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COMMUNICATIONS IN ALGEBRA, 24(14), 4513-4547 (1996) 

MODULAR REPRESENTATIONS O F  T H E  HALL-JANKO GROUP 

University of Florida 
358 Little Hall 
PO Box 118105 

Gainesville 
FL 32611-8105 USA 

Abstract. We study modular representations of the Hall-Janko group and 
its double cover in characteristics 2 ,  3 and 5 .  In particular, we determine 
all extensions of simple modules. Results on the group Gz(2) '  2 PSU(3,3), 
which IS isomorphic to a nlaximal subgroup of the Hall-Janko group, are also 
included. 

In this paper we study the modular representations of the Hall-Janko group 
G = J 2 ,  a sporadic simple group of order 604800 = 27.33.52.7 and of its 

A 

twofold universal covering group G. The (Brauer) characters of simple mod- 
ules have been determined in all characteristics ([16], [12], [13]), as have the 
decomposition numbers. The blocks with cyclic defect are described in [8] 
(see also [lo])  and the only non-principal 2-block has been treated in [15]. 
In these cases it is not difficult to give the Loewy structure of the projec- 
tive indecomposable modules. The blocks which have not yet been studied 

A 

are the principal blocks and two other blocks of G of maximal defect, one 
for each of the characteristics 3 and 5. We shall determine the extensions 
between the simple modules in these cases. Characteristics 3 and 5 are rela- 
tively easy, and one can try to say more about the projective modules. The 
characteristic 2 calculations appear to be harder. In our approach, we rely 
heavily on the representation theory of the algebraic group G2(k) ,  where k 
is an algebraically closed field of characteristic 2 which was studied in [17] 
and [6]. G embeds into this group in such a way that most of the irreducible 
representations of G over k extend to Gs(k). 

It can be expected that  computer calculations will eventually furnish the 
entire Loewy structure of all of the projective indecomposable modules. In 

Copyright O 1996 by Marcel Dekker, Inc 
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4514 SIN 

this direct approach, it is necessary first to find matrices of group generators 
acting on suitable projective modules and this first step is not automatic and 
may be quite challenging. In this paper, we calculate the extensions of simple 
modules by indirect methods, for which the initial data needed are essentially 
character-theoretic. Unfortunately, our collection of tricks does not amount 
to an algorithm. Nevertheless, we hope that some of them will be useful for 
investigations of other groups. 

Let L be a simple kG-module and P its projective cover. If p ,-. # 2, then 
P is also the projective cover of L ,. when both are regarded as kG-modules. 
For p = 2, the k6-projective cover P of L is different from P but the simple 
module extensions are the same; this follows from 5-term sequences arising 
from the group extension 1 -+ z(@ + G -+ G -+ 1, using the fact that 
Z(G) L [ E ,  GI. 

THEOREM. In the tables below the dimension of the space of extensions 
between two simple modules is the entry of the row labelled by the first 
module and the column labelled by the second. 

There are two conjugacy classes of embeddings of G into GZ(4) and they are 
interchanged by the Frobenius map (see [18]). We have chosen our notation 
(see 52 below) so that (for a fixed embedding of G in Gz(k))  the simple mod- 
ules with subscript 1 are the restrictions of simple G-modules with restricted 
highest weights. The   nodules with subscripts 2 are then the restrictions to 
G of their twists by the Frobenius map. This turns out to be the same as 
twisting by the outer automorphism of G. 

TABLE 1. The principal 2-block of G. 
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HALL-JANKO GROUP 4515 

p = 3. Our notation follows that of [9]. There is one choice to be made with 
regard to the pair of dual simple modules of dimension 36 in the non-principal 
block of maximal defect. Since these two are the only simple modules which 
are not self-dual, we can choose either to be the one labelled 361, since 
complex conjugation fixes all other simple Brauer characters. We have chosen 
361 to be the one for which E ~ t : ~ ( 6 1 ,  361) # 0. (See below that this condition 
picks out one of the two 36-dimensional modules.) 

TABLE 2. The principal 3-block of G. 

TABLE 3. The non-principal 3-block of 6 of maximal defect. 
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p = 5 .  

Again our notation matches [9]. 

TABLE 4. The principal 5-block of G. 

TABLE 5. The non-principal 5-block of of maximal defect. 

REMARK. Notice that there exists a bijection between the sets of simple 
modules in these two blocks which preserves extensions. The blocks are not 
Morita equivalent, since they have different Cartan matrices. However, J. 
Rickard has provided some good evidence to suggest that the two blocks are 
derived equivalent in a particularly simple way. In particular he has described 
a complex which ought to  be a tilting complex for the above equivalence and 
which gives a change of basis to show that the two Cartan matrices define 
the same integral quadratic form. Also each block has 14 complex characters 
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HALL-JANKO GROUP 4517 

all of degrees not divisible by 5. So it is possible that the blocks are derived 
equivalent over a suitable 5-adic ring. 

Here we give tables of extensions for the group H = U3(3). The subgroups 
of G which are isomorphic to H form a unique class of maximal subgroups. 
These results are obtained by similar methods, except that, as might be ex- 
pected for this smaller group, the consideration of induced modules is an 
effective additional technique. The group order is 25.33.7, so the characteris- 
tic 7 case is covered by the theory of blocks of defect one (see [lo]). We will 
treat the other two primes. As far as I am aware, several of the results be- 
low appear as isolated calculations, scattered throughout the literature, and 
there is little doubt that most or all of the others are also known, whether 
published or not. The main reason for including this appendix is simply to 
provide a convenient reference. 

p = 2. 
H has index 2 in G2(2). The latter has three simple modules in the prin- 

cipal block of dimensions 1, 6 and 14. Their restrictions to H are the simple 
modules in the principal block of H. The other block of Gz(2) is of defect 
zero, containing the 64-dimensional Steinberg module, whose restriction to 
H splits into two nonisomorphic, 32-dimensional simple projective modules. 

TABLE A l .  The principal 2-block of H E (G2(2))' 

REMARK. The extensions for the principal block of G2(2) are given by the 
same table except that the entries on the leading diagonal are 1 instead of 0. 

p = 3. 
H F U3(3) has two blocks, the principal block and a block of defect 0 

containing the 27-dimesional Steinberg module. The principal block has 8 
simple modules, denoted by their dimensions in the table below. The module 
3 affords the natural representation and 6 is its symmetric square. The 
superscript "*"  denotes duality. The module 7 is the nontrivial composition 
factor of 3 @I 3*, that is the quotient of the space of matrices of trace 0 by 
the scalar matrices, and the module 15 is the kernel of the natural map 
3' @ S2(3)  -t 3. 
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TABLE A2. The principal 3-block of H. 

SIN 

REMARK. In this case, a little extra work beyond the calculations needed to 
complete Table A2 yields the Loewy structure of the projective indecompos- 
able modules. 

Preliminary Remarks. 
In what follows, we will often make use of information drawn from the AT- 

LAS, and the tables of Brauer characters, decomposition matrices, products 
of characters etc. in [9], 1161, 1121 and [13]. We will also use the tables of 
weights in [5]  in a few places for p = 2. To avoid undue length, the details 
of calculations which follow directly from this numerical information, such 
as the calculation of multiplicities of simple modules in tensor products of 
simple modules, or in projective modules, will be omitted, but we will try to 
indicate what information is used in each instance. Some care is needed to 
find the correct correspondences among the notations of these sources. 

The following notational conventions will be used in this paper. All mod- 
ules considered will be vector spaces over a field k and we will abbreviate 
Hornkc(-, -) and Extic(- ,  -) to Hornc(-, -) and Ext&(-, -). The syrn- 
bol [X : S ]  will denote the number of composition factors of the kG-module 
X which are isomorphic to the simple module S. 

In $2  we assume k to be an algebraically closed field of characteristic 2.  

2.1. 
In [18] it is shown that G is isomorphic to a maximal subgroup of the 

Chevalley group G2(4) of rational points over Fs inside the algebraic group 
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HALL-JANKO GROUP 4519 

Gz(k). The simple G2(k)-modules whose highest weights are 2-restricted 
(see [I l l )  are the trivial module, a 6-dimensional module, which we denote 
by 61, the 14-dimensional adjoint module 141 and the 64-dimensional (first) 
Steinberg module 641. These modules remain irreducible upon restriction to 
G; indeed, all but 641 remain irreducible for the subgroup Gz(2)' of G. We 
denote the algebraic conjugates under Gal(F4/F2) of these modules with a 
subscript "2". The simple modules in the principal block are then k, 61, 62, 
141, 142, 36 := 61 8 62 and 84 := 6, @ 142. The module 84 is also isomorphic 
to 62 @ 141. (Remark: Since the two tensor products are not isomorphic for 
G2(4) and G is maximal in G2(4),the last sentence implies that G is the full 
stabilizer in Gz(4) of a certain hermitian form on 6i 8 142.) We see then that 
all simple modules in the principal block are restrictions of simple modules 
for G2(k). There is just one other block, with defect group isomorphic to the 
fours group, containing 641, 642 and a simple module 160, which appears in 
the equation 

14i @ 142 =" 36 @ 160. ( I )  

The structure of the non-principal block has been studied in [15] and we 
will make use of it later. The facts concerning simple modules can all be 
checked from tables of Brauer characters. Note also that all simple modules 
are self-dual. 

2.2. This subsection contains a general lemma and some immediate appli- 
cations. 

In spite of the section heading, the field in the following lemma is arbitrary. 
This result is a variation of the main result in [I]. 

LEMMA 1. Let F be a field, G a group and V  a finite-dimensional FG-  
module, with vG = 0. Let Lo, L1 and La besubgroupsofG with Lo 5 LlnLz 
and G = (L1, Lz). Set d, = dimF vL' . Suppose 

(i) do 5 dl  + d2; 
(ii) H1 (L,, V)  = 0, for i = 1,2. 

Then H1(G, V) = 0. 

PROOF: We will show that every short exact sequence of FG-modules of the 
form 

O - + V - + E + F + O  

must split, which is equivalent to E G  # 0, since V G  = 0. By (ii), the 
sequence splits upon restriction to L1 and Lz,  hence also to Lo. Thus, E ~ '  
has dimension d; + 1 for all i. Since ELO _> EL' + E L 2 ,  the fact that EG = 
~~1 n ~~2 is not zero follows from (i) by counting dimensions. 

REMARK.  Under the given conditions on the subgroups L, (excluding (i) and 
(ii)), the hypothesis ( i )  is equivalent to do = dl +d2, or to M ~ O  = M L 1  + M L 2 .  
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4520 SIN 

We will now perform some calculations with small modules using Lemma 
2.2. In order to do so, we must pick suitable subgroups L, and study their 
actions on these modules. We will follow the ATLAS notation for conjugacy 
classes. The notation we are about to introduce will be fixed for the rest of 
$2. Let x be an element of class 5A. Then its centralizer C(x ) ,  is isomorphic 
to As x Zs,  the second factor being generated by x. This has index 2 in the 
itormalizer N ( x )  E A5 x Dlo of (x). 

Let z be an element of C(x)  of order 3 (in class 3A). We have C(z )  
3.PGL(2,9). 

From the character table, we see that (xz) is its own centralizer and it 
follows then from orders that C(x )  and C(z)  generate G, in fact we may 
replace C ( z )  by its derived subgroup 3 .As .  Likewise, if x' is taken to be an  
element of C ( x )  in class 5A but outside (x),  then C(x)  and C(xl)  generate 
G and have intersection S = (x, x') Z Z5 x Z5.  (The statements concerning 
generation can of course be read off from the list of maximal subgroups, 
but elementary arguments suffice for our needs.) These are typical of the 
subgroups we will choose for L, in applying Lemma 1. In all cases it will be 
routine to check that  L1 and L2 generate G and that  Lo 5 Ll n Lz ,  so we 
will mainly be concerned with hypotheses (i) and (ii). In  verifying these we 
will need to make use of certain facts about representations of As = SL(2,4), 
As, etc. These will not be difficult facts and they can be found, for instance, 
in the examples at  the  end of [2]. 

The nontrivial simple k(SL(2,4))-modules are two algebraically conjugate 
2-dimensional modules Vl and V2 and their tensor product V12 := Vl @ V2. 
Let w denote both a primitive 5th root of unity in k and the character of (x) 
sending x to that root. As modules for the subgroup C(x)' 2 SL(2,4) of G, 
we fix Vl to be the one on which an element of class 5C has trace w + w4. For 
Dlo = (x).2, we denote by D l  and D2 the irreducible 2-dimesional module 
whose restrictions to (z) are w + w4 and wZ + w3 respectively. 

LEMMA 2. As modules for C(x) Z SL(2,4) x Dlo,  we have: 

(a) 6 1 / ~ ( r )  (v l  @' k) @ (V2 €3 0 2 ) ;  
(b) 1 4 q ~ ( . )  2 ( X  €3 k) $ (k €3 D l )  @ (Vlz 8 D z ) ,  where X VZ @ VZ, is 

uniserial with factors k, Vl , k. 

PROOF: This mostly follows from (Brauer) character calculations. The only 
point which requires further discussion is the structure of X in (b). It is clear 
from the characters that  141 IN(.) has a direct summand X k with the right 
composition factors. Since 141 is self-dual, so must X be. Therefore, if X 
were not uniserial, it would have to be semisimple. Then 1 4 r ( x )  would be 
2-dimensional. Let S = (x, x') be as in the discussion before the lemma. It 
is easy to check that  dimk(l4f)  = 2, so if X were semisimple, we would have 
14y(r)  = 147. But then the same would hold with x' in place of x since they 
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HALL-JANKO GROUP 452 1 

are conjugate in G, leading to the contradiction that 14:: # 0, because N(x) 
and N(xl) generate G. This proves that X is uniserial. The isomorphism 
with V2 @ V2 is an elementary calculation in SL(2,4). 

We next apply these facts in a simple case. 

LEMMA 3. 

(a) H1(G, 36) = 0. 
(b) ~xt&(l41,142)  = 0. 

PROOF: Equation 2.1(1) shows that (b) follows from (a), as 160 does not 
belong to the principal block. Let L1 = C(x), L2 = C(xl) and Lo = S. Since 
36 g 61 862, we find using Lemma 2(a) that as modules for SL(2,4) Ll / (x) , 
we have 3 6 ( ~ )  E Vl @ V2 E VI2  Since Vlz is an injective module, we obtain 
H1(L1, 36) % H1(Ll /(x), 36(")) = 0 and similarly for L2, which is conjugate 
to L1. Therefore the hypothesis (ii) of lemma 1 is verified. Hypothesis (i) of 
Lemma 1 holds because we see from chracters that 36' = 0. So Lemma I 
yields the result. 

Pursuing this method further, we have the following. 

LEMMA 4. 

(a) H1(G, 6i) E k.  
(b) H1(G, 14i) = 0. 
(c) H1(G, 6i @ 6;) = 0. 

PROOF: (a) It does not matter whether we consider 61 or 62. We first prove 
that H1(G,6i) # 0 by showing that there is a nonsplit extension of k by 
by some 6,. A Brauer character calculation shows that the component of 
61 @ 141 in the principal block has composition factors 61 (twice), k (twice) 
and 62. Since H o m ~ ( k ,  61 @ 141) Z HomG(G1, 141) = 0, the existence of the 
claimed nonsplit extension follows. Let M be such an extension, of k by 61, 
say. To prove the lemma it will suffice to show that H1 (G, M) = 0. In the 
notation of the preceding discussion and of Lemma 1, we choose L1 = C(x) g 

SL(2,4) x (x), Lz = C(z)' and Lo = ( s t ) .  From characters we can see that 
6(") = 0, which implies that H1(L2,61) = 0, from which it follows (in the 
notation of Lemma 1) that dZ = do = 1 and also that dl = 0, as M G  = 0. We 
also obtain H1 (Lz, M )  = 0 from the long exact sequence. The only remaining 
hypothesis to be checked is that H1(LI, M) = H1(Ll/(x), M ( " ) )  = 0. By 
Lemma 2(a), 61') Vl , a simple 2-dimensional module for Ll / (x) 2 SL(2,4). 
Since dl = 0 the k(Ll/(x))-module M(') must be a nonsplit extension of k 
by Vl. Now it is a fact about SL(2,4) that H1(Ll /(x),  Vl) 9 k (see [2] or [14, 
p. 1831) and it follows that H1(Ll/(a), M ( " ) )  = 0. 
(b) We may consider just 141. We take L1 = C(x), L2 = C(xt) and Lo = S. 
By Lemma 2(b), we see that dl = dz = 1 and do = 2, so the condition on 
fixed points holds. It suffices to check hypothesis (ii) of Lemma 1 for L1, 
since x and x' are conjugate in G. We have, using Lemma 2(b), 
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4522 SIN 

The last group is easily seen to be zero using H1(SL(2,4), Vl) r k and 
H1(SL(2, 4) )  k) = 0. Therfore Lemma 1 applies and (b)  is proved. 
( c )  The composition factors of 61 8 6 1  are k (twice), 141 (twice) and 62. From 
the natural exact sequences 

we see (for example by self-duality) that A' (61) 1 k@ 141. By (b),  we thus ob- 
tain H1(G, A2(61)) = 0. It will therefore be enough to  show H1(G,S2(61)) = 
0. Let E be the preimage in S2(61) of k 5 ~ ' ( 6 ~ )  under the map in the 
second sequence of (1). Since S 2 ( 6 1 ) / ~  1 141, we are reduced by (b) to 
showing H1(G,E)  = 0. Now E is an extension of k by 62, so the result 
will follow from (a)  if we can show that  the extension does not split. In our 
situation this is equivalent to ( s ' ( 6 1 ) ) ~  = 0. This means we must show that 
G does not preserve any nonzero quadratic form on 61. Such a form would 
he nondegenerate since 61 is simple, so we would obtain an  embedding of G 
into SO(6, k ) ,  which is impossible as the latter is isomorphic (as an abstract 
group) to SL(4,  k) and G has no faithful 4-dimensional representation. This 
completes the proof. 

2.3. To make further use of 2.2, Lemma 1 we need to have more detailed 
knowledge of certain modules. 

LEMMA 1. We have the following module structures where each row is a 
socle layer. 

(a) 

PROOF: (a) A partial description of the structure of 61 @61 has already been 
given in the proof of 2.2, Lemma 4(c). To complete the proof of (a), it will be 
sufficient to show that  the subquotient M of 61 8 6 1  obtained by omitting the 
top and bottom trivial composition factors is uniserial (with factors 141, 62, 
141). Inside G is a subgroup L SL(3,2) (generated by the root subgroups 
in G2(2) corresponding to long roots, so L lies inside a maximal subgroup 
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HALL-JANKO GROUP 4523 

of G isomorphic to Gz(2)'). A direct calculation shows that 6 1 ~  Z V $ V*, 
where V is the natural module for L. Since ~ ~ ( 6 1 )  E k $141, we have 

where W is the simple 8-dimensional kL-module isomorphic to the space of 
3 x 3 matrices of trace zero. Thus, both 61 and 141 are semisimple for L and 
it follows that if the module M were not uniserial, then its restriction to L 
would have socle length 2. However, we have (61@16~),~ S (V@V*)@(V$V*), 
and it is easily seen that the direct summand V@V of this module is uniserial 
with factors V*, V, V*. Thus, MIL does not have socle length 2 and (a) is 
proved. 
(b) The composition factors are easily checked. Also, 64] splits off as a direct 
summand since it belongs to a different block from the other factors. Let U 
be the complementary summand. We have 

so the only simple submodule of U must be 6]. By self-duality, every simple 
quotient is also isomorphic to 61. It follows that U has a simple head and 
a simple socle, both isomorphic to 61. Then U' := rad U/ soc U is self-dual 
with composition factors k (twice) and 62. If U' were not uniserial it would 
have to be semisimple and then U would have k @ k in its second socle layer, 
contradicting H1(G, 61) r k (2.2, Lemma 4(a)). 

REMARK. From the natural split surjection 61 8 ~ ' ( 6 1 )  -+ A3(61), it is im- 
mediate that the module U in (b) is isomorphic to ~ ~ ( 6 1 ) .  Since this module 
will reappear often we reserve the notation U for it. 

We can now establish the triviality of I-cohomology in many cases. 

LEMMA 2. 

(a) H1 (G, U) = 0. 
(b) H1 (G, 61 8 141) = 0. 
(c) Let M be a nonsplit extension of k by 61 (unique up to isomorphism 

by 2.2, Lemma 4(a)). Then Ext&(61, M)  = 0. In particular there 
exists no uniserial kG-module with factors 61, k, 61. 

(d) Ext&(6,, U) = 0. 
(e) ~x t&(61 ,84)  = 0. 
(f) Ext&(141,36) = 0. 
(g) ~xt&(84 ,84)  = 0. 
(h) Ext&(36,36) = 0. 
(i) ~xtL(141,  141) = 0. 

PROOF: (a) From characters, we see that u(") = u(~") and that this is 
a 2-dimensional subspace of the 8-dimensional space u('). We will apply 
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2.2, Lemma 1 with L1 = C(x)  E SL(2,4) x (x), L2 = C(Z)' ,  which is a 
central extension of Ag by ( z ) ,  and Lo = (xz). Since As has no nontrivial 2- 
dimensional modules over k, C(Z) '  must act trivially on u('), so do = d2 and 
hypothesis (i) of 2.2, Lemma 1 is satisfied. The triviality of the Lz-action on 
u(') also yields H1(L2, U )  = 0. It remains to show H1(Ll,  U) = 0. We shall 
prove the stronger statement that  H1 (L1, 61 8141) H1(L1 /(I), (61 @ 1 4 ~ ) ( ~ ) )  
is zero. A straightforward computation using 2.2, Lemma 2 shows that 

Now Vl @ X E Vl @ V2 @ V2 % V12 @ Vz and VIP is an  injective module for 
L1 / (2) % SL(2,4), so all summands are injective and the result follows. 
(b) This follows from (a)  and Lemma l (b) ,  since 641 is not in the principal 
block. 
(c) We shall apply 2.2, Lemma 1 to the module 61@M. We choose L1 = C(x) ,  
Lz  = C(xl) ,  Lo = S. First, it is easy to check that  M S  k.  We claim that 
M L 1  = 0. If not, we would have IdL' = MS, but then the same would 
hold with Lz in place of L1 as they are conjugate and both contain S. This 
would imply M G  f 0, contrary to  the definition of M .  From the claim it 
now follows using 2.2, Lemma 2(a) that 

where Y is a nonsplit extension of k by Vl. Using this and 2.2 Lemma 2(a) 
again one calculates that dl = dimk(61 @ M )  L1 = dimk HornL, (61, M )  = 3. 
Hence d2 = 3 as well. Character computations show do = 6, so hypothesis (i) 
holds. By conjugacy of L1 and L2 it suffices to check (ii) for L1, namely that 
H1(L1, 61 @ M )  vanishes. By the above description of MiL ,  and 2.2, Lemma 

2(a)1 

This reduces us to facts about k(SL(2,4)), which are easily read off from the 
known structure of its projective modules (see [2] or [14, p. 1831). 
(dl First we show ~ x t L ( 6 1 ,  U) = 0. From Lemma l ( b )  we see that U has 
an  ascending filtration with factors M ,  62, M * ,  with M as in (c). By (c) 
and 2.2, Lemma 3(a), we are left to show that  ~ x t k ( 6 1 ,  M * )  = 0, but this 
follows from 2.2, Lemma 4(a), using the long exact sequence associated to 
O + k - + M * - + 6 1  + O .  
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To show E X ~ & ( ~ ~ , U )  = 0, we filter U by factors 61, U', 61, where U' 
is uniserial with factors k, 62, k. By 2.2, Lemma 3(a), it suffices to show 
~ x t & ( 6 ~ ,  U') = 0. Suppose we have an extension 0 -+ U' -+ A -+ 62 -+ 0. 
Since HomG(62, U') = 0, the sequence splits if and only if Hom~(62 ,  A) # 0, 
so we shall aim to show the latter. First we see that A cannot be uniserial, as 
this would violate the last statement of ( c )  (with 1 replaced by 2). Therefore 
there is a nonzero kG map A -+ k. The kernel has 2 composition factors 61 
and only one k, so we are done by 2.2, Lemma 3(a). 
(e) We have 

using Lemma l(b)  for the third isomorphism and (d) for the vanishing. 
(f) This is immediate from (e) since E ~ t & ( 6 ~ ,  62 @I 141) Z ~ x t & ( 1 4 ~ ,  61 @ 62). 
(g) We have by Lemma l(b) ,  

where U1 = U and U2 is its Galois conjugate. By considering blocks, we 
see that the last group is isomorphic to Extk(641, 642) $ Ext&(ul,  U2). The 
first summand is zero since 641 @ 642, being the restriction of the Steinberg 
module for G2(4), is injective. and the second summand can be seen to be 
zero using the long exact sequence in conjunction with (a) and (d).  
(h) This follows from (g) and 

(i) Dualizing the exact sequences in the proof of 2.2, Lemma 4(c) and making 
use of the self-duality of some modules, we have 

The structure of all the modules occurring in these sequences can be read off 
from Lemma l(a) .  We claim that Extk(14~,  S2(61)*) k. Since ~ ' ( 6 1 )  
141 $ k (proof of 2.2 Lemma 4(c)) and ~ x t ~ ( 1 4 ~ , 6 1  8 61) 2 Ext&(61,61 @ 
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141) = 0, by (d) and Lemma l (b ) ,  our claim follows from long exact se- 
quence for ExtG(l41,  -) applied to the first sequence in (1). Now we apply 
ExtG(l41, -) to the second sequence in ( I ) ,  resulting in 

Using the structure of 61 @6i again, we see that the unique nonsplit extension 
of by S2(6,)* established by the claim can be realized as the kernel Ii 
of any nonzero kG-map 61 @ 61 -+ k. One also sees from the structure that 
the quotient of Ii by ~ ' ( 6 1 )  is a nonsplit extension of 141 by 62. This shows 
that the last map in (2) is not zero, hence injective by the claim. Thus, 
Extk(141, ~ 7 6 1 ) )  1 ExtL(141, k $141) = 0. 

2.4. By making use of group automorphisms and various natural identities 
involving tensor products, it is not difficult to check that  the results of the last 
section leave only the following extensions of simple modules to be computed: 
(i) f x t & ( 1 4 ~ ,  62) E H1 (G, 84), (ii) ExtL(61 , 366, (iii) fxtL(141, 84) and (iv) 
~ x t L ( 3 6 , 8 4 ) .  

From 2.1 we see 

so (ii) and (iii) have the same dimension e. Let d be the dimension of (i). 
These will turn out to be equal; we prove the easier inequality now and the 
reverse only after we have found e. 

PROOF: The first inequality follows from 2.3, Lemma l (a) .  By definition of dl  
there is a kG-module E with socle isomorphic to 62 and E l  soc E isomorphic 
to the direct sum of d copies of 141. Tensoring with 61, we obtain the short 
exact sequence 

0 + 36 -+ E @ 61 t (141 @ 611d -+ 0. 

We now apply H o m ~ ( 6 1 ,  -) and consider the resulting long exact sequence. 
We have HomG(61, E 8 6 )  1 HomG(G1 @61, E ) ,  which can be seen to be zero 
from the structure of 6i @ 61 (2.3, Lemma l (a) ) .  By 2.3, Lemma l ( b ) ,  we 
have dimk H o m ~ ( 6 1 ,  (141 8 61)d) = d. Then the long exact sequence yields 
d 5 dimk ~ x t & ( 6 1 ,  36) = e. 

We need to  know some more about structure of some small modules. 

LEMMA 2. We have the following module structures where the rows going 
from top to bottom in each summand are the radical layers. 
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(a) 

Moreover, the quotient by the unique copy of 84 in the socle does not 
have a trivial submodule. Neither does the quotient by the copy of 
62. 

(b) 62 @ 62 @ 141 z 62 €4 142 €4 61 (642 €3 61) $ (U2 €4 61): 

In particular there is a unique quotient which is a nonsplit extension 
of 36 by 6i. 

(c) We have 

Moreover, (641 8 142) @ 642 F 6i €4 160. 

PROOF: (a) Since we already know the structure of 6i 8 6i from 2.3, Lemma 
1, we see that 62€4(61@16~) has a filtration with factors 62$84 2 62@(k$141), 
62 @ 62, 62 $84. The structure of the middle factor is known. Let M be the 
unique subquotient of 61 €4 6i,  obtained by omitting top and bottom trivial 
factors, which is uniserial with series 141, 62, 141 and let N be the uniserial 
subquotient with series k, 62, k. Since we know the structure of 62 €3 62 a11 
statements will follow if we show that 62 @ M has no submodules 142 or k 
(hence also no such quotients by self-duality) and that 62 €4 N has no trivial 
submodule. We have Hom~(142,  62 @ M) Homc(l4p 8 62, M) = 0, from 
2.3, Lemma l (b)  and it is clear that Homc(k, 62 @ M) HomG(62, M) = 0 
and HomG(k,62 @ N)  Hom~(62,  N) = 0. 
(b) The isomorphisms in the first line follow from 6i €4 142 84 62 @ 14] 
and 2.3, Lemma l(b).  Using again the structure of 62 @ 62, we see that 
(62 €3 62) €4 141 has a filtration with factors 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f A
be

rd
ee

n]
 A

t: 
16

:5
0 

15
 J

ul
y 

20
07

 

4528 SIN 

We recall from 2.1 and 2.3, Lemma l ( b )  that 141 @ 142 r 160 $ 36 and 
1 4 ~  8 61 r 641 CB U .  

Let us first consider the summand outside the principal block. The above 
shows it has a filtration with factors 160, 641, 160. Since H 0 m ~ ( 6 4 ~ , 6 2  @ 
62 @ 141) 2 Homc(641 @ 62, 84) = 0,  just from characters, we see that this 
summand has the claimed structure. It is easy to see from characters that 
this summand of 62 @ 62 63 141 corresponds under the isomorphism in the 
statement to 642 @ 61. 

The component in the principal block has a filtration with factors 141 f& 
36, U ,  141 $36. From the structure of U and Homc(62 @ 6? @ 141, 61 ) 
Homc(84,36) = 0, we see that the top two radical layers of 62 @ 62 8 141 
are 141 $36 and 61 respectively. The last statement of (b) now follows from 
this, using ~x tb(141 ,61)  = 0 (2.3, Lemma 2(b)). With the structure of U 
known, the rest of the structure (the position of the second 141 in the radical 
series) can be easily deduced from 2.2, Lemma 4(b), 2.3, Lemma 2(i) and 
Homc(62 @ 62 8 141, 14* ) Z Homc(84, 84) k .  This proves (b). 
(c). The main statement is immediate from the isomorphisms (2.1 and 2.3, 
Lemma l (b ) )  141 8142 Z 160@36 and 61 2 641 $U. The last statement 
will bc established by proving the isomorphism U8142 E (61@36)$642 of the 
complementary summands. First, these modules have the same composition 
factors. Next, we have by Lemma l (b ) ,  

since Homc(641 8 142,62) = 0. Thus, 61 63 141 @ has a unique inde- 
composable summand having 62 as a simple quotient and, furthermore, that 
summand is a summand of U @ 142. Since 61 8 36 is such a summand of 
61 @ 141 @ 142, by (a) and the main part of (c). we are done. 

The proof of the key fact ~x tL(36 ,84)  = 0 will make use of several tech- 
niques which we have not discussed yet. First, the fact that various simple 
modules are restrictions of simple modules for Gz(k) will allow us to to apply 
some fundamental results about induced modules and good filtrations from 
the representation theory of algebraic groups. These theorems can be found 
in [Il l .  Data such as weights of Weyl modules, composition multiplicities in 
Weyl modules or tensor products of simple modules are straightforward to 
compute. They can also be found in 151 (for weights), [17] and [6]. Secondly, 
we need the submodule structure of projective modules in the non-principal 
block. This has been given in [15]. 

(a) The radical series the projective covers of modules in the non-principal 
block are as follows (P(642) omitted): 
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(b) P(641) @ 142 g P(36) $ P(84) $ (P(160))3. 
(c) P(642) €3 142 P(62) $ ( ~ ( 6 4 2 ) ) ~  $ (P (160 ) )~  
(d) P(160) @ 142 S P(14, $ (P(36))2 $ (P(160))~ .  

PROOF: For (a) we refer to  [15]. Parts (b), (c) and (d) are just character 
calculations. 

PROOF: From the filtration of P := P(641): 

rad2 P c r a d P  C P 

we have an induced filtration of P@ 142. We now consider G-homomorphisms 
from the factors to 36. Since rad2 P is a quotient of P(642), Lemma 3(c) 
shows that 

~ o m ~ ( r a d ~  P €3 142, 36) = 0. (1) 

Next since rad P/ rad2 P Z 160, we have 

by Lemma 2(b). Finally, 

again by Lemma 2(b). We also need 

using Lemma 2(b). 
Now HomG(P @ 142, 36) E k ,  by Lemma 3(b). Denote by N the maximal 

submodule of P@142 which is the kernel of a nonzero G-homomorphism to 84. 
Then by Lemma 3(b), we see that dimk ~x tk (84 ,36 )  = dimk HomG(N, 36) - 
1. By (4) and Lemma 3(b), we see that r a d P  @ 142 C N and that the image 
of N in the top factor ( P  @ 142)/((rad P )  @ 142) 641 8 142 is the kernel A' 
of a nonzero G-homomorphism 641 @ 142 + 84. Now from ( I ) ,  (2) and (3) 
it follows that 
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Now Hom~(I i / rad(641 8 142),36) = 0 by (3), so we may replace Ii by 
rad(641 C3 142) in ( 5 ) .  Then by Lemma 2(c), this may be replaced in turn by 
rad(618 160). Since 6i 8 160 is a quotient of 6* @ (62 @641), by Lemma 2(b), 
and Homc(61 C3 62 8 641,36) H o m ~ ( 6 2  8 641, 61 @ 36) = 0, by Lemma 2, 
we arrive at the inequality 

dimk ~ x t k ( 8 4 , 3 6 )  5 dimk Homc(rad(62 C3 61 C3 6&), 36). (6) 

Our eventual aim is to show that the right hand side of (6) is zero. Before we 
can do this, we need to recall some ideas from the representation theory of 
the algebraic group G = Gz(k) (see [6 11,531). The simple rational modules 
L(X) are ~aramentrized by non-negative integral combinations X of the two 
fundamental dominant weights wl  and wz. We denote by V(X) the Weyl 
module, with simple quotient L(X) and by HO(X) the induced module with 
socle L(X). In the notation of [6], we have that the restrictions to G of L(wl), 
L(wz) and L(wl + wz) are respectively 6i ,  141 and 64,. The Weyl module 
V(wl) has radical k ,  while V(wz) and V(wl +wz) are both simple, hence also 
isomorphic to the corresponding induced modules. 

The module 6z @ (61 @ 641) is the restriction of the G-module V = 
L(2wl)@ (L(wl) @ L(ul + wz)). Until further notice, all module structures are 
for G unless stated otherwise. A fundamental result on algebraic group rep- 
resentations [ l l ,  11, 4.191 states that the tensor product of two Weyl modules 
has an ascending filtration by Weyl modules, such that the highest weights 
of the factors appear in descending order with respect to the usual ordering 
on weights. Moreover, the multiplicities of the factors can be calculated from 
weight data. For V(w1) @ Tr(wl + wp), the factors (in ascending order) are: 
V ( 2 ~ 1  + WZ), v ( 2 ~ 2 ) ,  V ( 3 ~ 1 ) ,  V(WI + w z ) ,  V ( 2 ~ 1 ) ,  V(w2). 

Since V(wl + wz ) = HO(wl + ~2 ) and M7eyl modules can extend induced 
modules only trivially [ l l ,  11, 4.131 we see that V(wl) 8 V(wl + w2) has a 
simple quotient L(wl + wz). That it also has such a simple submodule is 
clear from the structure of V(w1). But L(wl + w2) occurs only once as a 
composition factor in V(w1) 8 V(w1 + w2), SO it must be a direct summand. 
It now follows that V = L(w1) @ L(w1 + wz) has a filtration with the other 
factors as subquotients: 

Since V is self-dual, there is also the dual filtration A1 c . . . c A5 = V by 
induced modules HO(X) (ascending, with the weights in the reverse order to  

(7) ) .  
The composition factors of each Weyl module are easy to compute. By 

Considering these two filtrations and the structures of their factors, we shall 
show that V has a filtration 7 with the following properties: 
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(i) Every F-factor with L(w1) as a composition factor is a nonsplit ex- 
tension of either k or L(3wl) by L(wl) 

(ii) The unique F-factor with L(2wl + wz) as a composition factor is a 
nonsplit extension of L(2w2) by L(2wl + wz). 

By the calculation of G-extensions [6], and a universal property of Weyl 
modules, we find that 

so Wl = radG Vl has no quotients L(wl). There is a unique G-homomorphism 
V -+ A5/A4 Z HO (2w1 + w2) and this factors through V/Wl, by the unique- 
ness of L(2wl + w2) as a composition factor in V. Inside H0(2wl + w2) is 
a nonsplit extension D of L(2wz) by L(2wl + wz), from (8). Let VZ be the 
image of V2 in V/Wl. Then by the uniqueness of the composition factor 
L(2w2) in V/Wl, one sees that V2 maps onto D. It follows that radG 7 2  = - 
Vl @p2 Z L(2wl +wz) @radG V(2wz). Since HomG(radG V(2wz), L(wl)) E 

~ x t & ( ~ ( 2 w z ) ,  L(w1)) = 0,  by [6], we see that if W2 is the preimage of mz in 
V, then we have a filtration Wl C W2 c V2 C V3 C V4 C V5 = V in which no 
factor has L(wl) as a homomorphic image and with the unique composition 
factor L(2wl + w2) appearing in the factor Vz/W2 as required in (ii). This 
filtration can now be further refined to satisfy (i), using the fact that the 
only composition factors of V which extend L(wl) as G-modules are k and 
L(3wl). Thus, the filtration 3 can be constructed. 

Then 3 is of course also a filtration of G-modules. We claim that both 
(i) and (ii) remain valid for G, namely, that the extensions do not split 
on restriction. Since the groups of G-extensions between simple modules 
are at most one-dimensional, it suffices to find nonsplit G-extensions of these 
modules which do not split on restriction. It is easy to see that L(wl)@ L(w2) 
has the same structure as its restriction 61 @ 141, given in 2.3, Lemma l(b), so 
we have the first extension of (i). The second extension in (i) can be obtained 
by twisting the dual M* of the first by Frobenius and tensoring with L(wl), 
for HomG(M @ 61,61) 2 Homc(M, 61 @ 61) = 0, by 2.3 Lemma l(a) .  The 
extension in (ii) represents a nonzero class in ~ x t & ( ~ ( 2 w ~ ) ,  L(2wl)@L(u2)) 
Ext&(~(wz) ,  L(2wl) @ L(2wz)), so it suffices to find a class in the latter 
which restricts to a nonzero class in ~ x t & ( L ( w ~ ) , L ( % l )  @ L(2wz)). The 
module L(2wl) @I L(2wz) has a simple G-submodule L(2wl) and the map 
Ex t&(~(wz) ,  ~ ( 2 ~ 1 ) )  --+ Ext&(~(wz) ,  ~ ( 2 ~ 1 )  @ L(2wz)) is injective by 2.3, 
Lemma 1 (b), so it is enough to find a class in Ext&(~(wZ),  ~ ( 2 w ~ ) )  with 
nonzero restriction to  G. By 2.3, Lemma l(a),  such a nonsplit extension 
occurs as a subquotient of L(w1) @I L(w1). This proves the claim. 

From now on we will consider only G-modules again. 
First we observe that all G-composition factors 6I or 84 of 61 @ 64 are re- 

strictions of G-composition factors L(w1) and L(2wl +wz) of L(wl) @ L(w1 + 
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wz), and that 61 and 84 are the only composition factors with the prop- 
erty that the tensor product with 62 has 36 as a composition factor. Next, 
calculations of Home-spaces shows that 84 is the only simple module in 
the head of the principal block summand of @ 61 @ 641, and we have 
Homc(62 @ 61 @ 641,84) Homc(6z @ 6&, 61 8 61 @ 142) g k2, by Lemma 
2(b). Thus (62 @ 61 €3 641 )/ rad 62 @ 61 @ 641 1 84 $84. Combining this infor- 
mation we see that the right hand side of (6) will be shown to be zero once we 
show that for each of the three special 3-factors E in (i) and (ii), that E @ 62 
does not have a homomorphic image which is 36 or a nonsplit extension of 84 
by 36. First, let E be a nonsplit extension of k by 61 or a nonsplit extension 
of 142 by 84. Then Homc(E@62,36) r Homc(E, (62 @62)@61) = 0, Lemma 
2(a). Also, Homc(E €3 62,84) 2 Homc(E, 62 @ 62 @ 141) = 0, by Lemma 
2(b). 

Finally, let E be a nonsplit extension of 36 by 6i .  As we have mentioned 
before, we can write E as M @ 61, where M is a nonsplit extension of 62 by 
k. So E @ 62 = ( M  €3 62) @ 61. Since Hornc(k, M @ 62) Homc(M, 62) = 0, 
we see that M @ 62 has a submodule Y which is a nonsplit extension of k by 
62. Then Y 8 61 is a nonsplit extension of 61 by 36 and this submodule of 
M @ 62 @ 61 2 E @ 62 contains the unique composition factor 36. Therefore 
the conditions are checked for all three special types of 3-factors and the 
Lemma is proved. 

(a) ( e  =) dimr, Ext&(36,6]) = 1. 
(b)  (d =) dim& H' (G,  84) = 1. 

PROOF: By 2.3, Lemma 2(a), we have 0 # Ext&(141,62) F H1(G,84), so (b) 
now follows from (a). 

Lemma 2(b) shows that Ext&(36,61) # 0, so we shall aim to prove that 
if E is any nonsplit extension of 36 by 61, then it is a homomorphic image 
of 62 @ 62 @ 141, for then Lemma 2(b) will imply the uniqueness of E up 
to isomorphism. We have H o m ~ ( 6 z  @ 62 @ 14i ,E)  2 HomG(84,62 @ E ) .  
Now 62 @ E has a descending filtration with factors 62 @ 36 E €i2 @ 62 @ 6, ,  
62 8 6 1  = 36. By Lemma 2(a), the first factor has a submodule isomorphic to 
84, so by Lemma 4, we have the conclusion HomG(84, 62 @ E )  # 0. Finally we 
observe that any nonzero map in H o m ~ ( 6 2  @62 €3 141, E )  must be surjective, 
since HomG(62 @62@141, 61) Hom~(84 ,36)  = 0. This completes the proof. 

REMARK. In the proof of Lemma 4, we saw that the nonzero class in (a) can 
be realized by the tensor product of 62 with the unique nonsplit extension 
of 61 by k; the latter is the restriction of the corresponding Weyl module of 
G2 (k). Thus, this nonsplit extension is the restriction of one for the algebraic 
group. It is not hard to  show that all of the nonsplit extensions in the 
principal block can be obtained similarly from extensions between simple 
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modules for the algebraic group having 4-restricted highest weights, through 
the processes of restriction and twisting by Gal(F4/F2). 

This completes the calculation of simple module extensions in characteris- 
tic 2. 

In 53 we assume k to be an algebraically closed field of characteristic 3. 
Our notation follows that of [9] ,  where decomposition matrices, Brauer trees 
and other character-theoretic information may be found. Note that there 
are some differences in labelling of ordinary and 3-modular characters in the 
tables in [9], [12]/[13] and [4]/[16] (three distinct labellings). The principal 
block has eight simple modules, as does the unique non-principal block of 
maximal defect of g.  Besides these, there are three blocks of defect zero, 
with simple modules 18g1, 18g2 and 216, and three blocks of 1. 

We label the simple modules by their dimension. The modules with suffix 
"1" are conjugate to those with "2" by the outer automorphism. 

The simple modules in the principal block are k, 131, U 2 ,  211, 212, 571, 
572 and 133. All these are self-dual. In the other block of maximal defect we 
have 61, 62, 14, 361, 362, 501, 502 and 236. All of these are self-dual except 
for the 36-dimensional ones. 

We will give details of the calculations only for the principal block. The 
same method yields the extensions in the other block of maximal defect; most 
of them result from a straightforward application of the method and then 
there.are a few more stubborn cases ((236,236), (236,501) and (501,502)) 
where more complicated arguments (but still of the same kind) are needed. 

Before going into details, we sketch the method we shall use to compute 
the extensions. The structures of the projective indecomposable modules in 
the blocks of defect 1 are easily found from the Brauer trees (see [7, VII.121). 
By tensoring the projective indecomposable modules in the cyclic blocks with 
simple modules we obtain a projective module on which we have filtrations 
induced from any filtration projective in the cyclic block. Moreover, the 
decomposition of the tensor product into indecomposable summands is a 
purely character-theoretic question whose solution can be read off from the 
character table and decomposition matrix. For example, suppose P and Q 
are uniserial projective indecomposable modules with P the projective cover 
of rad Q, a common situation in blocks of defect 1. Then if S is any simple 
module, we can routinely find the decompositions P @  S and Q @ S into their 
indecomposable summands. From this, we derive information about the head 
of rad Q @ S ,  which must be isomorphic to a submodule of the head of P @ S, 
and hence we obtain information about the indecomposable summands of 
Q@ S.  In practice, if S is small (we shall use modules of dimensions 6 and 13 
in our calculations), their may be very few summands of Q @ S  in the block of 
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interest and many extensions of simple modules can be deduced immediately 
using this information, in conjunction with the Cartan matrix and knowledge 
of the composition factors of tensor products of simple modules. 

3.1 The principal 3-block. In this subsection, we compute the extensions 
between simple modules in the principal block. Let us first dispose of some 
trivial cases: 

The first is obvious, the second is because the corresponding Cartan number 
is zero and the third is because 211 @ 212 has no component in the principal 
block. 

The next three lemmas simply collect together some relevant character- 
theoretic information. The computations involved are routine. In order to 
avoid irrelevant information, we will usually write "Zen to mean isomorphism 
of principal block components. 

LEMMA 1. We have the following uniserial projective modules in blocks of 
defect 1, with composition series as given: 

(a) P(36) : 36,9O, 36; P(90) : 90,36,9O. 
(b)  P(1261) : 1261, 1262, 126]; P(1262) : 1 2 6 ~ ,  1261,1262. 

L E M M A  2. 

(a) P(1261) 63 61 g o  P(212) 83 P(571) 
(b) P(1262) 63 61 g o  P(133). 
( c )  P(90) @ 131 S o  P(131).  
(d) P(36) 63 131 g o  P(132). 

LEMMA 3. We have the following composition factors, with multiplicities 
written in the exponents. 

(a) 126, @61 {1312,2122,5712,133). 
(b) 1262 @ 61 g o  {k3, 1312, 1323,21i2,212,572, 1334). 
( c )  90 @ 131 zo (k2, 1314, 132,212, 5712, 133'). 
(d) 36 GJ ro {k2, i 3 1 , ~ 3 2 \ 2 i 1 , 5 7 2 2 ,  133~) .  

PROPOSITION 4. The following hold: 

(a) Extk(212, k) = 0. 

(b) Extk(212, 132) = 0. 

(c) E ~ t & ( 5 7 ~ ,  k) = 0. 

(d) E ~ t & ( 5 7 1 , 1 3 ~ )  = 0. 

(e) ~ x t k ( 5 7 1 ,  572) = 0. 

(f) ~ x t & ( l 3 ~ ,  131) = 0. 
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PROOF: This uses only the parts (a) and (b) of Lemmas 2 and 3. Note first 
that Lemma 2(b) implies that rad P(l261) 8 6] has a simple head isomorphic 
to 133. It follows that for any simple module S other than 133, we have 

~x th (212  $571, S) E Hom2(rad(1261 @ 61), S). (2) 

Parts (a)-(e) now follow from the fact that none of the corresponding simple 
modules S is a composition factor of rad(1261 8 61), and (f) from (a), (c) 
and the isomorphism 

which is easily verified (using self-duality) from character data. 

To go further, we need to look at some small modules. In the following 
lemma the socle series are described. 

LEMMA 5 .  

(a) 36 E 6i 8 62. 
(b) 1261 Z 8 212. 
(c) 

k 
61 @ 61 131 @ 211 

k 
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PROOF: The composition factors are obtained from the character data, so 
only the module structure needs proof. There is nothing to prove in (a) and 
(b). Parts (c) and (d) follow from the decomposition of the tensor square 
into the symmetric and alternating squares and the fact that the tensor 
square has one-dimensional fixed points. For (e), we calculate first that 
212@131 {U12,  57,'; 133). Since [131@131 : 2121 = 0 andsince 133 cannot 
be a direct summand as its dimension is not divisible by 3 [3, Prop. 2.21, (e) is 
proved. That the module in (f) must have simple head and socle is clear from 
the fact that it is a tensor factor of 36 €3 131, which in turn is a quotient of 
P(132), By Lemma 2(d), so (f) holds by self-duality. It then follows from (f) 
and Lemma 2(d) that 6 2 8  14 has simple head and socle 132 so, by self-duality, 
(g) holds. It is easily checked that 16' 8 13, : 501] = 0 = [62 A €3 211 : 501) and 
(h) follows from this. Similar considerations of spaces of kG-homomorphisms 
establish (i). 

PROPOSITION 6. 

(a) Extk(571, 57, ) = 0. 

(b) ~ x t k ( 2 1 2 ,  571) = 0. 

(c) ~ x t k ( l 3 2 ,  k )  Z k .  

(d) ~ x t k ( 1 3 2 , 5 7 ~ )  k. 
(e) Ext;(132,211) = 0. 

(f) Extk( ls2,  133) g k. 

(g) Extk(133,211) S k .  

(h) ~xtk(133,572)  = 0. 

(i) ~ x t & ( l 3 ~ ,  132) = 0. 

(j) Extk(133, k) = 0. 

(k) Ext;(133,133) = 0. 

(1) Extk(211,211) = 0. 

PROOF: To prove (a) and (b), we return to (2) in the proof of Proposition 
4. By self-duality we have ~ o c ( l 2 6 ~  @J 6,) 2 212 $ 571. We claim that every 
map in the right hand side of (2) has the simple submodule 571 in its kernel. 
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By Lemma 5 (b) we have 1261 8 6, S 212 8 (61 8 61). The only composition 
factor of 61 8 61 whose tensor product with 212 has 571 as a composition 
factor is 131. The claim now follows from Lemma 5(e). Now (a) and (b) 
follow from the claim and (2), using Lemma 3. 

Next we consider the module P(132), which by Lemma 2 (d) has a filtration 
with factors equal to the principal block parts of 3 6 8  131 and rad P(36) 8 131 
respectively. Since the latter has simple head U1,  by Lemma 2 (c), we see 
that for any simple module S $ 131, we have 

~x tb (132 ,  S) E Hom~(rad(36 @ 131), S). (3) 

Now 36 @ 131 2 62 @ (61 @ 131) has, by Lemma 5 (f), a filtration with 
factors 62 8 14, 62 @ 501, 62 @ 14. The structures of these factors are given 
in (g) and (h) of that lemma and (c), (d) (e) and (f) now follow from this 
information, using (3). We can now obtain (1) from Lemma 5(d) and existing 
results (Proposition 4 (a) and part ( c )  of this proposition). Now we examine 
P(133) 2 0  P(1262 8 61). From its filtration induced by that of P(1262), we 
obtain for S $ 212, 571, 

~ x t k ( 1 3 3 ,  S )  2 Hom~(rad(l262 @ 61), S).  (4) 

By Lemma 5(b), we have 1262 @ 61 62 @ (211 @ 61) and by Lemma 5(i), 
this has a filtration with factors 62 8 so1, 62 @ (14 $ 62), 62 @ XI1. The 
structures of the factors are given in Lemma 5 (g) and (h). From this infor- 
mation, we can deduce (g) and (h) from (4). Next, we note that the isomor- 
phism (3) in the proof of Proposition 4 implies that H 0 m ~ ( 1 3 ~ ,  131 @ 5i1) % 

HomG(131 8 131,571) g k, so 131 @ 571 has a unique submodule isomorphic 

to 131. Since [I31 @ 571 : 1321 = 0, we obtain an embedding ~ x t b ( 1 3 ~ ,  131) 

into ~ x t ~ ( l 3 2 , 1 3 1  @ 571) ~x tb (132  @ 131,571). Since 131 @ 132 go 133, 
(i) follows from (h) and then (j) follows from (i). To prove (k) using (4), we 
need to examine 1262 @ 61 2 62 @ (61 @ 211) more closely. By Lemma 5 (i), 
the module 61 @ 211 has a uniserial submodule U with composition factors 
14, 501. and the quotient of rad(62 @ 61 @ 211) by 62 @ U has no nonzero 
homomorphisms to 133, so it is enough to prove 

We claim that U is a quotient of 61 @ 131. Assuming this, we obtain 

by Lemma 2(d), which proves (5). It remains to verify the claim. By Lemma 
5(f) and (i), any nonzero homomorphism from 61 @ 131 to 61 @ 21 maps onto 
U .  We compute: 
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The fact that this space is not zero follows from Lemma 5 (c) and (j), using 
Extk(k, 131) S k (part (c) of this proposition). 

Up to automorphisms and duality we have now computed all entries in 
Table 2. 

Our notation matches [Q], which is our main source for data concerning 
Brauer characters, decomposition numbers and products of characters. 

In $4 we assume k to be a n  algebraically closed field of characteristic 5. 

4.1. The simple kG-modules will be denoted by their dimensions. There are 
two simple modules of dimension 14 of which one is faithful; this we denote 
by f4. There are also two mutually dual simple modules of dimension 50, 
but these play no part in our discussion. 

The group G has five 5-blocks. There are three blocks of defect zero con- 
taining the simple modules 175, 225 and 300, a block of defect 1 with two 
simple modules 70 and 90, and the principal block, with Cartan matrix 

4.la) The principal 5-block of G. 

The projective indecomposable modules in the block of defect 1 have the 
following structures: 
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The group 6 has four further blocks containing faithful modules. Three, 
containing 501, 502 and 350 respectively, are of defect zero, while the fourth 
whose Cartan matrix is given below has maximal defect. 

4.lb) The non-principal5-block of of maximal defect. 

We now describe some tensor products of simple modules. An expression 
in braces indicates a module having the enclosed composition factors and 
multiplicities are indicated by an exponent. 

(a) 14 8 14 k $14 $21 $70 $90. 
(b) 14 8 21 14 $21 $189 $70. 
(c) 14 8 6 E 6 $ f4 $ 64. 
(d) 14 8 90 g {143, 21,85, 18g3) $ {702, go2} $225. 
(e) 14 8 70 Z {k, 143, 214,41, 85, 18g3) $70 @ 90. 
(f) 14 8 189 Z {14~,  21~,41 ' ,85~,  18Q7} $ 70 $90 $175 $ 225 $300. 
(g) 14C341 E85$189$300. 
(h) 21 8 21 g k $14 $21 $41 $ 85 $ 189 $90. 
(i) 21 C3 41 Z (14, 212, 412, 8S2, 18g2) $175. 
(j) 6 8 6  Z k $14@21. 

(k) 6 8 f4 Z 14 $70. 
(1) 6 8 56 g 21 $41 $85 $189. 

(m) 6 C3 64 E 14 $21 $70 $90. 
(n) 6 8 41 Z 56 $190. 
(0) 6 8 85 "= (6, 562, 190,202). 

(p) 6 8 70 2 (6, f42, 56 ,64~,  202). 
(q) 6 8 90 g {6,56, 642) $350. 
(r) f4  8 70 {64, 564, 643, 190) $350. 
(s) f 4 ~ 3  90 = {1+4~,56,643,2023) ~ ~ 3 5 0 .  
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PROOF: These results all follow from character computations, block decom- 
position and self-duality. 

Next, we consider tensor products of small projective modules with simple 
modules. Again, the proof is pure calculation with characters. 

LEMMA 2. 

(a) P(90) @ 14 r P(14) $ P(189) $ P(70) $ p ( 9 0 ) ~  $225. 
(b) P(70) @ 14 E P(14)  $ P(21) $ P(189) $ P(70) $ P(90)' $225. 
(c) P(90)  @ 6 E P(64)  $ 3502. 
(d) P(70) @ 6 " ~ ( f 4 )  $ P(64) $ 350. 
(e) P(90) @ f4  2 ~ ( f 4 )  $ P(64) $ P(202) $ 3503. 
(f) P(70) @ f4  Z P(6)  $ P(56) $ P(64) $ 3504. 
(g) P ( k )  @ 14 r P(14) $ P(70) $300. 
(h) P ( k )  @ 21 P(21)  $ P(85)  $ P(90) $175. 
(i) P ( k )  @ 6 a P(6) .  

From the above two lemmas, we can obtain information about the heads 
(maximal semisimple quotients) of certain tensor products which will ap- 
pear as subquotients in filtrations of projective modules in subsequent ~ x t '  
calculations. By self-duality, the socles are the same. 

LEMMA 3. 

(a) head(90 @ 14) Z 14 @ 189 $70 $90 @ 225 
(b) head(70 @ 14) F 14 $21  $189 $70 $90. 
(c) head(9O @ 6) S 64 $ 350. 
(d) head(70 @ 6) 2 f4  $64. 
(e) head(90 @ f4) E f4 $64 $202 $350. 
(f)  head(70 8 f4) 6 $56 $64. 

PROOF: Upper bounds on the multiplicities are given by the previous lemma 
since, for example, 90814  is a quotient of P(90)@ 14. The exact multiplicities 
are then easily found by elementary considerations of composition factors, 
self-duality, etc, using Lemma 1. We give the details for (a)  only. The 
occurence of 225 is clear from Lemma l (d) ,  that of 14 follows from Lemma 
l ( a )  and that of 189 from Lemma l ( f ) .  By Lemma l (e) ,  70 appears, so 
we need only determine the multiplicity of 90. If it appeared twice then 
90 $ 90 would be a direct summand of 90 @ 14. It would then follow from 
the structure of P(90) that P(90)  8 14 had a subquotient {905, 701, which 
contradicts what we know about P(90).  

REMARK. A general result [3, Prop. 2.21 states that  if the field characteristic 
divides the dimension of an  indecomposable module then it divides the di- 
mension of every direct summand of the tensor product of that  module with 
another. We shall use this here and on one later occasion. It has the following 
consequence: Let M be the component in a block of maximal defect of one 
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HALL-JANKO GROUP 454 1 

of the modules whose heads are given in Lemma 3. Then soc M C rad M. 
Here we could also have argued using relative projectivity, but not in our 
later application. 

4.2 Extensions. In several instances, where the Cartan number is zero or 
is a 2 on the leading diagonal, it is clear that there are only split extensions 
between the corresponding simple modules, so these entries in the table of 
extensions can be filled in immediately, and of course, ~ x t h ( k ,  k) = 0. 

In the first result the filtrations of P(90) @ 14 and P(70) @ 14 induced 
by certain filtrations of P(90) and P(70) will be used to calculate a number 
of Ext' groups between simple modules. Further extensions can then be 
computed from formal manipulations with the equations of Lemma I.  In the 
succeeding propositions we apply the same method to other tensor products 
of projective modules with simple modules. Nearly all entries in the tables 
of extensions for characteristic 5 will be found with little difficulty by this 
process. The rest require some extra arguments, but still based on the same 
ideas. Lemmas referred to by number are from 4.1. 

PROPOSITION 1. 

(a) Extk(l4, k) = 0. 

(b) Extk(189,41) = 0. 

(c) Extb(21,k) = k. 

(d) Exth(21,41) = k. 

(e) ~ x t k ( 1 4 , 1 4 )  = k. 
(f) Exth(l4,85) = 0. 

(g) Exth(189,85) = k. 

(h) Extk(21,85) = 0. 

(i) ~x tb (14 ,21 )  = k. 

(j) Exth(6,6) = k. 

(k) ~ x t b ( 6 ,  f4) = 0. 

(1) Extb(6,56) = k. 

(m) ~ x t b ( 6 , 6 4 )  = k. 

PROOF: We consider the filtration radP(9O) @ 14 C P(90) 8 14. Since 
rad P(90) is a quotient of P(70), it follows that radP(9O) @ 14 is a quo- 
tient of P(70) @ 14, whose head is given in Lemma 3. In particular, neither 
k nor 41 appears. By Lemma 2, we have 

where denotes isomorphism of parts in the principal block. Since we 
have composition multiplicities [90 @ 14 : k] = 0 and [90 @ 14 : 411 = 0, we 
see that k and 41 are not quotients of rad(P(9O) @ 14), proving (a) and (b). 
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Now consider the filtration rad P(7O) 8 14 c P(70)  @ 14. Since rad P(7O) 
is a quotient of P(70)  $ P(90),  it follows that  rad P(90)  @ 14 is a quotient of 
(P(70) @I 14) $ (P(90) 8 14), whose head is given in Lemma 3. In particular 
k and 41 do not appear. By Lemma 2, 

Since we already know Ext?-(14, G k $41) = 0 and Extk(189, k $41) = 0, from 
(a), (b) and the Cartan matrix, it follows that 

~ x t k ( 2 1 ,  k )  Z Homc(rad / soc(70 &3 14), k), (3) 

and similarly for 41. Now, 

rad / soc(70 @ 14) go {212, k, 41,14,189,85). 

We claim (c) and (d) hold. If not, then ExtL(21, k) = 0 and Extk(21,41) = 0, 
but then using self-duality, we see that rad / soc(708 14) has a quotient k@41, 
contrary to (3). 

Now (e) is immediate from Lemma l (a) .  
Let us return to the filtration of P(90) @ 14 at  the beginning. We know by 

Lemma 2(b) that 85 is not a quotient of rad P(90) @I 14 so we have by ( I ) ,  

It is clear from self-duality that 

rad / soc(9O @ 14) Go 14 $21  9 85 @ 189. (5) 

Thus, Ex tk ( l4  $ 189,85) % k. From (5), (1) and self-duality it follows that  
rad / soc(P(14) @ P(189)) has a unique subnlodule 85 and unique quotient 
85, with the submodule being in the kernel of a quotient map. Therefore 
by self-duality, the image by projection onto exactly one of rad / socP(14) or 
rad / socP(189) has the same property. Since IP(14) : 851 = 1, it must be the 
latter. This proves (f)  and (g). 

Next, returning to the filtration of P(70) @ 14, we see from (2) and Lemma 
2 (a) ,  (b) that ~ x t b ( 1 4  $ 21 $ 189,85) Homg(rad/soc(70 @ 14),85), so 
(g) and [rad / soc(70 8 14) : 851 = 1 imply (h). 

Parts (i)-(m) are easily derived from the identities in Lemma 1 and the 
parts already proved. 

Next we consider P ( k )  @ 14 and P ( k )  @ 21. 

PROPOSITION 2. 

(a) ~xt ; (k ,41)  = 0. 

(b) ~ x t k ( 6 , 1 9 0 )  = 0. 

(c) ~ x t k ( 2 1 , 2 1 )  = k. 
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(d) ExtB(14,189) = k.  
(e) Extk(21,189) = k.  

(f) Extk(189,189) = k. 

PROOF: If ExtL(k,41) # 0, then by Lemma 2(g), 14 extends nontrivially 
any simple quotient of 41 8 14 in the principal block. Therefore (a) follows 
from Lemma l(g) and Proposition l(f). For (b), we use parts (n) and (j) of 
Lemma 1 to obtain 

which gives a reduction to Proposition 1 and (a). 
(c) follows from Lemma l(h)  using (a) and Proposition 1. 
Lemma l(a) and (b) yield 

and now (d) follows from existing results. 
From Lemma 2(h), Proposition l(c) and Lemma l(h),  it follows that 

Ext$(21,189) # 0. Equation (1) of Proposition 1 shows that dimExt&(l4 $ 

189,21) = dimHomg(rad(P(90) @ 14), 21) and from the filtration of P(90) €3 
14 and the structure of 90 @ 14 and 70 @ 14 described there, one sees that 
this dimension is at most 2. Now (e) follows from Proposition l(i). 

To prove (f), we use Lemma l(b) ,  (a) and (h), to obtain 

and all extensions in the first and last terms other than the one in question 
are known. 

REMARK. It is now easy to see that P ( k )  has radical (and socle) series 
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Next we consider the tensor products of P(70)  and P(90) with 6 and f4. 

(a) Extk(64,202) = 0. 

(b) Extk(64,56) = k .  

(c) ~x tb ( l ' 4 ,202)  = k. 

(d) ~ x t b ( f 4 , 5 6 )  = 0. 

(e) ~ x t & ( f 4 , 6 4 )  = k.  

(f)  Extk(202,190) = 0. 

(g) ~ x t b ( 2 0 2 , 2 0 2 )  = 0. 

(h) Exth(202,56) = k .  

(i) Exth(56,190) = k .  

(j) Extb(f4 ,  f4) = 0. 

(k)  ~ x t b ( 6 4 , 6 4 )  = k .  

(1) Extk(56,56) = k .  

(rn) Extk(85,41) = k .  

(n) ~ x t h ( 4 1 , 4 1 )  = 0. 

PROOF: From Lemma 3 (c), (d) and Lemma 1 (p), (q)  we see that 70 €3 6 
and 90 @ 6 have the following structures: 

Since these modules filter P(90) @ 6 E P(64) $350' we can deduce (a)  and 
(b).  Since they also filter P(70) @ 6 Z ~ ( c 4 )  $ P(64)  $350, we also obtain 
(c) (using-(a)) and (d) (using (b)) .  The module rad P(9O) @ 6 has a simple 
quotient 14 and we have seen that the composition factors 6 and 56 of 90 @ 6 
do not extend f4, which yields (e). Next we consider 90@1*4 and 70@f4, which 
filter P(90) 8 f4  Z ~ ( f 4 )  $ P(64) @ P(202) $ 3503. Since rad P(9O) @ f4 is a 
quotient of P(70) @ 14 and since [90 @ f4  : 1901 = 0, we deduce (f). Since by 
Lemma l ( s )  and Lemma 3(e), [rad / soc(9O @ f4) : 2021 = 1, (g) follows from 
(c). Also since [rad / soc(90 @ 1̂ 4) : 561 = 1 and 56 appears only once in the 
head of rad P ( s o ) @ ~ ~ ,  we see that dirnExt~(f4$64$202,56) 5 2 from which 

it follows by (b) that  d im~xt$(202,56)  < 1. To prove (h),  we need to find a 
nonsplit extension of 56 by 202. By Lemma l (o) ,  6 @ 85 {6,56', 202,190). 
We have Homg(6 @ 85,56) 2 Hom2(85, 6 @ 56) Z k by Lemma l(1). The 
subquotient of 6 @ 85 obtained by omitting the top and bottom factors 56 
must be semisimple by self-duality. Since any direct summand of 6 @  85 must 
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have dimension divisible by 5 (Remark after Lemma 3), we see that 202 is 
not one and so we have found the desired extension. 

To prove (i), we note that the part of P(70) @ f4 in the relevant block is 
P(6) $ P(56) @ P(64). Neither 90 @ f4 nor 70 @ f4 has 190 as a quotient, so 
since Extk(6 $64,190) = 0 (by Proposition 2(b) and the Cartan matrix), 

Since rad / S O C ( ~ O @  f4) E {6', 562, 64,190) , the assumption Extb(56,190) = 
0 would contradict (7), so (i) holds. 

From the filtration of P(90) @ f4 we obtain 

and this has dimension at most 2. Then (c) and (e) imply (j). 
By Lemma l(c), (a) and (j), we have 

and all extensions except Extk(64,64) are already known, whence (k). 

We prove (I), (m) and (n) together. First we claim dirnExtk(56,56) <_ 1. 

From the structure of P(70), we see that P = P(70) @ f4 has a filtra- 
tion PI C Pz C P where PI is a quotient of P(90) @ f4 while P2/P1 and 
PIP2 are both isomorphic to 70 @ f4. Consideration of the heads of these 
factors and the composition factors of rad / soc(70 @ f4) shows that the 
dimHomg(rad(P(70) @ f4), 56) <: 3. Since the part of P(70) @ f4 in the 
block of maximal defect is P(6)  $ P(56) $ P(64), our claim follows from (b) 
and Proposition 1 (1). Now using Lemma 1 (1) and (n) and known extensions 
we have 

k @ Extb(41,41) $ ~x t8 (85 ,41 )  r Ext&(21$41$85 $189,41) 

S' Ext&(6 @ 56,4l) 2 ~ x t i ( 5 6 , 6  @ 41) 

2 Ext &(56,56 $ 190) 1 k @ Extk(56,56). (8) 

By our claim, the dimension of the last member is at most 2. On the other 
hand we have Ext&(85,41) # 0, for example from the fact that the reduction 
mod 5 of the complex character of degree 126 has 41 and 85 as composition 
factors. Now (8) implies (I), (m) and (n). 

Finally, we turn to the last missing entry. 

PROPOSITION 4. ~xt$(85,85)  = 0. 
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PROOF: Ignoring components outside the principal block, we have P(k)  @ 
1 r P(21) $ P(85). We define the filtration by setting F, to be the principal 
block part of soclP(k) 8 21, i = 1, .  . .5.  Thus Fs/F4 21 and F4/F3 z 
k $ 14 $ 12 $ 41 $ 85 $ 189. From existing results on extensions, it now 
follows that 

F3 rad2 P(21) $ rad P(85). (9) 

We will prove that dimHomz(F3, 85) 5 1, while ~ o m ~ ( r a d ' ( ~ ( 2 1 ) ,  85)) # 0. 
The lemma will then follow from (9). Dual to (9)) we have F 2  G soc2 P(21)$ 
soc P(85), so soc2 P(21) C rad2 P(21). Since 

is self-dual and 21 does not extend 85, we have ~ o m ~ ( r a d ~ ( ~ ( 2 1 ) , 8 5 )  f 0. 
Now consider any nonzero 4 E Homc(F3, 85). We use the identification (9). 
Since soc P(85) is the unique minimum submodule of rad P(85) and the latter 
is not simple, we see that socP(85) is in the kernel of 4. Let Fi denote the - - 
images of F, in F3/ soc P(85) ( i= l ,  2,3) then F 3 / F 2  Z F3/F2 is the only 
factor of this filtration of F3 which has 85 as a composition factor. Also, - - 
from the structure of P(k) ,  we have F3/Fz r (41 8 21) $ (k 8 2 1 )  $ (148  21) 
and all the composition factors 85 belong to 41 8 21. Thus, we have shown 
HomE(F3, 85) 2 Horn3(21 8 41,85) and it remains to bound the dimension 
of the second space by 1. Using Lemma l(i) ,(j)  and (n), we have 

Since [6@85 : 1901 = 1, we obtain our estimate and the proposition is proved. 
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