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0. Introduction

Group actions

Let G be a group acting on a set S. The action is transitive
if S is a single orbit. The action is doubly transitive if any
ordered pair of distinct elements of S can be sent to any other
by some element of G. Equivalently, G acts doubly transi-
tively if the stabilizer of an element of S acts transitively on
the other elements.
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Let R be any commutative ring. Let R[S] be the free R-
module with basis S. The G-action makes R[S] into a mod-
ule for the group algebra RG.

Lemma. If G acts transitively on S, then EndRGR[S] is
a free R-module with basis given be the orbit sums of the
stabilizer of an element.

Corollary. If R is a field of characteristic zero and G
acts double transitively, then R[S] is the direct sum of
the trivial module with a simple module.
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When the field has positive characteristic dividing |G|, the
situation may be much more complicated. In fact, as we
shall see, the structure of R[S] can be very complicated and
interesting. For example, the composition length of R[S] is
unbounded.
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In this talk, we will explore the mod 2 permutation modules
of a famous class of doubly transitive group actions, first con-
sidered in the 19th century by Steiner, Jordan and Riemann.
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1. Quadratic forms over the field of
two elements

• V , vector space of dimension 2n over F2 (Assume n ≥ 2)

• S2(V ∗), the vector space of all quadratic forms on V

• ∧2(V )∗ ∼= ∧2(V ∗), and the space of all alternating bilin-
ear forms on V .
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By definition, a quadratic form has an associated bilinear
form

θ(q)(v, u) = q(v + u)− q(v)− q(u) (1)

and this formula defines the polarization homomorphism
from S2(V ∗) to ∧2(V ∗). The quadratic forms with zero po-
larization can be identified with V ∗ and we have a short exact
sequence of GL(V )-modules

0 // V ∗ // S2(V ∗) θ //∧2(V ∗) // 0. (2)
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Equivalence of forms in a symplectic space

Fix a nonsingular alternating form b on V Let Sp(V ) be the
group preserving b.
Every element of V ∗ = ker θ can be written as b(−, x)2 for
some x ∈ V . So if q is any quadratic form polarizing to b,
then

θ−1(b) = {q + b(−, x)2 | x ∈ V }. (3)

Now the group GL(V ) acts on S2(V ∗) by

(gq)(v) = q(g−1v)

Two quadratic forms in the same orbit are called equivalent.
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If two forms q and q′ ∈ θ−1(b) are equivalent, the conjugating
element of GL(V ) must belong to Sp(V ), so the Sp(V )-orbits
in θ−1(b) are in bijection with equivalence classes of forms.
The stabilizer in Sp(V ) (or GL(V )) of q is the orthogonal
group O(V, q).
The map

V → θ−1(b), v 7→ q + b(−, v) (4)

is an isomorphism of O(V, q)-sets.
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By Witt’s Lemma O(V, q) has two orbits on V \{0} consist-
ing of isotropic and anisotropic vectors, so it has two orbits
on θ−1(b) \ {q}.
Let e1, . . . , en, f1, . . . , fn be a symplectic basis for V with
respect to b and let x1, . . . , xn, y1, . . . , yn be the dual basis
for V ∗. Thus,

b(ei, fj) = xi(ej) = yi(fj) = δi,j, b(ei, ej) = b(fi, fj) = 0.
(5)

The quadratic forms q+ =
∑n

i=1 xiyi and q− = x2
1 + y2

1 +∑n
i=1 xiyi are inequivalent since they have Witt index n and

n − 1 respectively. Therefore, the two orbits of O(V, q) on
θ−1(b) \ {q} are determined by the Witt index.



Introduction

Quadratic forms . . .

The permutation . . .

Structure of k[Q±]

Module structure . . .

Examples

Theta . . .

JJ J I II

Back

Full Screen

Close

Quit

Let Q+ be the set forms of maximal index in θ−1(b) and Q−

the set of minimal index.
We have proved:

Theorem. Sp(V ) acts doubly transitively on the sets Q+

and Q−.

Remark. The first proof of the double transitivity of the
Sp(V )-action on the forms of maximal index appeared in
Jordan’s Traité des Substitutions, p. 236.

Remark. An easy computation shows that the isotropic
vectors of q correspond in (4)to forms of the same Witt index
as q.
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2. The permutation modules k[Q+]
and k[Q−]

We now want to study the submodule structure of k[Q+]
and k[Q−], where k is an algebraically closed field of char-
acteristic 2. By this, we mean we would like to describe the
simple composition factors and their multiplicities and in ad-
dition we would like to have some information about how the
composition factors fit together.
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Composition factors

We can get a rough idea about the composition factors as
follows. The module θ−1(F2b) (see(2)) is the union of V ∗ and
the nontrivial coset θ−1(b) = Q+∪Q−. These two cosets are
isomorphic 〈g〉-sets for any element g ∈ Sp(V ) of odd order.
Therefore, in the Grothendieck group of kSp(V )-modules,

k[Q+] + k[Q−] = k[V ∗] ∼= ∧(V ∗
k ),

where Vk = V ⊗ k.
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Thus, k[Q+] and k[Q−] each have roughly half of the compo-
sition factors of ∧(V ∗

k ). This already shows that the number
of composition factors tends to ∞ as n →∞.
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The exterior algebra

The exterior powers ∧r(V ∗
k ) are fundamental modules and

have been studied in detail by several authors (e.g. [1], [2],
[4] and [6]). They are modules for the algebraic group Sp(Vk).
It is known [4, Appendix A] that as modules for the algebraic
group Sp(Vk), the exterior powers have filtrations by Weyl
modules and also good filtrations (by duals of Weyl modules).
Weyl modules are certain reductions of simple modules for
the corresponding complex semisimple Lie algebra, in this
case sp(2n). Hence, the dimensions and characters are given
by Weyl’s Character Formula.
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3. Structure of k[Q±]

Our aim is to describe the submodule structure of k[Q±],
taking as our model the above description of the structure
of ∧(V ∗). Of course we must be careful since k[Q±] are not
modules for the algebraic group Sp(Vk).
Here is the plan:

• Cut ∧(V ∗
k ) into two pieces.

• Introduce coordinates so that we can have a notion of
“polynomial degree” in order to define filtrations.

• Prove that the graded modules of k[Q±] with respect to
the above fitrations are isomorphic to the two pieces into
which we have cut ∧(V ∗

k )

• Prove that the graded pieces have an action of the alge-
braic group Sp(Vk) and have either good or Weyl filtra-
tions.
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The exterior algebra and the spin module

We will describe here how we cut the exterior algebra in
two. Consider b as an element of degree two in ∧(V ∗

k ). In
characteristic two we have b2 = 0. So the map δ given
by multiplication by b makes ∧(V ∗

k ) into a complex. It is
best for us to keep the standard grading on ∧(V ∗

k ) so δ has
degree two. Obviously, the complex decomposes into a direct
sum ∧(V ∗

k ) = ∧(V ∗
k )even

⊕
∧(V ∗

k )odd. The symplectic group
Sp(Vk) which preserves b acts on this complex, hence also on
its homology groups.
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Proposition. H i(∧(V ∗
k ), δ) = 0 unless i = n , in which

case it affords an irreducible representation of Sp(Vk) of
dimension 2n.
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3.1. Filtrations and graded modules

Next, certain filtrations on the modules k[Q±] come from the
fact thatQ+ andQ− are the F2-rational points of quadrics in
some affine space. We consider the associated graded mod-
ules A+ and A−.

Theorem. We have isomorphisms of graded kSp(V )-
modules gr(A+) ∼= Cokerδ and gr(A−) ∼= Imδ
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Next we study the image and kernel of δ as modules for the
algebraic group Sp(Vk).

Proposition. (i) ∧r(V ∗
k )/Imδ ∩ ∧r(V ∗

k ) has a good fil-
tration for 0 ≤ r ≤ n and a Weyl filtration for
n + 1 ≤ r ≤ 2n.

(ii) ∧r(V ∗
k )/Kerδ ∩ ∧r(V ∗

k ) has a good filtration for 0 ≤
r ≤ n− 1 and a Weyl filtration for n ≤ r ≤ 2n.
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Proof. Use the general fact [7, II.4.17] that in a short exact
sequence

0 → W ′ → W → W ′′ → 0 (6)

of rational modules for a reductive algebraic group, if W ′

and W have good filtrations then so does W ′′, together with
the dual statement that if W ′′ and W have Weyl filtrations
then so does W ′. Then use Proposition and induction.
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4. Module structure for orthogonal
groups

Lemma. Assume n ≥ 3. Let L(n) be the last fundamen-
tal module. Then H1(Sp(Vk), L(n)) = 0.

Proposition. Each Weyl module V (i) (i = 1,. . . ,n) of
the algebraic group Sp(Vk) satisfies the following proper-
ties. The restrictions of its composition factors to the
subgroup O(V, f ) remain simple and distinct as modules
for this subgroup. Furthermore, the lattice of submodules
remains the same. That is, the groups Sp(Vk), O(V, f )
leave invariant the same subspaces of each V (i).
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5. Examples

∧(V ) : 6

1 ⊕ 6 ⊕ (1⊕ 14) ⊕ 8 ⊕ (14⊕ 1) ⊕ 6 ⊕ 1

6
Cokerδ : 6

1 ⊕ 6 ⊕ 14 ⊕ ⊕ 1

8

Figure 1:

k[Q+] : 1

6
�� AAA

8
<<

14
}}}

6

1

k[Q−] : 1

6

14

6

1

Figure 2: Submodule structures for Sp(6, 2) .
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n = 4 :
1 26

~~ EE

1 ⊕ 8 ⊕ 26 ⊕ 48 ⊕ 1 16 ⊕ 8 ⊕ 1

n = 5 :
10 1 100

tt JJ

1 ⊕ 10 ⊕ 44 ⊕ 100 ⊕ 164 ⊕ 10 32 ⊕ 44 ⊕ 10 ⊕ 1

1

Figure 3: Submodule structure of gr(k[Q+]) for n = 4, 5 .
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6. Theta Characteristics of curves

Let C be a smooth projective complex algebraic curve.
A divisor on C is a finite integral combination

∑
p npp of

points of C. The degree of this divisor is
∑

p np. If f is a
rational function its divisor is defined to be

(f ) = (sum of zeroes)− (sum of poles),

everything counted with multiplicities. The degree of (f ) is
zero for every rational function. Two divisors are linearly
equivalent if they differ by the divisor of a rational function.
The linear equivalence classes form a group Cl(C). This
group is isomorphic to the group of isomorphism classes of
line bundles on C.
The Jacobian, J(C) may be identified with Cl0(C), the sub-
group of divisor classes of degree zero. It is an abelian variety
of (complex) dimension g, the genus of C.
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Some important divisors include:

• the trivial divisor, of degree zero, corresponding to the
structure sheaf O

• the canonical divisor K (which by Riemann-Roch has
degree 2g − 2). This corresponds to the sheaf of regular
differentials (aka holomorphic or abelian differentials).
We have h0(C, K) = g.

• J2, the group of points of order 2 in J(C), i.e line bundles
L such that L⊗ L = O. We have |J2| = 22g.

• the theta characteristics, divisors L such that 2L = K.
Note that J2 acts regularly on the set of these, so there
are also 22g of them. L is called even or odd according
to the parity of h0(C, L).
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On J2 we have the Weil paring, a symplectic form over F2.
For each theta characteristic L define the map qL : J2 → F2
by

qL(η) = h0(C, L⊗ η)− h0(C, L).

The Riemann-Mumford relation says that qL is a quadratic
form with the Weil pairing as its associated bilinear form.
The group Sp(2g, 2) acts as the “global monodromy”.
Thus, the sets Q± turn out to be the same as the sets of odd
and even theta characteristics.
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Example. [12] Let C be a non-hyperelliptic curve of genus
g=3. Then C is embedded (using a basis of sections of
the canonical sheaf) a quartic in P2, because 2g-2=4 and
g=3=2+1. The (hyperplanes=) lines of P2 = PH0(C, K)
are in bijection with the regular differentials on C. It is a
famous classical fact that there are 28 bitangents, lines which
are tangent at two points. If ` is tangent at x and y, and
corresponds to the differential φ, then (φ) = 2x + 2y. so
x + y is a theta characteristic. These 28 are the odd ones.



Introduction

Quadratic forms . . .

The permutation . . .

Structure of k[Q±]

Module structure . . .

Examples

Theta . . .

JJ J I II

Back

Full Screen

Close

Quit

References

[1] A. M. Adamovich, Analogues of spaces of primitive forms
over a field of positive characteristic, Moscow Univ. Math.
Bull. 39 No. 1 (1984) 53–56.

[2] A. M. Adamovich, The submodule structure of Weyl mod-
ules for symplectic groups with fundamental highest weights,
Moscow Univ. Math. Bull. 41 No 2 (1986) 6–9.
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