map of k1 in kP.

Thus the essential point is to understand the structure of Y
P
. We can now state

our theorem.

T A. Let ( denote the set of t-tuples (s
!
,… , s

t−"
) of integers satisfying

( for j¯ 0,… , t®1) the following:

(1) 1% s
j
% n.

(2) 0% ps
j+"

®s
j
% (p®1)(n­1) (subscripts mod t).

Let ( be partially ordered in the natural way: (s!
!
,… , s!

t−"
)% (s

!
,… , s

t−"
) if and only if

s!
j
% s

j
for all j.

Then the following hold:

(a) The module kP is multiplicity free and has composition factors L(s
!
,… , s

t−"
)

parametrized by the set (e²(0,… , 0)´.
(b) For (s

!
,… , s

t−"
) `(, let λ

j
¯ ps

j+"
®s

j
. Then the simple kG-module

L(s
!
,… , s

t−"
) is isomorphic to the twisted tensor product

C
t−"

j=!

(Sa λj)(pj
),

where Sa λ denotes the component of degree λ in the truncated polynomial ring Sa ¯
k[X

!
,… ,X

n
]}(Xp

i
)n
i=!

and the superscripts (p j) indicate twisting by powers of the

Frobenius map.

(c) For each submodule M of Y
P
, let (

M
X( be the set of its composition factors.

Then (
M

is an ideal of the partially ordered set ((,%), that is, if (s
!
,… , s

t−"
) `(

M
and

(s!
!
,… , s!

t−"
)% (s

!
,… , s

t−"
), then (s!

!
,… , s!

t−"
) `(

M
.
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(d) The mapping MPN(
M

defines a lattice isomorphism between the submodule

lattice of Y
P

and the lattice of ideals, ordered by inclusion, of the partially ordered set

((,%).

R. (1) The set ( is essentially the same as the set of tuples introduced in

[10] ; much of the present work has been motivated by the desire to understand the

algebraic structure behind his rank formula. In §8, we will give a new proof of this

formula, as a corollary of one of the main steps in the proof of our theorem. Our

proof is more conceptual, though less elementary, than the original, and does not rely

on the earlier result of K. Smith [19] on which [10] is based.

(2) The statements about composition factors are well known and follow from

various published results after suitable reformulation. (See §2 below.) The twisted

tensor product formula in part (b) of Theorem A is a special case of Steinberg’s tensor

product theorem.

(3) Stabilization of module structure: It is interesting to note that condition (2) in

the definition of ( in Theorem A is automatically satisfied when t¯ 1 (that is, q¯
p), or when p& n. Thus, in both of these cases, the submodule lattice of Y

P
is

isomorphic to the lattice of ideals in the t-fold product of the integer interval [1, n].

In particular, it does not depend on p. Of course, in the case t¯ 1 the submodules of

kP are well understood by coding theorists, as they are generalizations of the

Reed–Muller codes.

In order to apply Theorem A, one needs to be able to read off the submodule

generated by a given element. Now from parts (a) and (b) of Theorem A, we see that

kP has a basis of monomials coming from the composition factors L(s
!
,… , s

t−"
) and

it is clear what is meant by the t-tuple in (e²(0,…, 0)´ of such a monomial. (The

precise definitions are given in §§1, 2 and 3.)

For f `kP, let (
f
X(e²(0,…, 0)´ denote the set of tuples of the basis monomials

appearing with nonzero coefficients in the expression for f.

T B. The kG-submodule of kP generated by f is the smallest submodule

ha�ing all the L(s
!
,… , s

t−"
) for (s

!
,… , s

t−"
) `(

f
as composition factors.

In conjunction with Theorem A, this result enables one to read off the

composition factors of the submodule generated by f. The dimensions or, more

precisely, the characters of the composition factors are given in §2.

0.2. The permutation module on �ectors

Let V(q)¯&n+"
q

be the standard module for G. We may identify the permutation

kG-module on the set V(q) with the space of functions k[V(q)]¯
k[X

!
,… ,X

n
]}(Xq

i
®X

i
)n
i=!

.

The kG-module structure of this ring is very closely related to several other

questions which have been studied by other authors. The submodule lattice of

k[X
!
,… ,X

n
] with respect to the algebraic group GL(n­1,k) has been determined by

Doty [5] and Krop [12, 13, 15]. The latter also shows that this submodule lattice is the

same as that for the multiplicative semigroup M(n­1,k) of all matrices over k. Kovacs

[11] has determined the kG-module structure of the ring k[X
!
,… ,X

n
]}(Xq

i
), from

which the previous results can be deduced. Recently, Kuhn [16] has determined the

submodule lattice of the module k[V(q)] with respect to the semigroup M(n­1, q) of
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matrices over &
q
and is able to deduce the earlier results with the help of a theorem

of Krop [14, Theorem 1], which gives a condition under which the submodule lattices

of certain modules with respect to the actions of G, M(n­1, q) and GL(n­1,k) are

identical. This condition does not apply to the module k[V(q)] however (in fact, the kG-

and M(n­1, q)-submodule lattices are different), so it does not seem possible to

deduce the kG-submodule lattice directly from these known facts. Nevertheless, much

of the preparatory work we do in investigating the kG-module structure of k[V(q)] will

follow or parallel the ‘standard’ lines established by these earlier papers. A survey of

the literature on these related problems and further interesting connections may be

found in [6].

The kG-module k[V(q)] decomposes as a direct sum of isotypic components with

respect to the center Z(G )F&×

q
. Thus

k[V(q)]¯ G
[d]`:/(q−")

:

A[d ], (4)

where [d ] is the character tPN t−d of &×

q
. Explicitly, A[d ] is the span of the images of

monomials of degree congruent to d mod q®1. Now the module A[0] differs from kP

only by a trivial summand (see §1.1 below), so its structure is given by Theorem A.

The methods used to prove that theorem can be extended to give the structures of the

summands A[d ] for [d ]1 [0]. Fix d with 0! d! q®1 and let its p-adic expression be

d¯ d
!
­d

"
p­…­d

t−"
pt−", (0% d

j
% p®1). (5)

We have the following variation of Theorem A.

T C. Let ([d ] denote the set of t-tuples (r
!
,… , r

t−"
) of integers satisfying

( for j¯ 0,… , t®1) the following:

(1) 0% r
j
% n.

(2) 0% d
j
­pr

j+"
®r

j
% (p®1)(n­1) (subscripts mod t).

Let ([d ] be partially ordered in the natural way: (r!
!
,… , r!

t−"
)% (r

!
,… , r

t−"
) if and only

if r!
j
% r

j
for all j.

Then the following hold:

(a) The module A[d ] is multiplicity free and has composition factors L[d ](r
!
,… , r

t−"
)

parametrized by the set ([d ].

(b) For (r
!
,… , r

t−"
) `([d ], let λ

j
¯ d

j
­pr

j+"
®r

j
. Then the simple kG-module

L[d ](r
!
,… , r

t−"
) is isomorphic to the twisted tensor product

C
t−"

j=!

(Sa λj)(pj
).

(c) For each submodule M of A[d ], let ([d ]
M

X([d ] be the set of its composition

factors. Then ([d ]
M

is an ideal of the partially ordered set (([d ],%).

(d) ThemappingMPN([d ]
M

defines a lattice isomorphismbetween the submodule

lattice of A[d ] and the lattice of ideals, ordered by inclusion, of the partially ordered set

(([d ],%).

R. (1) Let us compare Theorem C with Theorem A. By Theorem C,

the module A[d ] has a simple socle and a simple head, since the set ([d ] has unique

minimal and maximal elements (0,…, 0) and (n,… , n) respectively. The module A[0],
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on the other hand, is decomposable and it is the nontrivial summand Y
P

which has a

simple head and socle. The submodule lattice of Y
P

is given in terms of the set ( of

which the unique maximal element is (n,… , n), as for ([d ], but the unique minimal

element is (1,…, 1), not (0,…, 0). Thus, in a certain sense, Theorem C is the generic

case and Theorem A the degenerate case. The proof of Theorem C requires only slight

modifications to the arguments used to prove Theorem A. The details are given in §9.

(2) We may also compare our results with those of [16]. Let M be the semigroup

of all (n­1)¬(n­1) matrices over &
q
. As is known [14], the composition factors of

k[V(q)] are the same for kG or kM, and they have been known for a long time (see

§2 below). It is of interest to compare the submodule lattices. One finds that the

lattices are the same for A[d ], [d ]1 [0], while for [d ]¯ [0], the only difference is that

the one-dimensional top factor in the degree filtration splits off for kG but not for kM.

The smallest case of this phenomenon is noted in [16, Remark 5.5].

(3) Let Gα be a maximal parabolic subgroup stabilizing a one-dimensional

subspace in V(q). Then the module A[d ] can be viewed as the kG-module induced

from the one-dimensional kGα-module whose restriction to Z(G ) affords [d ]. The

simplicity of the heads and socles of Y
P

and A[d ] can also be proved as a special case

of more general results about such induced modules for finite groups of Lie type, due

to Curtis [4].

(4) Structure of symmetric powers : In §10, we will describe in detail the following

application of Theorem C in the study of polynomial representations of the algebraic

group GL(n­1,k). Let Sd denote the space of homogeneous polynomials of degree

d in the variables X
!
,… ,X

n
. This space admits a natural action of GL(n­1,k). Since

d! q®1, we have an embedding of kG-modules Sd:NA[d ]. The image has a very

simple description in terms of ([d ], so Theorem C gives the submodule structure of

Sd for the finite groups GL(n­1, q). It is then shown that the submodule lattice is the

same with respect to all the finite groups GL(n­1, pN ) with pN®1" d, and hence is

equal to the submodule lattice for the algebraic group GL(n­1,k). Thus Theorem

C generalizes the work of Doty [5] and Krop [12, 13], mentioned earlier, in which the

latter structure was first described.

1. Preliminaries

1.1.

The following notation will be used throughout. Let q¯ pt be a prime power, k

an algebraic closure of &
q
, V(q)¯&n+"

q
, V¯kn+", G¯GL(n­1, q), P¯0n(&

q
). Our

main object of study is the space kP of functions from P to k. Let X
!
,… ,X

n
be

coordinates of V. Restriction of functions defines a surjective ring homomorphism

k[X
!
,… ,X

n
]MNk[V(q)] (6)

from the polynomial ring onto the ring of functions on V(q), with kernel generated

by the elements Xq

i
®X

i
, i¯ 0,… , n.

Further restriction to V(q) c ²0´ gives a surjective ring homomorphism

k[V(q)]MNk[V(q) c ²0´] (7)

with kernel spanned by the characteristic function δ
!

of ²0´, which is the image of

0n

i=!
(1®Xq−"

i
). Now the inclusion map kδ

!
Zk[V(q)] has a G-splitting given by the

evaluation map fPN f(0), so it follows that the map (7) is G-split and we have an

isomorphism of kG-modules

k[X
!
,… ,X

n
]}(Xq

i
®X

i
)n
i=!

Fkδ
!
Gk[V(q) c ²0´]. (8)
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The functions on V(q) c ²0´ which descend to P are precisely those which are

invariant under scalar multiplication by &×

q
, so we have

kP F 0k[X
!
,… ,X

n
]}(Xq

i
®X

i
, 0% i% n, 0

n

i=!

(1®Xq−"
i

))1
&×
q

. (9)

Moreover, since &×

p
acts semisimply on k[X

!
,… ,X

n
], the subring k[X

!
,… ,X

n
]&×q ,

consisting of linear combinations of the monomials with total degree divisible by

q®1, maps onto kP.

Next, consider the inclusionmapk1MNkP of the constant functions. Thismaphas

a G-splitting given by fPN3
p`P

f(p), since rPr3 1 (mod p). Thus we have

kP ¯k1GY
P
, (10)

where Y
P

is the kernel of the latter map.

1.2.

We now consider bases for the various modules. It is clear that the images under

mapping (6) of the monomials 0n

i=!
Xbi

i
with 0% b

i
% q®1 form a basis of k[V(q)],

and also that among these, those with 3
i
b
i
3 0 (mod q®1) form a basis of k[V(q)]&×q .

Then, because of the extra relation given by δ
!
, we see that the images in kP of the

latter set of monomials will form a basis of kP if we exclude the monomial 0n

i=!
Xq−"

i
.

Let x
i
be the image of X

i
in kP. By the monomial basis of kP we shall mean the set

(0n
i=!

xbi
i

r 0% b
i
% q®1, 3

i

b
i
3 0 (mod q®1), (b

!
,… , b

n
)1 (q®1,… , q®1)*

(11)

and will refer to its elements as basis monomials.

In all cases, we will refer to the number 3
i
b
i
as the degree of the basis monomial.

L 1.1. The nonconstant basis monomials form a basis of Y
P
.

Proof. Consider the basis monomial x¯0n

i=!
xbi
i

1 1. Suppose first that all of

the b
i
are either 0 or q®1. Then x takes the value 0 on the union of a nonempty subset

of the coordinate hyperplanes of P, and the value 1 on its complement. The

complement has cardinality divisible by q, since x does not involve all n­1 variables,

so x `Y
P
. Now suppose some b

i
, say b

!
, is neither 0 nor q®1. Then

(q®1) 3
a`P

x(a)¯ 0 3
µ
!
`&×

q

µb
!

! 1 0 3
µ
"
,…,µn)

`&n
q

0
n

i="

µbi
i 1¯ 0, (12)

since the first factor on the right is 0. Therefore, x `Y
P
. *

We shall call this the monomial basis of Y
P
.

2. Composition factors, formal characters and truncated polynomial rings

The first objective in this section is to describe the composition factors of the

modules k[V(q)] and kP. This is done by comparing these modules with modules for

the algebraic group GL(n­1,k), for which composition factors are determined by the

action of a maximal torus. These results are just variations and reformulations of the

known results in [14, Theorem 3.2; 11].
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Then we give a formula for the characters of the composition factors in order to

relate the composition factors to Hamada’s work later on in §8.

2.1.

We recall that a kG-module is multiplicity-free if no two of its composition factors

are isomorphic. The following result is well known, and follows immediately from the

fact that G has a cyclic subgroup which acts transitively on V(q) c ²0´.

L 2.1 k[V(q) c ²0´] is a multiplicity-free kG-module.

It follows that kP is multiplicity-free. With regard to module structure, the most

important consequence of this result is that the set of submodules of a multiplicity-

free module is finite. Moreover, a submodule is completely determined by the

isomorphism type of its head (maximal semisimple quotient).

2.2.

Let A¯k[V(q)]¯k[X
!
,… ,X

n
]}(Xq

i
®X

i
)n
i=!

and B¯k[X
!
,… ,X

n
]}(Xq

i
)n
i=!

. The

natural filtration F
r
¯² f `k[X

!
,… ,X

n
] : deg( f )% r´ (r& 0) is a filtration of

k[X
!
,… ,X

n
] by GL(n­1,k)-modules.

This filtration induces filtrations on B and A, the first being one of GL(n­1,k)-

modules, and the second one of kG-modules. We consider the associated graded

modules grB and grA. We use the same notation [ f ] to denote the symbol in the

corresponding graded module of an element f of either B or A.

L 2.2. The graded modules grB and grA are isomorphic kG-modules.

Proof. Let y
i
and z

i
denote the images of X

i
in B and A respectively. Then the

symbols [0
i
ybi
i
] and [0

i
zbi
i
] with 0% b

i
% q®1 and 3

i
b
i
¯ r form bases for the degree

r components of the respective graded modules, and the action of G on these modules

is induced from the action on k[X
!
,… ,X

n
]. Let m¯0

i
Xbi

i
`k[X

!
,… ,X

n
] be of degree

r with each b
i
% q®1. For g `G we may write

gm¯3
β

cβ X
β­f, (13)

where the multi-indices β¯ (β
!
,…, β

n
) satisfy β

i
% q®1 and f is the sum of the

remaining terms in gm. Since gm is homogeneous of degree r and since each

monomial in f contains at least one variable with exponent at least q, the images of

f in both B and in A lie in the images of F
r−"

. It follows that the map [0
i
ybi
i
]

PN [0
i
zbi
i
] is a kG-isomorphism of the graded modules. *

The lemma implies that B and A have the same kG-composition factors. The point

of this is that the kG-module structure on B is the restriction of a GL(n­1,k)-module

structure. The composition factors are therefore determined by the weights with

respect to the diagonal subgroup T (a maximal torus) of GL(n­1,k).
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2.3.

Let Sa ¯G(n+")(p−")
λ=!

Sa λ denote the truncated polynomial ring S(V*)}(V*(p))F
k[X

!
,… ,X

n
]}(Xp

i
)n
i=!

, and let Sa (pj
) denote the same ring but with the variables X

i

replaced by their p jth powers. These graded algebras all have the structure of modules

for GL(n­1,k), with Sa (pj
) being isomorphic to the jth Frobenius twist of Sa . Further,

it is well known and easy to check by direct computation that the homogeneous

components Sa λ are simple GL(n­1,k)-modules which remain irreducible for the

finite group SL(n­1, p). To be precise, let ω
i
, 1% i% n, denote the fundamental

weights for SL(n­1,k), chosen so that ω
i
is the highest weight of the ith exterior power

of the natural module V. Write λ¯ (p®1)r­b, with 0% r% n­1, 0% b! p®1.

Then the highest weight of Sa λ is

1

2
3

4

bω
n

r¯ 0

(p®1®b)ω
n+"−r

­bω
n−r

1% r% n®1

(p®1®b)ω
"

r¯ n

0 r¯ n­1.

(14)

In particular, the coefficients of the fundamental weights in the above expressions for

the highest weights are at most p®1, so the Sa λ are restricted simple modules for

SL(n­1,k). As is well known, the restrictions of the restricted simple modules to

SL(n­1, p) form a complete set of nonisomorphic simple modules for SL(n­1, p).

Therefore, by Steinberg’s tensor product theorem [20, Theorems 1.1 and 1.3], the

modules

S(λ
!
,…, λ

t−"
)¯C

t−"

j=!

(Sa λj)(pj
) (15)

are simple SL(n­1,k)-modules which remain simple for SL(n­1, pt). Therefore they

are also simple as GL(n­1,k)-modules and as kG-modules.

Note that Sa (pj
) has a basis consisting of the images of the monomials 0

i
Xaijp

j

i
with

a
ij
% p®1. We use the same notation for the images. It is natural to refer to p j 3

i
a
ij

as the degree of such a basis element, with p ja
ij

being the degree in the variable X
i
.

This leads to a gradation of the module Ct−"
j=!

Sa (pj
).

L 2.3. The map Ct−"
j=!

Sa (pj
) MN grB gi�en by

0
i

Xai!
i

C0
i

Xai"p

i
C…C0

i

Xai(t−")p
t−"

i
PN [0

i

y3
jaijp

j

i
]

is an isomorphism of (graded) T-modules.

Proof. This is clear, since a basis is mapped to a basis, with corresponding

elements having the same degree in each variable. *

The lemma gives a T-isomorphism between two GL(n­1,k) modules, which

means that these modules have the same GL(n­1,k) composition factors. Thus we

have found the GL(n­1,k) composition factors of B, and hence also the G-
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composition factors of A, by Lemma 2.2. Since &×

q
acts semisimply, the composition

factors of A&×
q are precisely those S(λ

!
,…, λ

t−"
) for which q®1 divides the total degree

λ
!
­λ

"
p­…­λ

t−"
pt−". The composition factors for kP and Y

P
are then obtained by

removing the trivial module, twice for Y
P
, by equations (8) and (10). We summarize

this discussion.

T 2.1 ([11, p. 211; 16, Proposition 1.1], cf. [12, Theorem 3.2]). (a) The

composition factors of B and A are the modules S(λ
!
,…, λ

t−"
) for 0% λ

j
%

(n­1)(p®1).

(b) The composition factors of kP (and respecti�ely Y
P
) are the modules

S(λ
!
,…, λ

t−"
) for 0% λ

j
% (n­1)(p®1) satisfying the following conditions:

(1) 3t−"
j=!

λ
j
p j 3 0 (mod q®1).

(2) (λ
!
,…, λ

t−"
)1 ((n­1)(p®1),… , (n­1)(p®1)) (respecti�ely nor (0,… , 0)).

2.4.

We next derive a formula [7, Proposition 3.12(2)] for the characters of the

modules Sa λ in terms of ordinary symmetric powers and exterior powers. In [7] the

formula is proved using generating functions. The dimension, namely the number of

monomials of degree at most p®1 in each variable is standard in combinatorics and

appears for example in [10, Lemma 2.6].

L 2.4 [7, Proposition 3.12(2)]. Let 0% λ% (n­1)(p®1). Then in the

Grothendieck group of GL(n­1,k)-modules we ha�e

Sa λ ¯ 3
:λ/p9

i=!

(®1)igi(V*(p)) CS λ−ip(V*).

(Here, :\9 signifies the integer part.)

Proof. The sequence Xp

!
,… ,Xp

n
is a regular sequence [17, p. 127] in the

polynomial ring S(V*). Hence the Koszul complex (see [3, VIII.4.3 ; 17, p. 127])

Kk(Xp

!
,… ,Xp

n
) gives us a resolution

…MNK
"
(Xp

!
,… ,Xp

n
)MNK

!
(Xp

!
,… ,Xp

n
)MNSa MN 0. (16)

We may identify K
i
(Xp

!
,… ,Xp

n
) with gi(V*(p))C

k
S(V*) so that (16) becomes an exact

sequence of GL(n­1,k)-modules. The scalar matrices act on homogeneous elements

according to their total degrees, so for each λ, the components Kλ

i
of degree λ in each

term of the complex form a resolution of Sa λ. We have

Kλ

i
¯gi(V*(p))CS λ−ip(V*). (17)

Therefore, the character of Sa λ is the same as the Euler (alternating sum) character of

Kλ
*. Clearly, the resolution Kλ

* runs out when i exceeds :λ}p9, so the lemma is proved.

*

C 2.1.

dimS(λ
!
,…, λ

t−"
)¯ 0

t−"

j=!

93
:λ
j/p

9

i=!

(®1)i0n­1

i 10n­λ
j
®ip

n 1: .
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2.5.

We record here some standard statements about duality in Sa .

L 2.5. (a) dimSa (n+")(p−") ¯ 1 and multiplication defines nonzero GL(n­1,k)-

bilinear maps

Sa λ¬Sa (n+")(p−")−
λ MNSa (n+")(p−").

(b) Sa λ and Sa (n+")(p−")−
λ are mutually dual as SL(n­1,k)-modules. In particular they

ha�e the same dimension.

(c) S(λ
!
,…, λ

t−"
) and S((n­1)(p®1)®λ

!
,…, (n­1)(p®1)®λ

t−"
) are dual as kG-

modules.

Proof. Part (a) is immediate and (b) follows from the simplicity of the modules

Sa λ. Part (c) follows from (a), the tensor product theorem and the fact that G acts

trivially on S((n­1)(p®1),… , (n­1)(p®1)). *

3. Twisted degrees, filtrations and Hamada’s parametrization

The purpose of this section is to give a second parametrization of the composition

factors of kP, by a set (, with a natural partial order which will be seen later to

describe the submodule structure.

3.1. Types of monomials

Let X¯0n

i=!
Xbi

i
`k[X

!
,… ,X

n
], with 0% b

i
% q®1. Write b

i
¯3t−"

j=!
a
ij
p j, 0%

a
ij
% p®1, and set λ

j
¯3n

i=!
a
ij
, so that

X¯ 0
t−"

j="

00n
i=!

Xaij
i 1p

j

. (18)

We say that X is of type (λ
!
,…, λ

t−"
). The basis monomials in B and A and of their

graded modules are each the image of exactly one of the above monomials, so we may

define their types in the same way. For kP, in order to make the preimage of a basis

monomial unique, we exclude the monomial Xq−"

!
…Xq−"

n
, that is, the type of 1 is

(0,…, 0).

The types of basis monomials of kP (and respectively Y
P
) consist of all those

(λ
!
,…, λ

t−"
) with 0% λ

j
% (n­1)(p®1) which satisfy the following conditions :

(1) 3t−"
j=!

λ
j
p j 3 0 (mod q®1).

(2) (λ
!
,…, λ

t−"
)1 ((n­1)(p®1),… , (n­1)(p®1)) (respectively nor (0,…, 0)).

3.2. Twisted degrees and the set (

The filtration ²F
s
´ of k[X

!
,… ,X

n
] by degree induces a filtration ²&

r
´ on kP given by

&
r
¯ span of basis monomials x¯0

i

xbi
i

with 3
i

b
i
¯ s(q®1) for some s% r.

(19)
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This filtration is not stable under the action of the Galois group Gal(&
q
}&

p
) so we

can define conjugate filtrations ²& (e)

r
´ for 0% e% t®1 by setting

& (e)

r
¯σe(&

r
), (20)

where σ is the generator of Gal(&
q
}&

p
) whose action on A sends f to f p. To see what

this means in terms of basis monomials, let

x¯ 0
t−"

j="

00n
i=!

xaij
i 1p

j

(21)

be a basis monomial of kP and let its type be (λ
!
,…, λ

t−"
). Then

σ−e(x)¯ 0
t−"

j="

00n
i=!

xaij
i 1p

[j−e]

, (22)

where ‘ [ ] ’ indicates that the exponents of p are taken mod t. Thus σ−e(x) is of type

(λ
e
,… , λ

[t−"+e]
).

We define the twisted degrees of basis monomials of kP by

dege(x)¯deg(σ−e(x))¯ 3
t−"

j=!

λ
j
p[j−e] (23)

for e¯ 0,… , t®1. Then dege(x)3 0 mod q®1 and & (e)

r
is spanned by all basis

monomials x with (1}(q®1)) dege(x)% r. It is clear that the twisted degrees of

a monomial depend only on its type. Thus, to each type (λ
!
,…, λ

t−"
) of a basis

monomial of kP, we may assign the t-tuple (s
!
,… , s

t−"
), where

(q®1)s
e
¯ 3

t−"

j=!

λ
j
p[j−e]. (24)

We define ( to be the set of t-tuples of integers (s
!
,… , s

t−"
) such that the following

conditions hold:

(1) 1% s
j
% n.

(2) 0% ps
j+"

®s
j
% (n­1)(p®1) (set s

t
¯ s

!
).

The following follows easily from the definition of ( and the description of the

types of basis monomials of kP at the end of §3.1.

L 3.1. Formula (24) defines a bijection from the set of types of basis

monomials of Y
P

(respecti�ely kP) and the set ( (respecti�ely (e²(0,… , 0)´). The

in�erse map is gi�en by the formula λ
j
¯ ps

j+"
®s

j
, j¯ 0,… , t®1.

Thus we may also speak of the (-tuple of a basis monomial of Y
P
.

3.3.

By Lemma 3.1, the set (e²(0,…, 0)´ also parametrizes the set of composition

factors of kP. We set
L(s

!
,… , s

t−"
)¯S(λ

!
,…, λ

t−"
), (25)

for (s
!
,… , s

t−"
) corresponding to (λ

!
,…, λ

t−"
).

There is a natural partial order on ( given by

(s!
!
,… , s!

t−"
)% (s

!
,… , s

t−"
) if and only if s!

j
% s

j
for all j. (26)
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We now consider the submodules

9
s
!
,…,st−"

¯Y
P
f& (!)

s
!

f…f& (t−")

st−"

(27)

of Y
P
. Then 9

s!
!
,…,s!t−"

X9
s
!
,…,st−"

if and only if (s!
!
,… , s!

t−"
)% (s

!
,… , s

t−"
).

L 3.2. (a) The quotient of 9
s
!
,…,st−"

by the sum of all the 9
s!
!
,…,s!t−"

with

(s!
!
,… , s!

t−"
)2 (s

!
,… , s

t−"
) is isomorphic to L(s

!
,… , s

t−"
).

(b) The composition factors of 9
s
!
,…,st−"

are the simple modules L(s!
!
,… , s!

t−"
) for

(s!
!
,… , s!

t−"
)% (s

!
,… , s

t−"
).

Proof. Let 9a denote the quotient in part (a). This module has a basis consisting

of the images of all monomials in A of type (λ
!
,…, λ

t−"
) corresponding to (s

!
,… , s

t−"
).

Let M be the kG-submodule of A generated by these monomials. Then MXA&×
q and

we have kG-maps

9a KLMMN gr(q−")s! AF gr(q−")s! B. (28)

The monomials of A of type (λ
!
,…, λ

t−"
) map to the monomials of the same type in

grB. The latter are weight vectors in grB under the action of the maximal torus T,

and map to a basis of the simple GL(n­1,k)-module S(λ
!
,…, λ

t−"
) under the T-

isomorphism of Lemma 2.3. Therefore, the GL(n­1,k)-submodule of grB generated

by monomials of type (λ
!
,…, λ

t−"
) has a simple quotient L isomorphic to

S(λ
!
,…, λ

t−"
) such that the images of the monomials in question form a basis. It is

now clear that the map MMNL induces the isomorphism in part (a). Part (b) now

follows easily. *

4. Combinatorics of (

In this section, we study the partially ordered set (. Similar combinatorics has

been considered in earlier papers (cf. [5, 2.4 Proposition, 2.5 Lemma C; 11, pp.

209–210; 12, Definitions 1.4, 2.2, Proposition 2.3; 16, §3]).

4.1.

For (s
!
,… , s

t−"
) `( we set λ

j
¯ ps

j+"
®s

j
as in Lemma 3.1.

L 4.1. Let (s
!
,… , s

t−"
) `(. Then (s

!
,… , s

j
®1,… , s

t−"
) `( if and only if the

following conditions hold:

(1) λ
j
! (n­1)(p®1).

(2) λ
j−"

& p.

Moreo�er if (s
!
,… , s

t−"
)1 (1,… , 1), there exists some j with (s

!
,… , s

j
®1,… , s

t−"
) `(.

Proof. The necessary and sufficient conditions are immediate from the definition

of (. To prove the last statement, suppose that s
e
" 1. Then 3

j
λ
j
p[j−e] ¯ (q®1)s

e
"

q®1, which forces λ
j
"

& p for some j
"
. Also, since s

j
% n for all j, there is some j

#
with

λ
j
#

! (n­1)(p®1). Therefore either there exists j with λ
j−"

¯ (n­1)(p®1)& p

and λ
j
! (n­1)(p®1), in which case, this j satisfies conditions (1) and (2), or else for

all j we have λ
j
! (n­1)(p®1), in which case j

"
­1 satisfies conditions (1) and (2).

*
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4.2.

L 4.2. Let (s
!
,… , s

t−"
), (s!

!
,… , s!

t−"
) `( with (s!

!
,… , s!

t−"
)2 (s

!
,… , s

t−"
). Then

for some j we ha�e (s
!
,… , s

j
®1,… , s

t−"
) `( and

(s!
!
,… , s!

t−"
)% (s

!
,… , s

j
®1,… , s

t−"
).

Proof. Let s
j
¯ s!

j
­a

j
. We must show that the conditions of Lemma 4.1 hold

for some j with a
j
1 0. Let I¯² j r a

j
1 0´. By assumption I1W. Suppose for a

contradiction that for every j ` I, either condition (1) or condition (2) in Lemma 4.1

fails. Assume first that there exists j ` I such that λ
j
¯ (n­1)(p®1). Then

(n­1)(p®1)¯ λ
j
¯ ps

j+"
®s

j

¯ ps!
j+"

­pa
j+"

®s!
j
®a

j

¯ λ!
j
­pa

j+"
®a

j
.

(29)

Since λ!
j
% (n­1)(p®1) and a

j
1 0, it follows that a

j+"
1 0, so j­1 ` I. Hence either

(1) or (2) fails with j­1 in place of j. However, λ
(j+")−"

¯ λ
j
¯ (n­1)(p®1)& p so it

must be (1) which fails with j­1 in place of j, namely λ
j+"

¯ (n­1)(p®1). Repeating

the argument, we eventually deduce that I¯²0,… , t®1´, contradicting the last

sentence of Lemma 4.1. We may therefore assume, for every j ` I, that λ
j
!

(n­1)(p®1) and hence that condition (2) fails for all j, which is to say that λ
j
! p for

every j ` I. Then

0% λ!
j−"

¯ λ
j−"

®pa
j
­a

j−"
. (30)

Since a
j
1 0, we must have a

j−"
1 0, whence j®1 ` I. This leads us eventually to the

same contradiction as before, that I¯²0,… , t®1´. *

By induction, we obtain the following corollary.

C 4.1. Under the hypotheses of the lemma, there is a descending chain

in ( from (s
!
,… , s

t−"
) to (s!

!
,… , s!

t−"
) in which successi�e terms are obtained by

subtracting 1 from a suitable entry of the t-tuple.

5. Submodules generated by monomials

The main aim of this section is to show that any basis monomial with (-tuple

(s
!
,… , s

t−"
) generates 9

s
!
,…,st−"

as a kG-module.

5.1.

For 0% r1 s% n let g
rs

denote the linear substitution in k[X
!
,… ,X

n
] given by

g
rs

:X
r
PNX

r
­X

s
, X

l
PNX

l
(l1 r). (31)

To simplify the notation, we take r¯ 0 and s¯ 1. Let

X¯ 0
n

i=!

Xbi
i

¯ 0
t−"

j="

00n
i=!

Xaij
i 1p

j

(32)
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be a monomial with b
i
% q®1. We consider the following two expressions for g

!"
X :

g
!"

X¯ 03
b
!

u=!

0b!

u 1X(b
!
−u)

!
Xb

"
+u

" 10
n

i=#

Xbi
i

(33)

g
!"

X¯ 0
t−"

j=!

003
a
!j

uj=!

0a!j

u
j

1Xa
!j−uj

!
Xa

"j+uj

" 10
n

i=#

Xaij
i 1p

j

. (34)

From equation (34) we see that there are 0t−"
j=!

(a
!j
­1) distinct monomials

appearing with nonzero coefficients in g
!"

X.

From equation (33) we see that all monomials in g
!"

X afford distinct characters

of T(q) (the subgroup of diagonal matrices in G ), except when b
!
¯ q®1, in which

case the monomials X and Xb
"
+q−"

"
Xb

#

#
…Xbn

n
are the only two which afford the same

character, for this is the only case where exponents of X
!
in the monomials in (33) are

congruent mod q®1.

Now suppose that

x¯ 0
n

i=!

xbi
i

¯ 0
t−"

j=!

00n
i=!

xaij
i 1p

j

(35)

is a basis monomial of Y
P
. From equation (33), we obtain

g
!"

x¯ 03
b
!

u=!

0b!

u 1x(b
!
−u)

!
x²b

"
+u´

" 10
n

i=#

xbi
i
, (36)

where ‘ ²c´ ’ indicates that q®1 should be subtracted if c& q.

Since the map k[X
!
,… ,X

n
]&×q MNkP is a kG-map, the 0t−"

j=!
(a

!j
­1) distinct basis

monomials occurring in equation (36) afford distinct characters of T(q), except when

b
!
¯ q®1, in which case x and x«¯xb

"
+q−"

"
xb

#

#
…xbn

n
afford the same character. Since

any kG-module is the direct sum of its T(q)-isotypic components, it follows that the

submodule kGx generated by x contains all of the basis monomials which appear in

(36) with nonzero coefficients (including x« when b
!
¯ q®1, since then x­x« is a T(q)-

isotypic component of g
!"

x, so both x and x­x« belong to kGx). We have proved the

following result.

L 5.1. Let x be a basis monomial of Y
P
. Then when g

rs
x is expressed as a

linear combination of basis monomials, each basis monomial which appears with a

nonzero coefficient lies in the kG-submodule generated by x. If x is gi�en by equation

(35) then these monomials are precisely the images of the 0t−"
j=!

(a
rj
­1) monomials which

occur in the product

0
t−"

j=!

003
arj

uj=!

0arj

u
j

1Xarj−uj
r

Xasj+uj
s 1 0

i1r,s

Xaij
i 1p

j

.

5.2.

L 5.2. If x is a basis monomial of Y
P

of type (λ
!
,…, λ

t−"
), then the submodule

kGx contains e�ery basis monomial of type (λ
!
,…, λ

t−"
).

Proof. Write

x¯ 0
t−"

j="

00n
i=!

xaij
i 1p

j

¯ 00n
i=!

xai!
i 1x*. (37)
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Suppose that a
r!

1 0 and a
s!

! p®1. Then g
rs

x will involve the basis monomial

xar!−"
r

xas!+"
s

( 0
i1r,s

xai!
i

)x* (38)

with coefficient a
r!

1 0, so by Lemma 5.2, this monomial belongs to the submodule

kGx. It is clear that monomial (38) is also of type (λ
!
,…, λ

t−"
). By repeating this

procedure for different choices of r and s, we see that kGx contains all basis

monomials of the form (0
i=!

n xci
i
)xn, for any values of c

i
with 0% c

i
% p®1 and

3
i
c
i
¯ λ

!
. Then we can carry out the whole process with a different value of j fixed

instead of 0 in (37). It follows that all monomials of type (λ
!
,…, λ

t−"
) belong to kGx.

*

5.3

L 5.3. Suppose that (s
!
,… , s

t−"
), (s

!
,… , s

j
®1,… , s

t−"
) `(. Then there exists

a basis monomial x with (-tuple (s
!
,… , s

t−"
) such that the submodule kGx contains a

basis monomial with (-tuple (s
!
,… , s

j
®1,… , s

t−"
).

Proof. Let (λ
!
,…, λ

t−"
) correspond to (s

!
,… , s

t−"
). We set out the argument only

for t" 0 and j¯ 0; the case of j1 0 is similar, while if t¯ 1 a simpler argument will

suffice. Since (s
!
®1,… , s

t−"
) `(, we have λ

t−"
& p and λ

!
! (n­1)(p®1). Therefore

there exists a monomial of type (λ
!
,…, λ

t−"
)

x¯ 0
t−"

j="

00n
i=!

xaij
i 1p

j

(39)

such that a
!,t−"

¯ p®1, a
",t−"

1 0 and a
!,!

! p®1. Write x¯0t−"
j=!

mp
j

j
and X¯

0t−"
j=!

Mp
j

j
with M

j
¯0n

i=!
Xaij

i
. By equation (34), g

"!
X involves all of the monomials

in

0
j1t−"

Mp
j

j
(g

"!
M

t−"
)pt−" ¯ 00t−#

j=!

Mp
j

j 1 0 3
a
",t−"

l=!

0a",t−"

l 1Xp−"+l

!
Xa

",t−"
−l

"
0
n

i=#

Xai,t−"
i 1p

t−"

. (40)

The term for l¯ 1 is

a
",t−"00

t−#

j=!

Mp
j

j 10Xp

!
Xa

",t−"
−"

"
0
n

i=#

Xai,t−"
i 1p

t−"

. (41)

When this is mapped into Y
P
, the Xq

!
from the last factor maps to xq

!
¯x

!
, so the image

of (41) is

a
",t−"0xa

!!
+"

!
0
n

i="

xai!
i 100t−#

j="

mp
j

j 10xa
",t−"

−"

"
0
n

i=#

xai,t−"
i 1p

t−"

. (42)

By Lemma 5.2, the monomial in (42) lies in kGx, since a
",t−"

1 0. Its type is (λ
!
­

1,…, λ
t−"

®p), which corresponds to the (-tuple (s
!
®1,… , s

t−"
), by Lemma 3.1.

*

Combining Lemmas 5.2 and 5.3 yields the main result of this section.

T 5.1. Any basis monomial with (-tuple (s
!
,… , s

t−"
) generates 9

s
!
,…,st−"

as a kG-module.
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6. Non-split module extensions

6.1.

Suppose that (s
!
,… , s

t−"
), (s

!
,… , s

j
®1,… , s

t−"
) `(. Assume for simplicity that

j¯ 0. Let E be the quotient of 9
s
!
,…,st−"

by the sum of the submodules 9
s!
!
,…,s!t−"

with

both (s!
!
,… , s!

t−"
)2 (s

!
,… , s

t−"
) and (s!

!
,… , s!

t−"
)1 (s

!
®1,… , s

t−"
).

Then we have a short exact sequence

0MNL(s
!
®1,… , s

t−"
)MNEMNL(s

!
,… , s

t−"
)MN 0. (43)

T 6.1. The sequence (43) does not split.

Proof. We shall adopt the following notational conventions. For a basis

monomial x of 9
s
!
,…,st−"

we shall denote its image in E by the same symbol and use

xa for its image in the quotient L(s
!
,… , s

t−"
). Also, for IX ²0,… , n´, we will write Xq−"

I

for the monomial 0
i`I

Xq−"
i

in k[X
!
,… ,X

n
], with corresponding notations for

monomials in Y
P

or E or L(s
!
,… , s

t−"
).

Let (λ
!
,…, λ

t−"
) be the type corresponding to (s

!
,… , s

t−"
). For each j write λ

j
¯

(p®1)k
j
­r

j
, with 0% r

j
! p®1, set

M
j
¯Xp−"

!
…Xp−"

kj−"
Xrj

kj

, (44)

and let m
j
and ma

j
denote its images in E and L(s

!
,… , s

t−"
) respectively.

Let M¯0
j
Mp

j

j
, with images m and ma . We can write m in the forms

m¯ 0
n

i=!

xbi
i

¯xq−"
I

x«, (45)

where I¯²0,… ,min²k
j
´®1´ and x« is the remaining factor.

In order to prove that (45) does not split, it will be sufficient to show that every

submodule E « of E which contains a preimage mW of ma actually contains m, since it

follows from Theorem 5.1 that m generates E. Suppose such an E « and mW are given.

Since every kG-module is the direct sum of its T(q)-isotypic components, we may

assume that kmW is T(q)-stable (and therefore affords the same character of T(q) as m).

Therefore, we know that mW has the form

mW ¯xq−"
I

x«­3
J

a
J
x q−"

J
x«, (46)

where 01 a
J
`k and the monomials xq−"

J
x« have (-tuples (s

!
®1,… , s

t−"
) and no

variable x
i
with i ` J occurs in x«. We may suppose that mW has been chosen in E « so

that the number of error terms a
J
x q−"

J
x« in (46) is as small as possible. If there are none,

we have nothing to prove, so we assume that the number of error terms is positive and

show that this leads to a contradiction. This will be achieved by defining a linear

endomorphism of E which preserves E « and reduces the number of error terms. This

definition will depend on the special choice of two indices r and s in ²0,…, n´, which

we describe next. Under our assumption, we observe that I1W and that each subset

J has size rI r®1, so we may pick r ` I which lies outside at least one J. To choose s,

recall that in our usual notation b
i
¯3t−"

j=!
a
ij
p j and λ

j
¯3n

i=!
a
ij
. Then by Lemma
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4.1(1) we have λ
!
! (n­1)(p®1), so we may choose s such that a

s!
! p®1. We note

that b
s
­1J 0mod p and s a I.

Let T
i
(q)F&×

q
denote the subgroup of T(q) consisting of matrices having all

diagonal entries equal to 1 except in the ith diagonal position. In the group algebra

k(T
r
(q)¬T

s
(q)) of the subgroup T

r
(q)¬T

s
(q) of T(q), let µ be the primitive idempotent

corresponding to the character whose value at the diagonal matrix with rth diagonal

entry γ−" and sth diagonal entry θ−" is γq−#θbs+" ; in the group algebra kT
r
(q) let ν be

the primitive idempotent corresponding to the trivial character of T
r
(q).

Of course, when q¯ 2, both µ and ν act as the identity map on E, so we first finish

the argument under the assumption that q" 2. Now a monomial 0
i
xci
i

is fixed by µ

if c
r
¯ q®2 and c

s
¯ b

s
­1, and it is otherwise annihilated by µ. It is fixed by ν if

c
r
30 mod q®1, and otherwise annihilated by ν. Recalling from 5.1 the elements g

rs

and g
sr

of G, we shall show that the element νg
sr

µg
rs

annihilates at least one error term

in (46), while multiplying all other terms by the nonzero scalar ®(b
s
­1). This will

give the desired contradiction to our minimal choice of mW .
Let us examine the effect of νg

sr
µg

rs
on the monomials in (46). Consider first

m¯xq−"
I

x« itself. Writing x«¯xbs
s

x§ we see that µg
rs

maps m to ®xq−"
Ic²r´

xq−#
r

xbs+"
s

x§ and

that this is then mapped by νg
sr

to ®(b
s
­1)m. Next consider the monomials xq−"

J
x«

with r ` J and s a J. In these monomials the variable x
s
has the same exponent b

s
as

it has in m and a similar calculation shows that νg
sr

µg
rs

also multiplies them by

®(b
s
­1). The monomials xq−"

J
x« with r a J do not involve x

r
so they are fixed by g

rs
and

then annihilated by µ. There remain the monomials xq−"
J

x« with r, s ` J. These arise

only if b
s
¯ 0. Now

g
rs
(xq−"

J
x«)¯xq−"

J
x«­xq−"

Jc²r,s´
3
q−"

l="

0q®1

l 1xq−"−l

r
xl

s
x«

¯xq−"
J

x«

(47)

because the other summands have degrees 2(q®1) lower than the degree of m, and

so are equal to zero in E. Then µ annihilates xq−"
J

x«. These computations show that

νg
sr

µg
rs

mW is ®(b
s
­1) times the element

xq−"
I

­3
J

! a
J
xq−"
J

x« (48)

where the summation extends over only those J for which r ` J and s a J. By our choice

of r the number of error terms here is strictly smaller than in (46). This contradiction

of our minimal choice of mW completes the proof when q" 2.

For q¯ 2 the same proof works if we use (g
sr
®1)(g

rs
®1) instead of νg

sr
µg

rs
.

*

C 6.1. 9
s
!
,…,st−"

is the smallest submodule of Y
P

which has L(s
!
,… , s

t−"
)

as a composition factor.

Proof. Let Z be the smallest submodule of Y
P

which has L(s
!
,… , s

t−"
) as a

composition factor and let P(s
!
,… , s

t−"
) denote the projective kG-module which has

L(s
!
,… , s

t−"
) as its unique simple quotient (see [8, I.13.6]). Since Y

P
is multiplicity-free,

the space Hom
kG

(P(s
!
,… , s

t−"
),Y

P
) is one-dimensional and any nonzero map in this
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space has Z as its image (cf. [8, I.13.9]). We proceed by induction on Σ
j
s
j
. Consider

the maps

(49)

9s0, …, st –1
E L(s 0,…,s t –1 )

γ τ

π

P(s 0,…,s t –1 ).

By projectivity, the map π of P(s
!
,… , s

t−"
) onto its simple head may be lifted to a map

P(s
!
,… , s

t−"
)MN

πh
E,

so that τπh ¯π. Theorem 6.1 shows that E has a simple head, so πh must be surjective.

Again, projectivity yields a lifting

P(s
!
,… , s

t−"
)MN

π*

9
s
!
,…,st−"

, with γπ*¯πh .

Therefore, the image of π*, which must be equal to Z, has L(s
!
®1,… , s

t−"
) as a

composition factor. The same is true with 0 replaced by any j such that (s
!
,… ,

s
j
®1,… , s

t−"
) `(. The inductive hypothesis implies that Z contains all the modules

9
s!
!
,…,s!t−"

for which (s!
!
,… , s!

t−"
)% (s

!
,… , s

t−"
) and 3

j
s!
j
¯ (3

j
s
j
)®1. By Lemma 4.2,

it now follows that Z contains all 9
s!
!
,…,s!t−"

with (s!
!
,… , s!

t−"
)2 (s

!
,… , s

t−"
). Therefore,

Z¯9
s
!
,…,st−"

, by Lemma 3.2(a). *

7. Proof of Theorems A and B

7.1. Proof of Theorem A

Parts (a) and (b) have been proved in Lemma 2.1 and Theorem 2.1. (See also §3.3.)

To prove part (c), note that Corollary 6.1 implies that each submodule of Y
P

is a sum

of the submodules 9
s
!
,…,st−"

. Since the (-tuples of the composition factors of

9
s
!
,…,st−"

form the ideal in ( of the elements dominated by (s
!
,… , s

t−"
) and since

taking the sum of submodules corresponds to taking the union of their sets of

composition factors, part (c) is proved. The mapping in part (d) is injective, by (a).

Surjectivity is also immediate ; any ideal ) of ( corresponds to the submodule

3
(s

!
,…,st−"

)`)

9
s
!
,…,st−"

. (50)

This completes the proof of Theorem A. *

7.2. Proof of Theorem B

Write f `kP as

f¯ 3
(s

!
,…,st−"

)`(
f

f
(s

!
,…,st−"

)
, (51)

where f
(s

!
,…,st−"

)
is a linear combination of basis monomials of kP with tuple

(s
!
,… , s

t−"
) `(e²0´.
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If (0,…, 0) `(
f
, then f has a nonzero projection onto the space of constant

functions k1. Since kP is multiplicity-free, this implies that k1XkGf. Therefore, from

now on, we may assume that f `Y
P

and (
f
X(. Then

kGfX 3
(s

!
,…,st−"

)`(
f

9
s
!
,…,st−"

(52)

and in the sum we may even replace the set (
f
by its set ($

f
of maximal elements.

For each (s!
!
,… , s!

t−"
) `($

f
, we have a nonzero kG-map

3
(s

!
,…,st−"

)`($

f

9
s
!
,…,st−"

MNL(s!
!
,… , s!

t−"
). (53)

Therefore, kGf has L(s!
!
,… , s!

t−"
) as a quotient. By the theorem, we then have

9
s!
!
,…,s!t−"

ZkGf, so the inclusion (52) is actually equality. Since the right-hand side of

(52) is the smallest submodule of Y
P

which has all L(s
!
,… , s

t−"
) with (s

!
,… , s

t−"
) `

(
f
as composition factors, Theorem B is proved. *

7.3. Socle and radical series

Recall that the radical of a module is the smallest submodule with semisimple

quotient (called the head ). Iterating, we obtain the radical series. Dually, the maximal

semisimple submodule is called the socle and we have the socle series.

Define '
r
ZY

P
to be the span of the basis monomials x whose (-tuples in

H satisfy 3
j
s
j
% r. In other words,

'
r
¯ 3

(s
!
,…,st−"

)
3
j
s
j
=r

9
s
!
,…,st−"

. (54)

Then, since elements of ( with the same value for 3
j
s
j
are incomparable, we have

semisimple layers

'
r
}'

r−"
F G

(s
!
,…,st−"

)
3
j
s
j
=r

L(s
!
,… , s

t−"
). (55)

The following result now follows easily from Theorem A.

C 7.1. The filtration '
r
is equal (after suitable re-indexing) to the socle

filtration and to the radical filtration in re�erse.

8. Hamada’s formula

8.1.

Let #
r
XkP be the subspace spanned by the characteristic functions of r-

dimensional linear subspaces of P. Since G acts transitively on the set of these

subspaces, #
r

is equal to kGχ
L
, where L is defined by the equations X

i
¯ 0, i¯

r­1,… , n. Its characteristic function can be written as

χ
L
¯ 0

n

i=r+"

(1®xq−"
i

)¯ 3
IX ²r+",…,n´

(®1)rIr xq−"
I

. (56)
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For I1W the monomial xq−"
I

has (-tuple (rI r,… , rI r), which lies below the (-tuple

(n®r,… , n®r) of 0n

i=r+"
xq−"
i

. Therefore, Theorems A and B yield

#
r
¯k1G9

n−r,…,n−r
. (57)

Therefore by Lemma 3.2(b) and Corollary 2.1 we obtain

dim#
r
¯ 1­ 3

(s
!
,…,st−"

)

0
t−"

j=!

3
:psj+"

−sj/p
9

i=!

(®1)i0n­1

i 10n­ps
j+"

®s
j
®ip

n 1 , (58)

where the sum extends over (s
!
,… , s

t−"
) `( with 1% s

j
% n®r. Next, we note that in

the definition of ( (§3.2), if we change condition 1 to condition 1« : 0% s
j
% n, the

only extra tuple will be (0,…, 0), so we could rewrite equation (58) by summing over

(e²(0,…, 0)´ and omitting the term 1 from (58). Then, applying Lemma 2.5(c), we

obtain Hamada’s rank formula [10, Theorem 1].

dim#
r
¯ 3

(s
!
,…,st−"

)

r+"
%s

j
%n+"

!
%ps

j+"
−s

j
%(n+")(p−")

0
t−"

j=!

3
:psj+"

−sj/p
9

i=!

(®1)i0n­1

i 10n­ps
j+"

®s
j
®ip

n 1 . (59)

R. (1) Note that this formula could have been proved without the full

strength of Theorems A and B, for equation (57) can be deduced from (56) using only

Theorem 5.1 and induction on n®r.

(2) One can also ask about the ranks of the incidence matrices with entries over

fields of characteristic prime to q, or for the elementary divisors over the integers. The

first question is answered in [9], using results of G. D. James. The second question has

been settled so far only in the case of point-hyperplane incidences and q¯ p [2].

9. Structure of A

As we mentioned in the introduction, we can extend our results on Y
P

to obtain

the submodule structure of A¯k[X
!
,… ,X

n
]}(Xq

i
®X

i
)n
i=!

. Under the action of

Z(G )F&×

q
, we have the decomposition

A¯ G
[d]`:/(q−")

:

A[d ] (60)

into isotypic components, where [d ] is the character εPN ε−d. The summand A[0] is

isomorphic to kGkP by equation (8), so we may restrict our attention to the other

summands.

From now on let d be a fixed integer with 0! d! q®1. Our aim is to prove

Theorem C. The proof consists of generalizing the definitions we have made to study

Y
P
, and then checking that the arguments used in proving Theorem A carry over with

suitable modifications. We note that A[d ] is multiplicity-free, by Lemma 2.1.

9.1.

The purpose of this subsection is to set up the notation for Theorem C. The

discussion runs parallel to that of §3. Recall that z
i
denotes the image of X

i
in A. Then

A[d ] has a basis consisting of the monomials 0n

i=!
zbi
i
:0% b

i
% q®1, whose degrees

are congruent to dmod q®1. We shall call this the monomial basis of A[d ]. The types

(§3.1) of the basis monomials are all the possible tuples (λ
!
,…, λ

t−"
) of integers
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satisfying 0% λ
j
% (n­1)(p®1) and 3

j
λ
j
p j 3 dmod q®1. The degree filtration of

k[X
!
,… ,X

n
] induces the filtration ²&

r
[d ]´ on A[d ] given by

&
r
[d ]¯ span of basis monomials z¯0

i

zbi
i

with 3
i

b
i
¯ d­s(q®1) for some s% r.

(61)

In its action on A, the generator σ of Gal(&
q
}&

p
) maps A[m] to A[pm]. Let d (e) be

the unique integer with 0! d (e) ! q®1 such that pe d (e) 3 dmod q®1. Then we can

define for each e¯ 0,… , t®1 a filtration ²& (e)

r
[d ]´ by

& (e)

r
[d ]¯σe(&

r
[d (e)]). (62)

We define the twisted degree of a basis monomial z of type (λ
!
,…, λ

t−"
) to be

dege(z)¯3
j

λ
j
p[j−e]. (63)

Then dege(z)3 d(e) mod q®1 and & (e)

r
[d ] is spanned by basis monomials z with

(1}(q®1))(dege(z)®d (e))% r. Thus we may associate with each type (λ
!
,…, λ

t−"
) the

t-tuple (r
!
,… , r

t−"
) of nonnegative integers by the formula

3
j

λ
j
p[j−e] ¯ d (e)­(q®1)r

e
, (e¯ 0,… , t®1). (64)

Let d¯3 d
j
p j, 0% d

j
% p®1, be the p-adic expression for d. The type λ can be

recovered from its tuple by the formula

λ
j
¯ d

j
­pr

j+"
®r

j
, (r

t
¯ r

!
). (65)

Define the set

([d ]¯²(r
!
,… , r

t−"
) r 0% r

j
% n, 0% d

j
­pr

j+"
®r

j
% (n­1)(p®1)´. (66)

Then (cf. Lemma 3.1) formulae (64) and (65) define inverse bijections between the set

of types of basis monomials for A[d ] and the set ([d ]. It follows from Lemma 2.3,

Lemma 2.2 and Theorem 2.1 that the set of types parametrizes the set of composition

factors of A[d ], so we can also parametrize them with ([d ], setting

L[d ](r
!
,… , r

t−"
)¯S(λ

!
,…, λ

t−"
). (67)

The set ([d ] is partially ordered by the rule (r!
!
,… , r!

t−"
)% (r

!
,… , r

t−"
) if and only if

r!
j
% r

j
for each j.

We consider now the submodules

&[d ]
r
!
,…,rt−"

¯& (!)

r
!

[d ]f…f& (t−")

rt−"

[d ] (68)

for (r
!
,… , r

t−"
) `([d ]. These will play the same role as the modules 9

s
!
,…,st−"

in the

discussion of Y
P
. We have &[d ]

r!
!
,…,r!t−"

X&[d ]
r
!
,…,rt−"

if and only if (r!
!
,… , r!

t−"
)%

(r
!
,… , r

t−"
). Also, the analogue of Lemma 3.2 holds; the quotient of &[d ]

r
!
,…,rt−"

by

the sum of all the submodules &[d ]
r!
!
,…,r!t−"

, where (r!
!
,… , r!

t−"
)2 (r

!
,… , r

t−"
), is

isomorphic to L[d ](r
!
,… , r

t−"
) and the composition factors of &[d ]

r
!
,…,rt−"

are the

simple modules L[d ](r!
!
,… , r!

t−"
) for (r!

!
,… , r!

t−"
)% (r

!
,… , r

t−"
).

9.2. Proof of Theorem C

We carry on with the notation of the previous section.

In order to prove Theorem C it remains to point out the necessary changes to the

statements and proofs in §§4–7 used in proving Theorem A.
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§4: If we replace ( by ([d ], the results remain valid. In Lemma 4.1, the minimal

element (1,…, 1) must of course be replaced by (0,…, 0). The inequality in the second

line becomes 3
j
λ
j
p[j−e] ¯ d (e)­(q®1)r

e
" q®1, which holds because d (e) " 0. In

Lemma 4.2, the relation λ
j
¯ ps

j+"
®s

j
must be replaced by equation (65), but the

equality between the first and last members of (29) still holds, as does equation (30)

of that lemma.

§5: The very general discussion here makes no use of the congruence class of the

degrees of the basis monomials, so all results remain valid with Y
P
, 9

s
!
,…,st−"

and (
replaced by A[d ],&[d ]

r
!
,…,rt−"

and ([d ].

§6: Again, the arguments do not depend on the congruence class of dmod q®1,

and all that is required is to substitute the relevant notations into both the statements

and proofs. In fact, since we are assuming that 0! d! q®1, the proof of the

analogue of Theorem 6.1 is simplified by not having to consider the case q¯ 2.

§7: Parts (a) and (b) of Theorem C have been proved in the discussion leading up

to equation (67). The other parts are proved just as for Theorem A, using the

analogue of Corollary 6.1.

This completes our outline of the proof of Theorem C. *

10. Structure of symmetric powers

Let SdXk[X
!
,… ,X

n
] denote the space of homogeneous polynomials of degree d.

It has a natural structure as a rational module for the algebraic group GL(n­1,k).

Since d! q®1 the map SdMNA[d ] is an embedding of kG-modules with image &
!
[d ].

Thus Sd corresponds to the ideal

([d ]
S
d ¯²(r

!
,… , r

t−"
) `([d ] r r

!
¯ 0´. (69)

This gives the submodule structure of Sd as a module for G¯GL(n­1, pt).

We now examine what happens if we fix d and replace pt by a higher power pN.

Let A[d ](N ), ([d ](N ), etc. denote the corresponding objects for G(N )¯
GL(n­1, pN ). Then

([d ](N )
S
d ¯²(r

!
,… , r

N−"
) `([d ](N ) r r

!
¯ 0´. (70)

The p-adic expression for d is unchanged, so that we have d
j
¯ 0 for t% j%N®1. Let

(r
!
,… , r

N−"
) `([d ](N )

S
d. Then from the definitions we have 0% d

N−"
­pr

!
®

r
N−"

¯®r
N−"

, which forces r
N−"

¯ 0. Repeating this, we obtain r
j
¯ 0 for t% j%N®1.

Moreover, the conditions on the entries r
j
for 0% j% t®1 are exactly the conditions

for the t-tuple (r
!
,… , r

t−"
) to belong to ([d ]

S
d.

We have proved the following theorem.

T D. The submodule lattice of Sd is the same for all of the groups

GL(n­1, pt) for pt®1" d. Consequently, it is also the same for the algebraic group

GL(n­1,k). This lattice is isomorphic to the lattice of ideals in the partially ordered set

([d ]
S
d.

The GL(n­1,k) submodule structure of Sd was first given in [5] and [12, 13], the

authors of which were working independently.
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