On the dimensions of certain LDPC codes based on q-regular bipartite graphs

Peter Sin,
University of Florida
Qing Xiang,
Univesity of Delaware

0. Overview

- A conjecture on some LDPC codes
- The symplectic generalized quadrangles
- An equivalence of incidence systems
- Proof of the conjecture
- Further research

1. A conjecture about LDPC codes

Recently, Kim et al. [2] studied some explicit LDPC (low density parity check) codes defined using the adjacency matrices of certain bipartite graphs from LazebnikUstimenko [5] for parity check matrices.

- q, any prime power
- P^{*}, L^{*} be two sets in bijection with $\mathbf{F}_{q}{ }^{3}$
- $(a, b, c) \in P^{*}$ is incident with $[x, y, z] \in L^{*}$ if and only if

$$
\begin{equation*}
y=a x+b \quad \text { and } \quad z=a y+c . \tag{1}
\end{equation*}
$$

The binary incidence matrix of $\left(P^{*}, L^{*}\right)$ and its transpose can be taken as parity check matrices of two codes. These codes are designated $\mathrm{LU}(3, q)$.

Conjecture. [2] If q is odd, the dimension of $\mathrm{LU}(3, q)$ is $\left(q^{3}-2 q^{2}+3 q-2\right) / 2$.
In [2] it was established that this number is a lower bound when q is an odd prime.
We will prove the conjecture in general, by relating it to the geometry of a 4-dimensional symplectic vector space and by applying the representation theory of the symplectic group and its subgroups.

Overview

A conjecture about

2. The symplectic generalized quadrangle

- q, any prime power
- (V, $(.,$.$) , a 4-dimensional \mathbf{F}_{q}$-vector space with a nonsingular alternating bilinear form
- $e_{0}, e_{1}, e_{2}, e_{3}$, a symplectic basis such that $\left(e_{0}, e_{3}\right)=$ $\left(e_{1}, e_{2}\right)=1$
- $x_{0}, x_{1}, x_{2}, x_{3}$, coordinates for basis
- $P=\mathbf{P}(V)$, the set of points of the projective space of V
- L, the set of totally isotropic 2 -dimensional subspaces of V, considered as lines in P

The pair (P, L), together with the natural relation of incidence between points and lines, is called the symplectic generalized quadrangle.

It is easy to verify that (P, L) satisfies the following quadrangle property: Given any line and any point not on the line, there is a unique line which passes though the given point and meets the given line.

Overview

A conjecture about.

The symplectic

Coordinates of.
Relative dimensions.
Proof of Theorem 3
Further research
References
$44|4| \bullet|>|$

Back

Full Screen

Theorem 1. (Bagchi-Brouwer-Wilbrink [1]) Assume q is a power of an odd prime. Then the 2-rank of $M(P, L)$ is $\left(q^{3}+2 q^{2}+q+2\right) / 2$.

Theorem 2. (Sastry-Sin [4]) Assume $q=2^{t}$. Then then the 2-rank of $M(P, L)$ is

$$
\begin{equation*}
1+\left(\frac{1+\sqrt{17}}{2}\right)^{2 t}+\left(\frac{1-\sqrt{17}}{2}\right)^{2 t} \tag{2}
\end{equation*}
$$

Now fix a point $p_{0} \in P$ and a line $\ell_{0} \in L$ through p_{0}. We can assume that $p_{0}=\left\langle e_{0}\right\rangle$ and $\ell_{0}=\left\langle e_{0}, e_{1}\right\rangle$.

- p^{\perp}, the set of points on lines through the point p
- $P_{1}=P \backslash p_{0}^{\perp}$
- L_{1}, the set of lines in L which do not meet ℓ_{0}

We have new incidence systems $\left(P_{1}, L_{1}\right),\left(P, L_{1}\right),\left(P_{1}, L\right)$.

Overview

A conjecture about.

The symplectic

Coordinates of

Overview

A conjecture about.

The symplectic

Coordinates of.
Relative dimensions.
Proof of Theorem 3
Further research
References
In the next section we will prove that $\left(P_{1}, L_{1}\right)$ is equivalent to the system $\left(P^{*}, L^{*}\right)$.
The following theorem will then imply the conjecture.

Theorem 3. Assume q is odd. The 2-rank of $M\left(P_{1}, L_{1}\right)$ equals $\left(q^{3}+2 q^{2}-3 q+2\right) / 2$.

Note this number is $2 q$ less than the 2-rank of $M(P, L)$.

3. Coordinates of points and lines

Let q be any prime power. Here we show, by introducing coordinates for $\left(P_{1}, L_{1}\right)$, that it is equivalent to $\left(P^{*}, L^{*}\right)$.

Coordinates of P_{1}

- $x_{0}, x_{1}, x_{2}, x_{3}$ be homogeneous coordinates of P
- $p_{0}=\left\langle e_{0}\right\rangle$

$$
\begin{align*}
P_{1} & =\left\{\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mid x_{3} \neq 0\right\} \\
& =\left\{(a: b: c: 1) \mid, a, b, c \in \mathbf{F}_{q}\right\} \cong \mathbf{F}_{q}{ }^{3} . \tag{3}
\end{align*}
$$

Coordinates of lines in $P(V)$

- $e_{i} \wedge e_{j}, 0 \leq i<j \leq 3$, basis of the exterior square $\wedge^{2}(V)$
- $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, homogeneous coordinates for $\mathbf{P}\left(\wedge^{2}(V)\right)$
- If W is a 2-dimensional subspace of V then $\wedge^{2}(W) \in$ $\mathbf{P}\left(\wedge^{2}(V)\right)$.
- If $W=\left\langle\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(b_{0}: b_{1}: b_{2}: b_{3}\right)\right\rangle$ then $\wedge^{2}(W)$ has coordinates $p_{i j}=a_{i} b_{j}-a_{j} b_{i}$, its Grassmann-Plücker coordinates.
- The totality of points of $\mathbf{P}\left(\wedge^{2}(V)\right)$ obtained from all W forms the set with equation $p_{01} p_{23}-p_{02} p_{13}+$ $p_{03} p_{12}=0$, called the Klein Quadric.

Coordinates of L and L_{1}

- L corresponds to the subset of points of the Klein quadric which satisfy the additional linear equation $p_{03}=-p_{12}$.
- $\ell_{0}=\langle(1: 0: 0: 0),(0: 1: 0: 0)\rangle$

Overview

A conjecture about.
The symplectic
Coordinates of.
Relative dimensions.
Proof of Theorem 3
Further research
References

Back
Taking into consideration the quadratic relation, we see that

$$
\begin{align*}
L_{1} & \cong\left\{\left(z^{2}+x y: x: z:-z: y: 1\right) \mid x, y, z \in \mathbf{F}_{q}\right\} \\
& \cong \mathbf{F}_{q}{ }^{3} . \tag{4}
\end{align*}
$$

3.1. Incidence equations

Next we consider when $(a: b: c: 1) \in P_{1}$ is contained in $\left(z^{2}+x y: x: z:-z: y: 1\right) \in L_{1}$. Suppose the latter is spanned by points with homogeneous coordinates $\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$ and $\left(b_{0}: b_{1}: b_{2}: b_{3}\right)$. The given point and line are incident if and only if all 3×3 minors of the matrix

$$
\left(\begin{array}{cccc}
a & b & c & 1 \tag{5}\\
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

are zero. The four equations which result reduce to the two equations

$$
\begin{equation*}
z=-c y+b, \quad x=c z-a . \tag{6}
\end{equation*}
$$

By a simple change of coordinates, these equations transform to (6). This shows that $\left(P_{1}, L_{1}\right)$ and $\left(P^{*}, L^{*}\right)$ are equivalent.

4. Relative dimensions and a bound

In this section q is an arbitrary prime power.

4.1. Notation

- $\mathbf{F}_{2}[P]$, the vector space of all \mathbf{F}_{2}-valued functions on P
- χ_{p}, the characteristic function of the point $p \in P$
- Let χ_{ℓ}, the characteristic function of the line $\ell \in L$
- $C(P, L)$, the subspace of $\mathbf{F}_{2}[P]$ spanned by the χ_{ℓ}, $\ell \in L$
- $C\left(P, L_{1}\right)$, the subspace generated by lines in L_{1}
- $\pi_{P_{1}}: \mathbf{F}_{2}[P] \rightarrow \mathbf{F}_{2}\left[P_{1}\right]$, natural projection map
- $C\left(P_{1}, L\right)=\pi_{P_{1}}(C(P, L)), C\left(P_{1}, L_{1}\right)=\pi_{P_{1}}\left(C\left(P, L_{1}\right)\right)$
- $Z \subset C\left(P, L_{1}\right)$, a set of characteristic functions of lines in L_{1} which maps bijectively under $\pi_{P_{1}}$ to a basis of $C\left(P_{1}, L_{1}\right)$
- X, the set of characteristic functions of the lines through p_{0} and let $X_{0}=X \backslash\left\{\ell_{0}\right\}$
- Y be the set of characteristic functions of any q lines which meet ℓ_{0} in the q distinct points other than p_{0}

Overview

A conjecture about
The symplectic
Coordinates of.
Relative dimensions
Proof of Theorem 3
Further research
References
$44|\leqslant|>|$

Back

Full Screen

Close

Lemma 4. $Z \cup X_{0} \cup Y$ is linearly independent over F_{2}.

Proof. Each element of Y contains in its support a point of ℓ_{0} which is not in the support of any other element of $Z \cup X_{0} \cup Y$. So it is enough to show that $X_{0} \cup Z$ is linearly independent. This is true because X_{0} is a linearly independent subset of ker $\pi_{P_{1}}$ and Z maps bijectively under $\pi_{P_{1}}$ to a linearly independent set.

Corollary 5.

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{F}_{2}} \mathrm{LU}(3, q) \geq q^{3}-\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)+2 q . \tag{7}
\end{equation*}
$$

Overview

A conjecture about
The symplectic
Coordinates of.

Overview

A conjecture about
The symplectic

Coordinates of.

5. Proof of Theorem 3

In this section we assume that q is odd. In view of Corollary 5 and the known 2-rank of $M(P, L)$ the proof of Theorem 3 will be completed if we can show that $Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over \mathbf{F}_{2}.

Back

Full Screen

Lemma 6. Let $\ell \in L$. Then the sum of the characteristic functions of all lines which meet ℓ (excluding ℓ itself) is the constant function 1.

Proof. The function given by the sum takes the value $q \equiv$ 1 at any point of ℓ and value 1 at any point off ℓ, by the quadrangle property.

Overview

A conjecture about
The symplectic
Coordinates of.
Relative dimensions.
Proof of Theorem
Further research
References

Back

Full Screen

Lemma 7. Let $\ell \neq \ell_{0}$ be a line which meets ℓ_{0} at a point p. Let Φ_{ℓ} be the sum of all the characteristic functions of lines in L_{1} which meet ℓ. Then

$$
\Phi_{\ell}\left(p^{\prime}\right)= \begin{cases}0, & \text { if } p^{\prime}=p \tag{8}\\ q, & \text { if } p^{\prime} \in \ell \backslash\{p\} \\ 0, & \text { if } p^{\prime} \in p^{\perp} \backslash \ell \\ 1, & \text { if } p^{\prime} \in P \backslash p^{\perp}\end{cases}
$$

Corollary 8. Let $p \in \ell_{0}$ and let ℓ, ℓ^{\prime} be two lines through p, neither equal to ℓ_{0}. Then $\chi_{\ell}-\chi_{\ell^{\prime}} \in$ $C\left(P, L_{1}\right)$.
Proof. Since $q=1$ in \mathbf{F}_{2}, one easily check using Lemma 7 that

$$
\begin{equation*}
\chi_{\ell}-\chi_{\ell^{\prime}}=\Phi_{\ell}-\Phi_{\ell^{\prime}} \in C\left(P, L_{1}\right) \tag{9}
\end{equation*}
$$

Back

Full Screen

Close

Lemma 9. ker $\pi_{P_{1}} \cap C(P, L)$ has dimension $q+1$, with basis X.

Proof. Omitted

The proof of this lemma is technical and of a different flavor, requiring some detailed calculations of the action of the subgroup of $\operatorname{Sp}(V)$ which stabilizes p_{0} on the subspace $\mathbf{F}_{2}\left[p_{0}^{\perp}\right]$ and standard results from group representations, e.g. Clifford's Theorem.

Overview

A conjecture about
The symplectic

Coordinates of.

Lemma 10. $\operatorname{ker} \pi_{P_{1}} \cap C\left(P, L_{1}\right)$ has dimension $q-1$, and basis the set of functions $\chi_{\ell}-\chi_{\ell^{\prime}}$, where $\ell \neq \ell_{0}$ is an arbitrary but fixed line through p_{0} and ℓ^{\prime} varies over the $q-1$ lines through p_{0} different from ℓ_{0} and ℓ. Proof. By Corollary 8 applied to p_{0}, we see that if ℓ and ℓ^{\prime} are any two of the q lines through p_{0} other than ℓ_{0}, the function $\chi_{\ell}-\chi_{\ell^{\prime}}$ lies in $C\left(P, L_{1}\right)$. It is obviously in

Overview
A conjecture about
The symplectic
Coordinates of.
Relative dimensions.
Proof of Theorem
Further research
References
"••

Back

Full Screen ℓ_{0}, while the image of the restriction of $\operatorname{ker} \pi_{P_{1}}$ to ℓ_{0} has dimension 2 , spanned by the images of $\chi_{\ell_{0}}$ and $\chi_{p_{0}}$. Thus ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ has codimension at least 2 in $\operatorname{ker} \pi_{P_{1}}$, which has dimension $q+1$, by Lemma 9 . functions of this kind as described in the statement. Thus $\operatorname{ker} \pi_{P_{1}} \cap C\left(P, L_{1}\right)$ has dimension $\geq q-1$. On the other hand $C\left(P, L_{1}\right)$ is in the kernel of the restriction map to
rum Jcreen

Lemma 11. $Z \cup X_{0} \cup Y$ spans $C(P, L)$ as a vector space over \mathbf{F}_{2}.

Proof. By Lemma 10, the span of X_{0} and Z is equal to the span of X_{0} and L_{1}, since ker $\pi_{P_{1}} \cap C\left(P, L_{1}\right)$ is contained in the span of X_{0}. We must show that the span of $X_{0} \cup L_{1} \cup Y$ contains the characteristic functions of all lines through ℓ_{0}, including ℓ_{0}. First, consider a line $\ell \neq \ell_{0}$ through ℓ_{0}. We can assume that ℓ meets ℓ_{0} at a point other than p_{0}, since otherwise $\ell \in X_{0}$. Therefore ℓ meets ℓ_{0} in the same point p as some element $\ell^{\prime} \in Y$. Then Corollary 8 shows that χ_{ℓ} lies in the span of Y and L_{1}. The only line still missing is ℓ_{0}, so our last task is to show that $\chi_{\ell_{0}}$ lies in the span of the characteristic functions of all other lines. First, by Lemma 6 applied to ℓ_{0}, we see that the constant function 1 is in the span. Finally, we see from Lemma 7 that

$$
\begin{equation*}
\sum_{\ell \in X_{0}} \Phi_{\ell}=1-\chi_{\ell_{0}} \tag{10}
\end{equation*}
$$

so we are done.

6. Further research

One can also consider the binary code $\mathrm{LU}(3, q)$ when $q=2^{t}, t \geq 1$. The exact dimension is not known yet, but Corollary 5 provides a lower bound. The formulae for $\operatorname{dim}_{\mathbf{F}_{2}} C(P, L)$ are quite different for odd and even q. Nevertheless, it may well be that the inequality (7) is an equality for even q, just as it is for odd q. Computer calculations of J.-L. Kim verify this up to $q=16$. We can

7. References

[1] B.Bagchi, A.E.Brouwer, and H.A.Wilbrink, "Notes on binary codes related to the $\mathrm{O}(5, q)$ generalized quadrangle for odd q," Geometriae Dedicata, vol. 39, pp. 339-355, 1991.
[2] J.-L. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland, "Explicit construction of families of LDPC codes with no 4-cycles," IEEE Trans. Inform. Theory, vol. 50, pp. 2378-2388, 2004.
[3] C. W. Curtis and I. Reiner, Methods of Representation Theory, with Applications to Finite Groups and Orders. New York, NY: Wiley Interscience, 1981, vol. I.
[4] N. S. N. Sastry and P. Sin, "The code of a regular generalized quadrangle of even order," in Group Representations: Cohomology, Group Actions and Topology, ser. Proc. Symposia in Pure Mathematics, vol. 63, 1998, pp. 485496.
[5] F. Lazebnik, V. A. Ustimenko, "Explicit construction of graphs with arbitrarily large girth and of large size" Discrete Applied Math. vol. 60(5), pp. 275-284, 1997.

Overview

A conjecture about
The symplectic.
Coordinates of.
Relative dimensions.
Proof of Theorem 3
Further research
References

Back

Full Screen

