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0. Overview

• A conjecture on some LDPC codes

• The symplectic generalized quadrangles

• An equivalence of incidence systems

• Proof of the conjecture

• Further research
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1. A conjecture about LDPC codes

Recently, Kim et al. [2] studied some explicit LDPC
(low density parity check) codes defined using the adja-
cency matrices of certain bipartite graphs from Lazebnik-
Ustimenko [5] for parity check matrices.

• q, any prime power

• P ∗, L∗ be two sets in bijection with Fq
3

• (a, b, c) ∈ P ∗ is incident with [x, y, z] ∈ L∗ if and only
if

y = ax + b and z = ay + c. (1)

The binary incidence matrix of (P ∗, L∗) and its transpose
can be taken as parity check matrices of two codes. These
codes are designated LU(3, q).
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Conjecture. [2] If q is odd, the dimension of LU(3, q)
is (q3 − 2q2 + 3q − 2)/2.

In [2] it was established that this number is a lower bound
when q is an odd prime.
We will prove the conjecture in general, by relating it to
the geometry of a 4-dimensional symplectic vector space
and by applying the representation theory of the symplec-
tic group and its subgroups.
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2. The symplectic generalized
quadrangle

• q, any prime power

• (V, (., .), a 4-dimensional Fq-vector space with a non-
singular alternating bilinear form

• e0,e1, e2, e3, a symplectic basis such that (e0, e3) =
(e1, e2) = 1

• x0, x1, x2, x3, coordinates for basis

• P = P(V ), the set of points of the projective space of
V

• L, the set of totally isotropic 2-dimensional subspaces
of V , considered as lines in P

The pair (P, L), together with the natural relation of in-
cidence between points and lines, is called the symplectic
generalized quadrangle.
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It is easy to verify that (P, L) satisfies the following quad-
rangle property: Given any line and any point not on the
line, there is a unique line which passes though the given
point and meets the given line.
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Theorem 1. (Bagchi-Brouwer-Wilbrink [1]) Assume
q is a power of an odd prime. Then the 2-rank of
M(P, L) is (q3 + 2q2 + q + 2)/2.

Theorem 2. (Sastry-Sin [4] ) Assume q = 2t. Then
then the 2-rank of M(P, L) is

1 +

(
1 +

√
17

2

)2t

+

(
1−

√
17

2

)2t

. (2)
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Now fix a point p0 ∈ P and a line `0 ∈ L through p0. We
can assume that p0 = 〈e0〉 and `0 = 〈e0, e1〉.

• p⊥, the set of points on lines through the point p

• P1 = P \ p⊥0

• L1, the set of lines in L which do not meet `0

We have new incidence systems (P1, L1), (P, L1), (P1, L).
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In the next section we will prove that (P1, L1) is equivalent
to the system (P ∗, L∗).
The following theorem will then imply the conjecture.

Theorem 3. Assume q is odd. The 2-rank of
M(P1, L1) equals (q3 + 2q2 − 3q + 2)/2.

Note this number is 2q less than the 2-rank of M(P, L).
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3. Coordinates of points and lines

Let q be any prime power. Here we show, by introducing
coordinates for (P1, L1), that it is equivalent to (P ∗, L∗).

Coordinates of P1

• x0, x1, x2, x3 be homogeneous coordinates of P

• p0 = 〈e0〉

P1 = {(x0 : x1 : x2 : x3) | x3 6= 0}
= {(a : b : c : 1) |, a, b, c ∈ Fq} ∼= Fq

3.
(3)
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Coordinates of lines in P (V )

• ei ∧ ej, 0 ≤ i < j ≤ 3, basis of the exterior square
∧2(V )

• p01, p02, p03, p12, p13, p23, homogeneous coordinates for
P(∧2(V ))

• If W is a 2-dimensional subspace of V then ∧2(W ) ∈
P(∧2(V )).

• If W = 〈(a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3)〉
then ∧2(W ) has coordinates pij = aibj − ajbi, its
Grassmann-Plücker coordinates.

• The totality of points of P(∧2(V )) obtained from
all W forms the set with equation p01p23 − p02p13 +
p03p12 = 0, called the Klein Quadric.
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Coordinates of L and L1

• L corresponds to the subset of points of the Klein
quadric which satisfy the additional linear equation
p03 = −p12.

• `0 = 〈(1 : 0 : 0 : 0), (0 : 1 : 0 : 0)〉
• L1 is the subset of L given by p23 6= 0.

Taking into consideration the quadratic relation, we see
that

L1
∼= {(z2 + xy : x : z : −z : y : 1) | x, y, z ∈ Fq}
∼= Fq

3.
(4)
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3.1. Incidence equations

Next we consider when (a : b : c : 1) ∈ P1 is contained
in (z2 + xy : x : z : −z : y : 1) ∈ L1. Suppose the
latter is spanned by points with homogeneous coordinates
(a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3). The given point
and line are incident if and only if all 3× 3 minors of the
matrix  a b c 1

a0 a1 a2 a3
b0 b1 b2 b3

 (5)

are zero. The four equations which result reduce to the
two equations

z = −cy + b, x = cz − a. (6)

By a simple change of coordinates, these equations trans-
form to (6). This shows that (P1, L1) and (P ∗, L∗) are
equivalent.
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4. Relative dimensions and a bound

In this section q is an arbitrary prime power.

4.1. Notation

• F2[P ], the vector space of all F2-valued functions on
P

• χp, the characteristic function of the point p ∈ P

• Let χ`, the characteristic function of the line ` ∈ L

• C(P, L), the subspace of F2[P ] spanned by the χ`,
` ∈ L

• C(P, L1), the subspace generated by lines in L1

• πP1
: F2[P ] → F2[P1], natural projection map

• C(P1, L) = πP1
(C(P, L)), C(P1, L1) = πP1

(C(P, L1))
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• Z ⊂ C(P, L1), a set of characteristic functions of lines
in L1 which maps bijectively under πP1

to a basis of
C(P1, L1)

• X , the set of characteristic functions of the lines
through p0 and let X0 = X \ {`0}

• Y be the set of characteristic functions of any q lines
which meet `0 in the q distinct points other than p0
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Lemma 4. Z ∪ X0 ∪ Y is linearly independent over
F2.

Proof. Each element of Y contains in its support a point
of `0 which is not in the support of any other element of
Z∪X0∪Y . So it is enough to show that X0∪Z is linearly
independent. This is true because X0 is a linearly inde-
pendent subset of ker πP1

and Z maps bijectively under
πP1

to a linearly independent set.

Corollary 5.

dimF2
LU(3, q) ≥ q3 − dimF2

C(P, L) + 2q. (7)
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5. Proof of Theorem 3

In this section we assume that q is odd. In view of Corol-
lary 5 and the known 2-rank of M(P, L) the proof of The-
orem 3 will be completed if we can show that Z ∪X0∪Y
spans C(P, L) as a vector space over F2.
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Lemma 6. Let ` ∈ L. Then the sum of the charac-
teristic functions of all lines which meet ` (excluding
` itself) is the constant function 1.

Proof. The function given by the sum takes the value q ≡
1 at any point of ` and value 1 at any point off `, by the
quadrangle property.
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Lemma 7. Let ` 6= `0 be a line which meets `0 at a
point p. Let Φ` be the sum of all the characteristic
functions of lines in L1 which meet `. Then

Φ`(p
′) =


0, if p′ = p;

q, if p′ ∈ ` \ {p};
0, if p′ ∈ p⊥ \ `;

1, if p′ ∈ P \ p⊥.

(8)

Corollary 8. Let p ∈ `0 and let `, `′ be two lines
through p, neither equal to `0. Then χ` − χ`′ ∈
C(P, L1).

Proof. Since q = 1 in F2, one easily check using Lemma 7
that

χ` − χ`′ = Φ` − Φ`′ ∈ C(P, L1). (9)
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Lemma 9. ker πP1
∩C(P, L) has dimension q +1, with

basis X.

Proof. Omitted

The proof of this lemma is technical and of a different
flavor, requiring some detailed calculations of the action of
the subgroup of Sp(V ) which stabilizes p0 on the subspace
F2[p

⊥
0 ] and standard results from group representations,

e.g. Clifford’s Theorem.
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Lemma 10. ker πP1
∩ C(P, L1) has dimension q − 1,

and basis the set of functions χ` − χ`′, where ` 6= `0
is an arbitrary but fixed line through p0 and `′ varies
over the q− 1 lines through p0 different from `0 and `.

Proof. By Corollary 8 applied to p0, we see that if ` and
`′ are any two of the q lines through p0 other than `0,
the function χ` − χ`′ lies in C(P, L1). It is obviously in
ker πP1

. Clearly, we can find q − 1 linearly independent
functions of this kind as described in the statement. Thus
ker πP1

∩ C(P, L1) has dimension ≥ q − 1. On the other
hand C(P, L1) is in the kernel of the restriction map to
`0, while the image of the restriction of ker πP1

to `0 has
dimension 2, spanned by the images of χ`0

and χp0
. Thus

ker πP1
∩ C(P, L1) has codimension at least 2 in ker πP1

,
which has dimension q + 1, by Lemma 9.
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Lemma 11. Z ∪ X0 ∪ Y spans C(P, L) as a vector
space over F2.

Proof. By Lemma 10, the span of X0 and Z is equal to the
span of X0 and L1, since ker πP1

∩C(P, L1) is contained in
the span of X0. We must show that the span of X0∪L1∪Y
contains the characteristic functions of all lines through `0,
including `0. First, consider a line ` 6= `0 through `0. We
can assume that ` meets `0 at a point other than p0, since
otherwise ` ∈ X0. Therefore ` meets `0 in the same point
p as some element `′ ∈ Y . Then Corollary 8 shows that
χ` lies in the span of Y and L1. The only line still missing
is `0, so our last task is to show that χ`0

lies in the span
of the characteristic functions of all other lines. First, by
Lemma 6 applied to `0, we see that the constant function
1 is in the span. Finally, we see from Lemma 7 that∑

`∈X0

Φ` = 1− χ`0
, (10)

so we are done.
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6. Further research

One can also consider the binary code LU(3, q) when
q = 2t, t ≥ 1. The exact dimension is not known yet,
but Corollary 5 provides a lower bound. The formulae
for dimF2

C(P, L) are quite different for odd and even q.
Nevertheless, it may well be that the inequality (7) is an
equality for even q, just as it is for odd q. Computer cal-
culations of J.-L. Kim verify this up to q = 16. We can
get an idea of the difference between the odd and even
cases by comparing the representation theory of Sp(V ) in
the two cases. In the odd case, the group and code are de-
fined over fields of different characteristics, whereas in the
even case, they are both in characteristic 2. The represen-
tation theory in the former case is closely related to the
complex character theory, while in the latter case it more
closely resembles the theory of rational representations of
algebraic groups.
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