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Pauli spin matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

These act on a 2-diml. complex inner product space (one
qubit), orthonormal basis v0, v1.



N qubits with nearest-neighbour interaction

Let Γ be a graph with N vertices, and adjacency matrix A. The
state space of N qubits is the tensor power (C2)⊗N with
orthonormal basis vectors vI = vi1 ⊗ · · · ⊗ viN , I = {k | ik = 1}.
If we assign each qubit to a vertex of Γ, then one possible
Hamiltonian for the qubits to interact with adjacent qubits is

H =
1
4

∑
i,j

Aij(XiXj + YiYj),

where, for example, Xi is the operator acting as the Pauli X
matrix on the i-th qubit and as the identity on all other qubits.
(This Hamiltonian is variously referred to as the XX or XY
Hamiltonian.)



H commutes with the operator
∑N

i=1 Zi , so leaves invariant its
eigenspaces, such as the 1-excitation subspace
W = 〈v{i},1 ≤ i ≤ N〉. We have H|W = A. On W , the
Schrödinger equation takes the form

i
d
dt

v(t) = Av(t),

whose solutions gives the time evolution v(t) = e−itAv(0) of any
state in W .



Quantum walks

A quantum walk on Γ consists of an initial state v(0) ∈W and
the family U(t) = e−itA of unitary matrices. Change notation
slightly and write the orthonormal basis elements of W as ea,
for vertices a of Γ. Often the initial state is taken as ea for some
a.



Perfect state transfer

We say that the quantum walk on Γ admits perfect state transfer
from vertex a to vertex b at time τ if

U(τ)ea = γeb,

for some γ ∈ C of norm 1. (The γ enters because states are
not vectors but rather points of the projective space.)



First Examples

P2, A =

[
0 1
1 0

]
, U(t) =

[
cos t −i sin t
−i sin t cos t

]
, so we have PST at

t = π/2.
Similarly, P3 admits PST between its end vertices, but it can be
shown that there can be no PST for Pn, n ≥ 4.
In general, PST is a rare phenomenon. Godsil showed that if
the maximum degree of a graph is fixed, then there are only
finitely many connected graphs that admit PST.
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Let the spectral decomposition of A be

A =
d∑

r=1

θr Er

where the Er are the idempotent projections onto eigenspaces.

U(t) = e−itA =
d∑

r=1

e−itθr Er

Suppose we have PST fro m a to b at time τ . Then there exist τ
and γ with

d∑
r=1

e−iτθr Er ea = γeb,



so for every r we have

e−iτθr Er ea = γEr eb. (1)

Since the entries of Er , ea and eb are real, it follows that
γ−1e−iτθr = ±1. Thus we have

Er eb = εr Er ea, εr = ±1 for all r with Er ea 6= 0. (2)

We say that a and b are strongly cospectral iff (2) holds.



Theorem
(Coutinho-Godsil) Vertices a and b of a graph are s.c. iff there
is a matrix Q such that

1. Q is a polynomial in A;
2. Q2 = I; and
3. Qea = eb
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Strong Cospectrality in normal Cayley Graphs

X = Cay(G,S) simple, normal Cayley graph, (S closed under
inversion, conjugation, 1 /∈ S, connected if S generates G)
Eigenvalues come from irreducible characters. χ ∈ Irr(G) gives
the eigenvalue

θχ =
χ(S)

χ(1)
.

Theorem
Distinct elements g and h of G are strongly cospectral iff there
is a central involution z such that the following hold.
(a) h = zg.

(b) (∀χ, ψ ∈ Irr(G)), χ(S)
χ(1) = ψ(S)

ψ(1) implies χ(z)
χ(1) = ψ(z)

ψ(1) .
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Back to PST

For a vertex a, let Φa = {θr | Er ea 6= 0}. Suppose a and b are
strongly cospectral. Then Φb = Φa and we define
Φ+

a,b = {θr ∈ Φa | εr = 1} and Φ−a,b = {θr ∈ Φa | εr = −1}.

Theorem
A k-regular graph Γ admits PST between vertices a and b at
some time if and only if the following hold.

1. a and b are strongly cospectral.
2. Φa ⊆ Z.
3. There exists a nonnegative integer M such that

v2(k − µ) = N for all µ ∈ Φ−a,b and v2(k − µ) > N for all
µ ∈ Φ+

a,b.



Remark
Assume a and b are strongly cospectral. We’ll sketch how
above theorem is related to the equation (2) for PST

e−iτθr Er ea = γEr eb = γεr Er ea.

which must hold for all r with θr ∈ Φa. If we set θ1 = k, then we
know that θ1 ∈ Φa and ε1 = 1, since the entries of E1 are
positive. Thus,

e−iτθ1E1ea = γE1ea

so γ = e−iτk = γ. Thus we have for all θr ∈ Φa,

e−iτ(k−θr ) = εr .

This means τ(k − θr ) must be an integral multiple of π, and this
multiple must be odd or even according to εr . This is the
meaning of part (3) of the Theorem.



PST in extraspecial 2-groups (joint work with Julien
Sorci)

Let G be an extraspecial 2-group (of either type) of order 22n+1.
Let z be the central involution. The the noncentral classes have
the form {x , zx}. We consider Cay(G,S) with
S \ {z} = ∪`i=1{xi , zxi} containing ` noncentral classes. Let x i
be the image of xi in G/Z (G) ∼= (Z/2Z)2n. For y ∈ (Z/2Z)2n, let
ny = |{i | x i · y = 0}|.

Theorem
Let g ∈ G. Then Cay(G,S) has PST from g to zg at some time
if and only if one of the following holds.

1. z ∈ S and for all y ∈ (Z/2Z)2n we have
v2(`− ny ) ≥ v2(`+ 1); or

2. z /∈ S and for all y ∈ (Z/2Z)2n we have v2(`− ny ) ≥ v2(`).
In particular (1) holds whenever ` is even and (2) holds
whenever ` is odd.
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